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§0 Introduction

Let X be a non-singular, projective manifold, and let (Yj)j=1,...,N be a set of non-
singular hypersurfaces of X , having strictly normal crossings. We denote by A → X
an ample Q-bundle on X . Following V. Shokurov, (cf. [24]) we define the set

EY,A :=
{
τ ∈ [0, 1]N : KX + Yτ + A ∈ Psef(X)

}

where Yτ :=
∑N

j=1 τ jYj.

Let L ⊂ Rr be an r-dimensional polytope, whose vertices have rational coordinates
(i.e. a rational polytope). For j = 1, .., N , let lj : Rr → R be a set of affine forms
defined over Q, such that

0 ≤ lj(θ) ≤ 1 − ε0

for all θ ∈ L, where ε0 is a positive real number.

We denote by d := (d0, ..., dr) an element of Zr+1, and we introduce the set

(1) Γd := {(m, θ) ∈ Z+×L : ∀j = 0, ..., r, mθj ∈ djZ, l(θ) ∈ EY,A}

where by convention we put θ0 := 1 in the relations above.

Our focus in this article will be on the following ring of holomorphic sections

Ar(X) :=
⊕

(m,θ)∈Γd

H0
(
X, m

(
KX +

N∑

j=1

lj(θ)Yj + A
))

,

where we assume that the coordinates of d are divisible enough.

In the framework of the minimal models program, the following result was established
by C. Birkar, P. Cascini, C. Hacon and J. McKernan in [2] (one can profitably consult
the enlightening presentations in [10], [15] of this article).

0.1 Theorem[2]. The following assertions are true.

(i) The set EY,A is a rational polytope ;

(ii) The ring Ar(X) defined above is finitely generated.
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A first remark about 0.1 is that the properties of the set EY,A are crucial for the original
proof given in [2]. Concerning the finite generation part of the theorem 0.1, we mention
the very elegant approach due to Y.-T. Siu (see [28], [29], [30]), which does not use
V. Shokurov polytopes technique. Instead, he introduces new invariants associated to
linear series (the “minimal discrepancy subspace”), which most certainly will be useful
in other contexts.

As the title of the present article tries to suggest, our original contribution in this
paper is somehow very modest : we propose a proof of the theorem 0.1 guided by the
same principles as in [2], [19] and [28]. In spirit, we follow to a large extent the article
[19] ; however, there are some important parts of the arguments in this article which
we were not able to understand, so the main technical aspects of our approach are
necessarily different (see the sections 2.C and 3 for more comments in this respect).
One significant difference is that the core of our arguments relies exclusively on the
extension theorems established in [22]. The theory of closed positive currents and its
relationship with the algebraic geometry as developed by J.-P. Demailly and Y.-T. Siu
over many years plays an important rôle in this text. Needless to say that the original
proof [2] does not use such tools, and we do not claim at all that they are indispensable ;
we just hope that the flexibility of the techniques employed here may be suitable for
forthcoming research around these topics.

Along the following lines, we try to motivate the formulation of the point ii) above
(and to highlight some of the important steps of a particular case of its proof). A first
intuitive reason is that in this way we take into account a consistent part of statements
of the inductive process in the original article [2], but here it is a more “down to Earth”
explanation.

Let L :=
∑N

j=1 νjYj + A be a Q-line bundle, where 0 < νj < 1, and let us say that
we are willing to prove the finite generation of the algebra

R :=
⊕

m∈dZ

H0
(
X, m(KX + L)

)

where d is a divisible enough integer. Let ϕm0
be a metric on KX + L induced by the

linear system |m0(KX + L)|, and let ϕmin be the metric with minimal singularities on
the same bundle, induced by the all the elements of R, (see [7], [9], [26]).

If these two metrics are equivalent i.e. if |ϕmin −ϕm0
| = O(1) on X , then the result

we seek is obvious.

If not, then we can use ϕm0
as an incomplete linear system and apply a slightly

modified version of the x-method as in ([2], [22]) ; the outcome is that the finite
generation of R is reduced to the finite generation of the algebra

R′ :=
⊕

m∈dZ

H0
(
X, m(KX + S + L′)

)

where L′ =
∑K

j=1 µjY ′
j + A is a Q-line bundle with 0 < µj < 1, the hypersurfaces

(S, Y ′
j ) have strictly normal crossings and (Y ′

j ) are mutually disjoint. Moreover, we
can assume the existence of an element of R′ whose restriction to S is not identically
zero.
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Then the restricted algebra

R′
|S := Im

( ⊕

m∈dZ

H0
(
X, m(KX + S + L′)

)
→

⊕

m∈dZ

H0
(
S, m(KS + L′

|S)
))

is easily identified via the extension of pluricanonical forms results, cf. [1], [14] as

follows. There exists an effective Q-divisor ∆S :=
∑K

j=1 ρjY ′
j|S on S, such that : a

section of m(KS + L′
|S) extends to X if and only if its zeroes divisor is greater than

m
∑

j min(ρj, νj)Y ′
j|S.

The existence of ∆S together with the induction hypothesis shows that R′
|S is finitely

generated ; in analytic terms, this implies that the restriction ϕmin|S has logarithmic
poles. In order to derive a similar conclusion locally near S, we have to understand
the “normal directions”, i.e. the restricted algebra

Im
( ⊕

m,k

H0
(
X, m(KX + S + L′) − kS

)
→

⊕

m,k

H0
(
S, m(KS + L′) − kS|S

))

where m ∈ dZ and k varies independently. We observe that the bundles we are inter-
ested in can be written as

(2) m
(
KX + S +

K∑

j=1

µjY ′
j + A − k

m
S

)
,

and let CA be a large and divisible enough integer, such that CAA and CAA − S are
very ample. Then we have

A − k

m
S =

k

m

(
CAA − S

)
+

(1

2
− k

m
CA

)
A + 1/2A ≡

≡ k

m
H1 +

( 1

2CA
− k

m

)
H2 + 1/2A

where H1 ≡ CAA − S and H1 ≡ CAA are hyperplane sections. Therefore, the bundle
(2) becomes

m
(
KX + S +

K∑

j=1

µjY ′
j + l1(τ)H1 + l2(τ)H2 + A1

)

(with the obvious notations from the relations above) ; the restricted algebra associated
to it is identical to the one considered in 0.1, modulo the fact that we have to assume

that the ration τ =
k

m
is not too large (in order to insure the positivity of the quantities

lj(τ)), and -which is more serious- the fact that we have to take into account the
analogue of the divisor ∆S in this new setting.

Indeed, we have ∆S = ∆S(τ), so we have to analyse the variation of the coeffi-
cients ρj(τ) of this divisor as functions of τ . It turns out that the functions ρj are
piecewise affine, (as they should be, in view of the results of L. Ein et al., see [11]).
At this point we follow closely the ideas in [19] which we describe now. For each j,
the function ρj(τ) is obviously convex ; the important remark in [19] is that under
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some very precise hypothesis we obtain an inequality opposed to the one we get from
convexity, as a consequence of the results concerning the extension of pluricanonical
forms (the principle is absolutely the same as the one used in [14] for the rationality
of the restricted algebras). It is for the proof of this affirmation that the polyhedral
structure of the sets EY,A above is needed, in combination with the extension theorems
for pluricanonical forms. Once the “affinity” statement is proved, it follows by induc-
tion that R′ is finitely generated, modulo sections whose normalized vanishing order
along S is larger than some positive constant.

Very roughly, we show next that it is possible to iterate this procedure, till we
achieve finite generation of our initial algebra R modulo sections whose normalized
vanishing order along each hypersurface S1, ..., SK, is greater than a fixed constant,
where the (Si) are the support of the zero set of some fixed pluricanonical section.
Then we are done.

Concerning the point i) in 0.1, the approach is very clear : given that EY,A is a compact
convex set, it is enough to show that its extremal points are isolated near any fixed
t0 ∈ EY,A. The important techniques in the proof of this affirmation are closely related
to the pseudoeffectivity results which are implicit in [22] ; again, our presentation
borrows some ideas from [19], even if the language used and the actual proof are quite
different. We mention here that via the minimal model program one equally obtains a
decomposition of the set EY,A, together with a beautiful geometric interpretation of it
(see [2], [16], [24]).

In conclusion, the extension theorems for pluricanonical forms are crucial for all the
main steps of the arguments presented in this article. The structure of our proof shows
clearly that in order to obtain new non-vanishing and/or finite generation results (e.g.
using as little as possible of the positivity of the Q-bundle A), this is the technique to
be further investigated and refined.

§1 Basic definitions and notations

In this paragraph we fix some notations and we collect a few results which will be
needed in the proof of 0.1.

Let {α} ∈ Psef(X) be a pseudoeffective cohomology class of (1,1) type, where α
is a non-singular and closed differential form. The important notion of current with
minimal singularities in the sense of pluripotential theory associated to the class {α}
was introduced in [7]. The corresponding object will be denoted by Θmin, and will be
refered here as current with minimal singularities in the sense of Demailly. We recall
next its definition ; for a more ample presentation of its properties, see [4], [5], [7], [8],
[9].

We consider the family of potentials

P := {f ∈ L1(X) : f ≤ 0 and α +
√
−1∂∂f ≥ 0}

where the above inequality is assumed to hold in the sense of currents on X . Then we
define fmin to be the regularized upper envelope of the above family, and then

Θmin := α +
√
−1∂∂fmin.
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In the geometric context {α} = c1(L), where L → X is a Q-bundle, one can restrict
the family of functions P above, and only take into account the potentials f induced
by holomorphic sections of L and its multiples (suitably normalized). Let fmin,σ be the
regularized upper envelope of this smaller family (see [26]) ; the corresponding current
is denoted by Θmin,σ and we call it current with minimal singularities in the sense of
Siu. The inequality

fmin ≥ fmin,σ

is obvious from the definitions. If the bundle L is big, then the above currents have
equivalent singularities if and only if the algebra of sections defined by L is of finite
type, as remarked in [5]. The relationship between these two currents play an important
rôle in the proof of 0.1.

Let W ⊂ X be an irreducible hypersurface ; following [5], [20], we denote by
νW ({α}) the minimal multiplicity of the class {α} along W . We recall that the minimal
multiplicity νW ({α}) is in general strictly smaller than the Lelong number of the current
with minimal singularities of {α}, cf [5].

Next, we have the notion of numerical dimension of a pseudoeffective class {α}
generalizing the corresponding definition in the setting of the nef line bundles. In the
present text we will denote this invariant by nd({α}).
We will not reproduce the precise definition of the preceding invariants ; their relevance
for our article is explained in the next statement.

1.1 Theorem[5], [20]. Let X be a compact complex manifold, and let {α} ∈ Psef(X)
be a pseudoeffective class.

(a) The function {α} → νW ({α}) is convex and lower semi-continuous on the closed
set Psef(X).

(b) We assume that nd({α}) = 0 ; then there exists an unique closed positive current

T =

N∑

i=1

aj
T [Wj ] ∈ {α}

and moreover we have aj
T = νWj

({α}).

We recall next the notion of asymptotic vanishing order of a divisor along an irreducible
hypersurface W ⊂ X .

Let D be an effective Q-divisor ; following [11], we define

ordW

(
‖D‖

)
:= lim

p→∞

ordW (|pD|)
p

where ordW (|pD|) is the vanishing order along W of a generic representative of the
linear system |pD|. The order function can be extended by continuity to the cone of
effective R-divisors ; we refer to [11] for the proof of this assertion.

The following important result was equally established in [11], section 4. Let D1, ..., Dr

be effective Q-divisors, such that the Cox ring

R :=
⊕

(m1....,mr)∈dZ+

H0
(
X, m1D1 + ... + mrDr

)
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is finitely generated, where d is a divisible enough integer.

1.2 Theorem[11]. Under the above assumption, there exists a smooth fan Ξ refining
Nr such that on each cone of Ξ, the function

(m1, ...mr) → ordW

(
‖m1D1 + ... + mrDr‖

)

is linear.

In particular, there exists a refinement
(
∆j

)
of the standard polytope

∆ := {τ = (τ1, ..., τ r) : τ j ≥ 0, j = 1, ..., r and τ1 + ... + τ r = 1}

such that each ∆j is generated by finite set of vertices with rational coordinates, and
such that if we denote by Dτ :=

∑
τ jDj , then we have

(3) ordW

(
‖(1 − η)Dτ0

+ ηDτ1
‖
)

= (1 − η)ordW

(
‖Dτ0

‖
)

+ ηordW

(
‖Dτ1

‖
)

for any τ0, τ1 within the same ∆j , and any 0 ≤ η ≤ 1. The equality (3) follows directly
from the theorem 1.2 if τ1, τ2 and η have rational coordinates ; in general, we use a
continuity argument.

We note that if D1 and D2 are numerically equivalent big divisors, then we have
ordW

(
‖D1‖

)
= ordW

(
‖D2‖

)
, as stated in the theorem A of [11]. If D1 = KX+L1 where

L1 is klt and big, then the same equality holds true, as soon as D1 is (pseudo)effective
(i.e. in this case we do not need the “big” hypothesis), see [22].

To conclude this paragraph, we collect next a few very elementary results concerning
the set EY,A defined in the introduction by using the hypersurfaces (Yj)j=1,...,N .

In order to study its “shape” near an arbitrary point τ0, it would be convenient to
have 0 ≤ τ j

0 ≤ 1 − ε0, for some strictly positive ε0 and all the indexes j. We show
that we can assume that such inequalities holds, provided that we modify slightly the
ample part A.

We use the following translation technique which goes back at least to [2], as follows.
Let 0 < ε0 < 1/2 be a rational number, such that A + ε0

∑
j∈J Yj is still ample, for

any subset J ⊂ {1, ..., N}. We define the set

J0 := {1 ≤ j ≤ N : τ j
0 > 1 − ε0}

and then for any τ ∈ [0, 1]N we have

KX +
∑

j∈{1,...,N}\J0

τ jYj +
∑

j∈J0

τ jYj +A ≡ KX +
∑

j∈{1,...,N}\J0

τ jYj +
∑

j∈J0

(τ j −ε0)Yj +A0

where A0 is the ample bundle A + ε0

∑
j∈J0

Yj . We remark that 0 ≤ τ j
0 − ε0 ≤ 1 − ε0

for any j ∈ J0, and therefore there exists a small open set Ω ⊂ EY,A containing the
point τ0, such that the map Φ : Ω → EY,A0

given by the relation

τ → (τ ′, τ ′′ − ε0)
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is well defined, where τ ′ (respectively τ ′′) corresponds to the components of τ whose
indexes belongs to {1, ..., N} \ J0 (respectively J0).

In conclusion, while analysing the set EY,A near one of its points τ0, we can assume

that 0 ≤ τ j
0 ≤ 1 − ε0, for all 1 ≤ j ≤ N .

Let µ : X̂ → X be a composition of blow-up maps with non-singular centers, such that

the proper transform of the divisor
N∑

j=1

Yj together with the support of the relative

canonical bundle K
X̂/X

of µ have strictly normal crossings ; we denote by (Ŷj)j∈Ĵ
the

corresponding hypersurfaces. We have

(4) µ⋆(Yτ ) =
∑

j∈Ĵ

rj(τ)Ŷj

where the rj above are linear functions with rational and positive coefficients, com-
pletely determined by the map µ and the set (Yj). Next, we have

(5) µ⋆
(
KX + Yτ + A

)
= K

X̂
+

∑

j∈Ĵ

(
rj(τ) − aj

X̂/X

)
Ŷj + µ⋆(A)

where the (aj

X̂/X
) are the coefficients of the relative canonical divisor.

Since we can assume that 0 ≤ τ j ≤ 1 − ε0/2 if τ ∈ Ω, we have (see [17])

(6) rj(τ) − aj

X̂/X
< 1

for all j ∈ Ĵ ; the inequalities above will still hold if we add any small enough δj to
their left hand side. As it is well known, for any ε > 0 there exists 0 < δj < ε such
that

Â := µ⋆(A) −
∑

j∈Ĵ

δj Ŷj

is ample, and therefore we get

(7) µ⋆
(
KX + Yτ + A

)
= K

X̂
+

∑

j∈Ĵ

(
rj(τ) − aj

X̂/X
+ δj

)
Ŷj + Â

with the coefficients of Ŷj above strictly smaller than 1.

In addition, by shrinking eventually the open set Ω near τ0, we can assume that Ĵ is
a disjoint union Ĵp∪Ĵn where rj(τ)−aj

X̂/X
+δj > 0 if and only if j ∈ Ĵp, for any τ ∈ Ω.

We observe that the hypersurfaces Ŷj corresponding to j ∈ Ĵn are µ-exceptional ; the
relation (7) becomes

(8) µ⋆
(
KX+Yτ +A

)
+

∑

j∈Ĵn

(
aj

X̂/X
−δj−rj(τ)

)
Ŷj = K

X̂
+

∑

j∈Ĵp

(
rj(τ)−aj

X̂/X
+δj

)
Ŷj+Â
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By using the relation (8) above, we can define a map Φ1 : Ω → E
Ŷ ,Â

as follows

τ → (rj(τ) − aj

X̂/X
+ δj)

j∈Ĵp
.

It is easy to see that Φ1 is well defined, and one can even describe its image thanks to
the Hartogs principle.

Since Φ1 is an affine map defined over the rational numbers, the inverse image of
any rational polytope is a rational polytope as well. We will make an extensive use of
slightly more general considerations in a moment, but we have chosen to include this
simple discussion here, as an illustration for what is about to follow.

§2 Proof of (i)

We start with a few preliminary remarks ; in the first place, the set EY,A is convex ; it
is equally closed by the usual properties of the pseudoeffective cone.

Also, we note that a point τ0 ∈ EY,A having at least one non-rational coordinate
cannot be extremal. The argument is an immediate consequence of the non-vanishing
theorem (see [2], [22]), as follows.

Let
∑

j∈I ρj
0[Wj ] be an effective R-divisor, numerically equivalent with KX + Yτ0

+ A.

As in [22], paragraph 1.I, we consider the set

J :=
{
(x, τ) ∈ R|I| × RN :

∑

j∈I

xj [Wj ] ≡ KX + Yτ + A
}

and we note that J is an affine subspace of R|I|×RN , which is defined over the rational
numbers. Our given data (ρ0, τ0) corresponds to a point in J ; let η > 0 be a positive
number. We can construct the rational approximations (ρηs, τηs) ∈ J of (ρ0, τ0) such
that :

(i) There exists qηs ∈ Z+ such that qηs(ρηs, τηs) has integer coordinates, and such that
the next Dirichlet inequality is satisfied qηs‖ρ0 − ρηs‖ < η (and a similar relation
for the τ0).

(ii) The point (ρ0, τ0) belongs to the convex hull of (ρηs, τηs).

We remark that the coordinates of ρηs are positive rational numbers, and we clearly

have τηs ∈
(
[0, 1] ∩ Q

)N
as soon as η ≪ 1 ; this is a consequence of (i) above. In

conclusion, if at least one component of τ0 is not rational, then this point cannot be
extremal.

By the classical theory of convex sets, the first part of 0.1 can be reformulated as
follows.

2.1 Claim. The set of extremal points of the set EY,A is isolated.

Our proof of the claim 2.1 is in some sense a generalization of the arguments in [22] :
there are two main cases we are forced to consider.
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First we analyse an extremal point τ0 ∈ EY,A for which the numerical dimension of
the corresponding Q-bundle KX + Yτ0

+ A is equal to zero. In order to establish the
claim under this hypothesis, the main results we invoke here are due to S. Boucksom
(see [5]).

If the numerical dimension of the bundle KX +Yτ0
+A is at least one, then given any

sequence τk → τ0 as k → ∞ we will create a center S adapted to (τk) on a modification
of X , and we will use the full force of 0.1 in lower dimensions for the proof of 2.1.

Remark. In the article [19], the author follows a different path for the proof of the
statement 2.1. One of the important steps in his approach is that the limit of any non-
constant sequence of extremal points is necessarily nef in codimension 2. Unfortunately
we do not understand the arguments he invoke to prove this fact in at the page 35 in
[19], proof of the step 3 (but of course, the fact itself is true a posteriori). Nevertheless,
some ideas/techniques from [19] are crucial for the proof of the statements 2.C.6 and
2.C.7.

§2.A The case nd({KX + Yτ0
+ A}) = 0

Let τ0 ∈ EY,A be a point such that nd({KX + Yτ0
+ A}) = 0 ; we do not assume

it rational or extremal, for the moment. By the result 1.1 recalled in the preceding
paragraph, there exists an unique closed positive current

Θ0 :=
∑

j∈I

aj
min(τ0)[Wj]

in the class KX + Yτ0
+ A ; we denote by I above a finite set.

Let τk ∈ EY,A be a sequence converging to τ0 as k → ∞, and let

Θk :=
∑

j∈I

aj
min(τk)[Wj ] + Λk

be a current with minimal singularities in the class {KX +Yτk
+A} ; along the next few

lines, we reproduce the arguments in [5] to show that we have limk aj
min(τk) = aj

min(τ0).

In the first place, the sequence of currents Θk (can be assumed to) converge to Θ0.
Indeed this is clear, by the uniqueness part of the statement 1.1 above, combined with
standard properties of closed positive currents, see [25]. By the semi-continuity of the
Lelong numbers of closed positive currents, we have

(9) aj
min(τ0) ≥ lim

k
aj
min(τk).

On the other hand, for each k ≥ 1 and each index j we have

(10) aj
min(τk) ≥ νWj

({KX + Yτk
+ A}).

This inequality combined with the lower-semicontinuity result 1.1 (a) yields

(11) aj
min(τ0) ≤ lim

k
aj
min(τk)
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and thus we obtain

(12) aj
min(τ0) = lim

k
aj
min(τk).

For any positive real η > 0, we consider the current

(13) Tk,η := Θk + η(Θk − Θ0).

Then we have Tk,η ∈ {KX +Yτk,η
+A}, where τk,η := τk + η(τk − τ0). The next simple

considerations enable us to conclude.

• The components of τk,η belong to the interval [0, 1], as soon as k ≫ 0 (we recall that
the components of τ0 are assumed to be positive and smaller than 1 − ε0).

• The current Tk,η is positive–it is at this point that we are using the equality (12) in
an essential manner.

In conclusion, the quantity τk can be written as a convex combination of τ0 and τk,η ;
each of these two points belong to EY,A and neither of them is equal to τk. Therefore
the set of extremal points of EY,A is isolated at any τ0 for which the associated class
{KX + Yτ0

+ A} has numerical dimension zero.

§2.B The “x method” for sequences

During the paragraphs 2.B and 2.C, our main goal will be to analyse the set of extremal
points near τ0 ∈ EY,A, such that

nd({KX + Yτ0
+ A}) ≥ 1.

Nevertheless, we will try to develop a general setting, which will be useful for the proof
of the second part of 0.1.

Let τk ∈ EY,A be a sequence of points converging to τ0 as k → ∞ ; for the moment,
we do not assume that (τk) are rational or extremal. In this subsection we will show
that we can apply the so-called x-method in the version explained in [2] and [22],
simultaneously for (a subsequence of) (KX + Yτk

+ A)k∈N. There are practically no
additional difficulties while transposing the arguments from the case of a single point to
our set-up, but unfortunately there are many things to be verified, and the presentation
is quite messy...

We can assume that the coordinates of the vector τ0 ∈ EY,A belong to the interval
[0, 1 − ε0], for some ε0 > 0, thanks to the discussion at the end of the paragraph 1.
Along the next few lines, we construct the analogue of an incomplete linear system
in the usual x-method corresponding to each τk, whose singularities do not change as
k → ∞.

The class {KX + Yτk
+ A} is pseudoeffective, and we denote by Θk its current with

minimal singularities in the sense of Demailly. There exists x0 ∈ X a very general
point, such that ν

(
Θk, x0

)
= 0, for any k ≥ 0. By the folklore results recalled e.g. in
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[18], there exists a Kähler current T0 ∈ {m0(KX + Yτ0
+ A) + A}, with logarithmic

poles and such that

(17) ν(T0, x0) ≥ dim(X) + 1

where m0 is a large enough integer. We can also assume that the singularities of T0

are rational numbers, in the sense that there exists a birational map f : X̂ → X
such that f⋆(T0) can be written as an effective divisor with rational coefficients plus a
non-singular (1, 1)-form. We define

Tk := T0 +

N∑

j=1

(τ j
k − τ j

0 )θj,

where θj is a non-singular representative of m0c1(Yj). If the components of the vector
τ0 happen to be rational numbers, then the current Tk defined above is convenient for
our future purposes. In general, we have to modify it further, as follows.

We denote by ωA ∈ c1(A) a Kähler form ; let C0 ∈ N be a large enough integer, such
that m0Yj + C0A and C0A are very ample. We consider Hj , respectively H0 generic
hyperplane sections of these bundles.

For each η > 0, we consider a vector τη ∈ [0, 1]N , with rational coordinates, such
that ‖τη − τ0‖ ≤ η. We define the affine forms f j(τ) = τ j − τ j

η +2η, where j = 1, ..., N ,

and respectively f0(τ) =
∑N

n=1(2η + τn
η − τn) and then we have

Tk =T0 +

N∑

j=1

(τ j
η − τ j

0 )θj +

N∑

j=1

(τ j
k − τ j

η )θj =

=Tη +

N∑

j=1

(τ j
k − τ j

η + 2η)θj − 2η

N∑

j=1

θj ≡

≡Tη − 2η(2C0NωA +

N∑

j=1

θj) +

N∑

j=1

f j(τk)Hj + f0(τk)H0

In the above equalities, we denote by Tη := T0 +
∑N

j=1(τ
j
η −τ j

0 )θj ; we see that we have

0 ≤ f j(τk) ≤ 4η, if k ≫ 0.

We remark that there exists a positive δ0 such that Tη ≥ δ0ωA for any η small
enough. In conclusion, we can choose η := η0 a positive rational number, such that

Ξ := Tη0
− 2η0(2C0NωA +

N∑

j=1

θj)

is positive, and its we observe that its cohomology class is rational. The current Ξ has
the same singularities as T0, and we re-define Tk as follows

(18) Tk := Ξ +
N∑

j=0

f j(τk)[Hj] ;
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it belongs to the class m0(KX + Yτk
+ A) + A.

We consider a log-resolution µ̃ : X̃ → X of T0 +
∑N

j=1 Yj . The µ̃–inverse image of
the objects which will come next into the picture can be written as follows.

(19) µ̃⋆(Tk) =
∑

i∈I

ai
T [Ỹi] + ΛΞ +

N∑

j=0

f j(τk)[Hj ]

where ΛΞ is a semi-positive form whose cohomology class is rational, the coefficients ai
T

are positives and rational, and Hj is the proper transform of Hj , which can be assumed
to be equal to the total transform of Hj , since these hypersurfaces are generic.

Similarly, we write

µ̃⋆(Yτk
) =

∑

i∈I

li(τk)Ỹi

where li : RN → R are affine functions with positive and rational coefficients. The
relative canonical bundle of µ̃ is written as follows

K
X̃/X

=
∑

i∈I

ai

X̃/X
[Ỹi].

As in the previous section, we denote by Θk a current with minimal singularities
in the sense of Demailly of the class {KX + Yτk

+ A} ; its µ̃-inverse image can be

decomposed according to the set of (Ỹi), as follows :

(20) µ̃⋆
(
Θk

)
=

∑

i∈I

ai
min(τk)[Ỹi] + Λk

where ai
min(τk) are positive real numbers, and where Λk is a closed positive current,

whose generic Lelong number along each of (Ỹi) is equal to zero.

A slight difficulty in what will follow is the fact that a-priori, we ignore the variation
of the quantity ai

min(τk) with respect to k, but still it is a bounded sequence, and for
our purposes we can assume that ai

min(τk) → ai
∞ as k → ∞. We remark that at this

point there is no connection between ai
∞ and the expected singularity ai

min(τ0) of the
minimal current of the class {KX + Yτ0

+ A}.

We have the next statement, which is a first step towards the proof of the claim 2.1.

2.B.1 Lemma. Under the assumptions and notations above, there exists t0, qj ∈ Q+,
a family of affine forms ri : R1+N → R with rational coefficients, and a set of strictly
normal crossings hypersurfaces (Ỹj)j∈Ĩ

⊂ X̃ such that

(1 + m0t
0)Λk +

∑

i∈In∪Ip

l̃ik(τk)[Ỹi] ≡ K
X̃

+ S̃ +
∑

i∈Ip

ri
(
τk, a0

min(τk)
)
Ỹi + Ã1
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where Ĩ = Ip ∪ In ∪ {0} is a partition of Ĩ, and where we use the next notations

(21) l̃ik(τ) := (1 + m0t
0)aj

min(τk) + aj

X̃/X
− t0aj

Ξ − lj(τ)

for i ∈ In, as well as

(22) l̃ik(τ) := (1 + m0t
0)

(
aj
min(τk) − qj

)

for i ∈ Ip ; we also denote by S̃ := Ỹ0. In addition, the following relations holds true
provided that k belongs to a well chosen subsequence of natural numbers.

(a) For each j ∈ In ∪ Ip we have 0 ≤ l̃ik(τk) ≤ (1 + m0t
0)aj

min(τk) + aj

X̃/X
.

(b) For each i ∈ Ip we have 0 ≤ ri
(
τk, ai

min(τk)
)
≤ 1 − ε0, where ε0 is a positive real

number.

(c) The bundle Ã is ample on X̃.

The approach we will follow for the proof is quite clear : first we determine the center
S̃ by using the limit bundle KX +Yτ0

+A, and then thanks to the fact that the family
of “incomplete linear systems” Tk we have just constructed is explicit enough, we can
describe in a very precise manner the variation of the coefficients when we replace τ0

by τk.

Proof. To start with, we remark that for any real number t we have the next numerical
identity (see [22] for similar considerations) :

(23)

(1 + m0t)Λk ≡K
X̃

+
∑

i∈I

(tai
Ξ + li(τk) − (1 + m0t)a

i
min(τk) − ai

X̃/X
)Ỹi+

+t
(
ΛΞ +

N∑

j=0

f j(τk)[Hj ]
)

+ (1 − t)µ⋆(A)

Next, we will modify the expression (23) above and replace µ⋆(A) by

Ã := µ⋆(A) −
∑

i∈I

δiỸi

(where δi > 0 and small enough). We still denote by li the affine form obtained from li

by adding the constant δi, and by ai
Ξ the real number ai

Ξ − δi, so that the cohomology
class is unchanged after the above substitution.

We note that if the perturbation (δi) is small enough, then the coefficients of Ỹi

above will still be strictly smaller than 1 for t = 0, whereas for t = 1, at least one of
these numbers is strictly greater than 1 (given the singularities of Ξ). Furthermore, it
is possible to choose the parameters (δi) such that the next quantities are distinct

(24)i t̃i :=
1 + ai

∞ + ai

X̃/X
− li(τ0)

ai
Ξ − m0ai

∞
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for all i ∈ I.

We consider the set I ′ := {i ∈ I : ai
Ξ − m0a

i
∞ < 0} ; we cannot have I ′ = I by the

choice of the point x0. For all k ≫ 0 we will have

(25) ai
Ξ − m0a

i
min(τk) < 0

if i ∈ I ′, as well as

(26) ai
Ξ − m0a

i
min(τk) > 0

provided that i ∈ I \ I ′.

The quantity (24)i∈I\I′ will be minimal for an unique index i = 0, and we denote

by S̃ the corresponding hypersurface. Then we have

(27) t̃0a
i
Ξ + li(τk) − (1 + m0 t̃0)a

i
min(τk) − ai

X̃/X
≤ 1 − ε0

for every j 6= 0, where ε0 < 1/4 is a positive real number. By the above considerations,
we have t̃0 < 1, but it may happen that this quantity is non-rational–and this will
affect the rationality part of the lemma we want to obtain. In order to bypass this
difficulty, we will consider an approximation of it, which is accurate enough for our
further purposes.

For every rational number η > 0, let t̃η ∈ Q, such that t̃0 − η < t̃η < t̃0. We consider
the affine form

(28) f̃(τ, a) := 1 + (1 + m0 t̃η)a + a0

X̃/X
− t̃ηa0

Ξ − l0(τ).

A quick computation shows the existence of a constant C0 > 0 such that

−C0η ≤ f̃
(
τk, a0

min(τk)
)
≤ C0η,

provided that k ≥ kη is large enough.

By increasing C0 if necessary, we assume that C0Ã − Ỹ0 and C0Ã are very ample ;
we have

(29)

(1−t̃η)Ã − f̃
(
τk, a0

min(τk)
)
Ỹ0 =

(̃
f
(
τk, a0

min(τk)
)

+ C0η
)(

C0Ã − Ỹ0

)
+

+
( 1

2C0
(1 − t̃η) − f̃

(
τk, a0

min(τk)
))

C0Ã +
1

2
(1 − t̃η)Ã − ηC0(C0Ã − Y0)

≡fN+1
(
τk, a0

min(τk)
)
HN+1 + fN+2

(
τk, a0

min(τk)
)
HN+2+

+
1

2
(1 − t̃η)Ã − ηC0(C0Ã − Y0)

where HN+1 ≡ C0Ã − Ỹ0 and respectively HN+2 ≡ C0Ã are generic hyperplane sec-
tions, and the corresponding f i are affine forms with rational coefficients defined by
the relation (29) above.
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We want the values of the affine forms f i to be positive and not too large when
computed on

(
τk, a0

min(τk)
)
, thus we define η0 to be a positive rational number such

that

(30) 1 − t̃0 ≥ 2C2
0η0

and such that 1
2
(1 − t̃0)Ã + t̃0ΛΞ − C0η0(C0Ã − Y0) is ample (this condition will be

needed later). Let t0 := t̃η0
be any positive rational number in the interval ]t̃0−η0, t̃0[ ;

with this choice, we note that we have

(31) 0 ≤ f j
(
τk, a0

min(τk)
)
≤ 1 − t̃0

if k ≥ kη.

The next version of the inequality (27) holds, since t0 ≤ t̃0,

(32) t0ai
Ξ + li(τk) − (1 + m0t

0)ai
min(τk) − ai

X̃/X
≤ 1 − ε0/2

for all i 6= 0 and for all k ≥ kη.

There are still a few cosmetic modifications we have to operate, in order to replace
ai
min(τk) with a rational number independent of k.

Let qj ∈ Q+ be a rational number, such that for each j ∈ I \ {0} and every k large
enough, we have

(a) qj ≤ ai
min(τk) ;

(b) t0ai
Ξ + li(τk) − (1 + m0t

0)qi − ai

X̃/X
≤ 1 − ε0/4.

We rewrite the relation (23) with t = t0 in a modified form, according to (29).

(1 + m0t
0)

(
Λk +

∑

i∈I\{0}

(ai
min(τk) − qi)[Ỹi]

)
≡ K

X̃
+ S̃+

+
∑

i∈I\{0}

(
t0ai

Ξ + li(τk) − (1 + m0t
0)qi − ai

X̃/X

)
Ỹi +

N+2∑

j=0

f i
(
τk, a0

min(τk)
)
Hi + Ã1

where Ã1 :≡ 1

2
(1 − t0)Ã + t0ΛΞ − C0η0(C0Ã − Y0) is an ample Q-bundle, and where

we have replaced t0f j by f j for notation’s sake.

For k ≫ 0, the coefficients

t0ai
Ξ + li(τk) − (1 + m0t

0)qi − ai

X̃/X

corresponding to Ỹi above will be assumed to be negative if i ∈ I+ and positive if
i ∈ I− ; moreover, we can assume that I \ {0} = I+ ∪ I−. Then the identity above
becomes

(33) (1 + m0t
0)Λk +

∑

i∈In∪Ip

l̃ik(τk)[Ỹi] ≡ K
X̃

+ S̃ +
∑

i∈Ip

ri
(
τk, a0

min(τk)
)
Ỹi + Ã1
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where for i ∈ I+ we introduce ri
(
τ, a

)
:= t0ai

Ξ + li(τ) − (1 + m0t
0)qi − ai

X̃/X
, and for

i = 1, ..., N + 3, we have ri := f i. We define In := I−, and Ip := I+ ∪ {1, ..., N + 3}.
This is precisely the expression we seek ; the verification of the properties (a), (b) and
(c) in the statement 2.B.1 is immediate, so we skip it.

Concerning the formula (33), we note the following interesting facts. Let τ ∈ [0, 1]N

and a ∈ R+ ; we define the R-divisor

(34)

E(τ, a) :=
(
a0

X̃/X
+ (1 + m0t

0)a
)
S̃+

+
∑

i∈In

(
t0aj

Ξ + lj(τ)
)
Ỹj +

∑

i∈Ip

(
(1 + m0t

0)qj + aj

X̃/X

)
Ỹj

As one can easily see, the support of the effective divisor E(τ, a) is not necessarily
contractible with respect to µ̃. ¿From the formulas (19), (20) and (33) we infer the
next numerical equivalence relation

(35)

E
(
τk, a0

min(τk)
)
+K

X̃
+ S̃ +

∑

i∈Ip

ri
(
τk, a0

min(τk)
)
Ỹi + Ã1 ≡

≡(1 + m0t
0)µ⋆(KX + Yτk

+ A) + K
X̃/X

and moreover we have the following correspondence between currents.

Let T ∈ {KX + Yτk
+ A} be a closed positive current ; then

T̃ ∈ {K
X̃

+ S̃ +
∑

i∈Ip

ri
(
τk, a0

min(τk)
)
Ỹi + Ã}

defined by the formula

(36) (1 + m0t
0)µ̃⋆(T ) +

∑

i∈I

ai

X̃/X
[Ỹi] − E

(
τk, a0

min(τk)
)

:= T̃

is positive, because

E
(
τk, a0

min(τk)
)
≤ (1 + m0t

0)µ̃⋆(Θk) +
∑

i∈I

ai

X̃/X
[Ỹi]

in the sense of currents on X̃. In particular, this shows that the current

(37) Θ̃k := (1 + m0t
0)Λk +

∑

i∈In∪Ip

l̃ik(τk)[Ỹi]

is a current with minimal singularities of the class

{K
X̃

+ S̃ +
∑

i∈Ip

ri
(
τk, a0

min(τk)
)
Yi + Ã}.
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We recall now the following result : there exists a birational map µ̂ : X̂ → X̃ such that
the inverse image of S̃ is equal to its proper transform, and such that for any set of
real numbers 0 ≤ xi ≤ 1 − ε0 we have

µ̂⋆
(
K

X̃
+ S̃ +

∑

i∈I

xiỸi

)
−

∑

j∈J1

r̂i(x)Ei ≡ K
X̂

+ Ŝ +
∑

j∈J2

r̂i(x)Ŷi.

where Ei are µ̂-exceptional, the Ŷi are mutually disjoint, and r̂i are affine forms, such
that r̂i(x) ≥ 0 if and only if i ∈ J2. We stress on the fact that in the formula above,
only the decomposition J1 ∪J2 depends on the particular vector x we are dealing with,
provided that ε0 is fixed ; this is just a small variation on the very classical result
stating the same thing without pointing out the (in)dependence of the data (µ̂, r̂i) on
the particular sequence (xi). Therefore we will just refer to the arguments provided in
[14], from which the previous statement follows.

In our particular case, this translates as follows. There exists a map µ̂ : X̂ → X̃,
together with a set of non-singular and mutually disjoint hypersurfaces (Ŷj) such that

(38) µ̂⋆(Θ̃k) +
∑

j∈Jn

l̂j
(
τk, a0

min(τk)[Ei] ≡ K
X̂

+ S +
∑

j∈Jp

r̂j
(
τk, a0

min(τk)Ŷi + µ⋆(Ã),

where (r̂j , l̂j) are affine forms defined over Q, and (Ej) are contracted by µ̂ ; we list
along the following lines the properties of the objects we have constructed so far, as an
introduction for the next subsection.

B.1 For each k large enough, we have

1 − ε0 ≥ r̂i
(
τk, a0

min(τk)
)
≥ 0 and l̂i

(
τk, a0

min(τk)
)
≥ 0 ;

B.2 The class α
(
τk, a0

min(τk)
)

:= {K
X̂

+S +
∑

j∈Jp
r̂i

(
τk, a0

min(τk)
)
Ŷi +µ⋆(Ã)} is pseu-

doeffective, and the Lelong number along S of its minimal singularity current is
equal to zero.

B.3 We have the next identity

(39)

K
X̂

+S +
∑

j∈Jp

r̂i
(
τk, a0

min(τk)
)
Ŷi + µ⋆(Ã) ≡

≡µ̂⋆
(
(1 + t0m0)µ̃

⋆({KX + Yτk
+ A}) − E

(
τk, a0

min(τk)
)

+ K
X̃/X

)
+

+
∑

j∈Jn

l̂i
(
τk, a0

min(τk)
)
Ei

for all k ≫ 0.

The analytic methods are now particularly useful, in the following context. By the non-
vanishing theorem in [22] and its consequences (cf. sections 2 and 3), the cohomology
class α

(
τk, a0

min(τk)
)

contains an effective R-divisor, whose support does not contains
S. In particular, if we denote by

(40) Θ̂k ∈ α
(
τk, a0

min(τk)
)
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a current with minimal singularities in the above class, then its restriction to S denoted
by Θ̂k|S is a well-defined closed positive current in the restriction of the class.

B.4 The restriction of the current Θ̂k to S can be written as follows (see [25])

(41) Θ̂k|S :=
∑

j∈Jp

ρj
min(τk)[Ŷj|S] + Λk,S

so the class α
(
τk, a0

min(τk)
)
−

{ ∑
j∈Jp

min
(
r̂i

(
τk, a0

min(τk)
)
, ρj

min(τk

)
[Ŷj|S]

}
is pseudo-

effective.

By using the properties B.1−B.4, we will define next a set which encodes the sequence
τk, together with the extension data for the sections of the multiples of the bundle
K

X̂
+ S +

∑
j∈Jp

r̂i
(
τk, a0

min(τk)Ŷi + µ⋆(Ã)
|S

. Next, by the induction hypothesis the

set we will define will turn out to be a rational polyhedron, and this will enable us to
finish the proof, and also to study the variation of the functions τ → a0

min(τ).

§2.C The induced polytope and its properties

We recall that our primary goal is to show that the elements of the sequence (τk)
cannot be extremal points of EY,A, as soon as k is large enough. For example, it would
be enough to determine τk0 ∈ EY,A such that τk belongs to the interior of the segment
[τ0, τk0].

To this end, we will use the pseudoeffectivity criteria established in [22], in the next
framework. Let X be a projective manifold, and let S, Y j be a set of strictly normal
crossing hypersurfaces, such that Y j ∩ Y k = ∅ if j 6= k. We fix a Q-bundle A on X,
such that for every δ > 0, there exists a set 0 < δj < δ of positive real numbers, such
that A − ∑

j δjYj is ample. Then we have the next statements, which are implicit in
[22].

2.C.1 Theorem [22]. Let 0 ≤ νj < 1 ; we assume that for all ε ≪ 1, there exists a
current

Tε ∈ {KX + S +
∑

j

νjY j + A}

whose Lelong number along S is equal to zero, and such that Tε ≥ −εω, where ω is
a Kähler form on X. Then the class {KX + S +

∑
j νj Ŷj + Â} contains an effective

R-divisor whose support does not include S.

One of the important tools in the proof of the theorem above is the statement (see [22],
the paragraph 1.H).

2.C.2 Theorem [22]. We assume that the numbers νj above are rational ; there exists
a positive real ε ≪ 1 such that the following property holds true.

Any section u ∈ H0
(
S, q(KX + S +

∑
j νjY j + A)|S

)
extends to X, provided that

there exists T ∈ {KX + S +
∑

j νjY j + A} a closed current whose restriction to S is
well-defined, such that T ≥ −ε/qω and such that

ordY
j|S

(u) ≥ q min
(
ν
(
T|S , Yj|S

)
, νj

)
− ε
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for all j. In particular, the bundle KX + S +
∑

j νjY j + A is (pseudo)effective, if a
couple (u, T ) as above exists.

We refer to [3], [6], [8], [9], [12], [15], [16], [21], [26], [27], [31], [32], [33], [34] and the
references therein for similar results/ideas.

Coming back to the discussion at the begining of this paragraph, we intend to use
the statement above in order to determine the point τk0. The couple (T, u) with the
properties required by 2.C.2 will be obtained via the theorem 0.1 in lower dimensions ;
it is at this moment that the polytopes of Shokurov will play a crucial role.

The definition of the following set is modeled after the properties Bj above, by decou-
pling the variables.

Let C > 0 be an upper bound for the sequences
(
a0
min(τk)

)
and

(
ρj
min(τk)

)
; a

finite upper bound indeed exists, thanks to the fact that the cohomology classes that
contains the currents having the above singularities belong to a bounded set in Psef(X),
respectively Psef(S). We introduce the following set

E|S := {(τ, a, ρ) ∈ [0, 1]N × [0, C] × [0, C]|Jp| : C.1− C.4 below are satisfied }

C.1 We have
1 − ε0 ≥ r̂i

(
τ, a

)
≥ 0 and l̂i

(
τ, a

)
≥ 0 ;

C.2 The cohomology class of the R-bundle

D(τ, a, ρ) := KS +
∑

j∈Jp

(
r̂i(τ, a)− ρi

)
+
Ŷi + µ⋆(Ã)

is pseudoeffective on S, where we denote by (x)+ := max(x, 0) ;

C.3 We have the next numerical equivalence

K
X̂

+ S +
∑

j∈Jp

r̂i(τ, a)Ŷi + µ̂⋆(Ã) ≡

µ̂⋆
(
(1 + t0m0)µ̃

⋆(KX + Yτ + A}) − E(τ, a) + K
X̃/X

))
+

∑

j∈Jn

l̂i
(
τ, a)Ei

(we use the notation in (34)) ;

C.4 We have ord
Ŷj∩S

(
‖D(τ, a, ρ)‖

)
=

(
ρj − r̂j(τ, a)

)
+

for each j ∈ Jp.

Concerning the conditions above, our first claim is that the set E1 defined just by the
conditions C.1 − C.3 is a rational polytope. Indeed, the requirements C.1 and C.3
are affine (in)equations, and the linear forms defining them have rational coefficients.
As for the condition C.2, we consider the set

E
Ŵ ,µ̂⋆(Ã)

:=
{
η = (ηj) ∈ [0, 1 − ε0]

|Jp| : KS +
∑

j∈Jp

ηj Ŷi + µ⋆(Ã) ∈ Psef(S)
}
.
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The induction hypothesis, together with the simple considerations at the end of the
section 1 show that E

Ŵ ,µ̂⋆(Ã)
is indeed a rational polytope, and then the condition C.3

reads as (
r̂i(τ, a)− ρi

)
+
∈ E

Ŵ ,µ̂⋆(Ã)
,

and thus the set E1 is a rational polytope ; we fix its vertices (τj, aj, ρj)j=1,...,G, and
let d be its dimension.

For each k = 1, ..., G, we define Dk := D(τk, ak, ρk). It is a pseudoeffective Q-line
bundle, and therefore it is effective, by the non-vanishing theorem [2], [22]. The Cox

ring associated to (Dk) is finitely generated, by induction, and therefore for each Ŷj|S

the associated asymptotic vanishing order function is piecewise affine, by the result [11]
recalled in the section 1.

We consider a decomposition of E1 =

M⋃

k=1

Ck into standard simplexes, such that the

functions below

(42) (τ, a, ρ) →
(
r̂i(τ, a)− ρi

)
+

and

(43) (τ, a, ρ) → ord
Ŷj∩S

(
‖D(τ, a, ρ)‖

)

becomes affine when restricted to any Ck ; we remark that the existence of such a
decomposition is slightly different from the assertion in the statement 1.2, but it can
be seen to follow, by a quick linear algebra argument. Thus, the equation C.4 imposes
affine requirements on the parameters (τ, a, ρ), and in conclusion, we have just proved
the next statement.

2.C.3 Lemma. The set E|S defined by the relation C.1 − C.4 above is a rational
polytope.

We stress on the fact that the extension of the function “ord” to the R-divisors we
are using in C.4 depends on the polytope E1 ; hopefully, this will not cause too much
confusion.

We denote by
(
τj , aj, ρj

)
j∈K

the vertices of E|S ; they have rational coordinates, and

for the purposes of the next corollary we can assume that they are independent in the
affine sense- this can always be achieved modulo a subdivision.

Given a point
(
τ, a, ρ

)
∈ E|S, we can write it as follows

(44)
(
τ, a, ρ

)
=

∑

j∈K

λj(τj, aj, ρj),

where
∑

j λj = 1 ; moreover, if the coordinates of the vector above are rational, then
its affine coordinates (λj) are rational as well.

The main use of the linear structure of the set E|S is revealed by the next statement,
which can be seen as a uniform non-vanishing, see also [2], [3].
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2.C.4 Proposition. There exists an integer q0 ∈ Z+ with the following property : let

(
τ, a, ρ

)
∈ E|S,

be a point with rational coordinates, and let q ∈ Z+ be a common denominator of its
affine coordinates (λj) in the equality (44). Then the bundle

qq0

(
KS +

∑

j∈Jp

r̂j(τ, a)Ŷi|S + µ⋆(Ã)
)

has a section whose vanishing order along the set Ŷi|S is exactly qq0ρ
i.

Proof. We consider the Q-bundle D
(
τj , aj, ρj

)
corresponding to a vertex of E|S. Its

asymptotic vanishing order at the generic point of Ŷi|S is given by the condition C.4,

that is to say ord
Ŷi∩S

(
‖D(τj, aj, ρj‖

)
=

(
ρi − r̂j(τj, aj)

)
+
. Since by induction we

already know that the ring associated to D
(
τj, aj, ρj

)
is finitely generated, we obtain a

section uj of the bundle qjD
(
τj, aj, ρj

)
such whose vanishing order on Ŷi|S is equal to

qj

(
ρi − r̂i(τj, aj)

)
+
, for each i ∈ Jp. Then we obtain -by twisting with an appropriate

divisor- a section

vj ∈ H0
(
S, qj

(
KS +

∑

k∈Jp

r̂k
(
τj , aj

)
Ŷk|S + µ⋆(Ã)

))

whose vanishing order at the generic point of Ŷi|S is equal to qjρ
i, for each i ∈ Jp.

The section we seek is obtained by convex combination of the vj , so the proposition is
proved.

The same argument shows that for any point
(
τ, a, ρ

)
∈ E|S, we can construct an

effective R-divisor Ξ ∈ {KS +
∑

k∈Jp
r̂k

(
τ, a

)
Ŷk|S + µ⋆(Ã)} whose vanishing order

along Ŷm|S is equal to ρm, for every m ∈ Jn.

Our next goal is to show that we have
(
τk, a0

min(τk), ρmin(τk)
)
∈ E|S ; this will be

the consequence of a more general result. Before stating it, we introduce one more
notation.

Let

(45) G ⊂ [0, 1]N × [0, C]

(where C is the constant fixed at the begining of this paragraph) be the set described
by the following three conditions.

C.5 We have 0 ≤ r̂i(τ, a) ≤ 1 − ε0 for all i ∈ Jp ;

C.6 The class {K
X̂

+ S +
∑

i∈Jp
r̂i(τ, a)Ŷi + µ̂⋆(Ã)} is pseudoeffective.

C.7 We denote by Θ̂(τ, a) ∈ {K
X̂

+ S +
∑

j∈Jp
r̂i(τ, a)Ŷi + µ̂⋆(Ã)} the current with

minimal singularities ; then we have ν
(
Θmin(τ, a), S

)
= 0.
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An important remark is that the set G is compact and convex : the fact that it is
convex is immediate from its definition, whereas its closeness is a direct consequence
of the theorem 2.C.1.

As it was recalled just before the property B.4 above, the restriction Θ̂(τ, a)|S is
well defined, and we decompose the restriction current as follows

(46) Θ̂(τ, a)|S =
∑

j∈Jp

ρi
min(τ, a)Ŷi|S + ΛS(τ, a),

where the Lelong number of ΛS(τ, a) on each Yj|S is equal to zero. Therefore, by the
previous equality we define the function

ρmin : G → R
|Jp|
+ ;

if τ ∈ EY,A is an element such that
(
τ, a0

min(τ)
)
∈ G, then we use the notation

(47) ρi
min(τ) := ρi

min(τ, a0
min(τ))

and we remark that this is consistent with the notations in B.4 for τ = τk, an element
of our initial sequence.

If the point (τ, a) ∈ G has rational coordinates, then by the results in [22] we know that
ρj
min(τ, a) ∈ Q, for any j ∈ Jp. An important result of this subsection is the following

statement.

2.C.5 Proposition. We assume that the requirements C.1 and C.3 are fulfilled by
some element (τ, a) ∈ G∩Q1+N . Then the point

(
τ, a, ρmin(τ, a)

)
belongs to the polytope

E|S. In particular, we have
(
τk, a0

min(τk), ρmin(τk)
)
∈ E|S for all k ∈ Z+ such that the

coordinates of τk are rational.

Proof. By the relation (46), we obtain

∑

j∈Jp

ρi
min(τ, a)Ŷi|S + ΛS(τ, a) ≡ KS +

∑

j∈Jp

r̂i(τ, a)Ŷi|S + µ̂⋆(Ã)

and therefore we have

∑

j∈Jp

(
ρi
min(τ, a)− r̂i(τ, a)

)
+
Ŷi|S + ΛS(τ, a) ≡KS +

∑

j∈Jp

(
r̂i(τ, a)− ρi

min(τ, a)
)
+
Ŷi|S+

+µ̂⋆(Ã).

In conclusion, the Q-bundle D
(
τ, a, ρmin(τ, a)

)
is pseudoeffective, and this proves that

the point
(
τ, a, ρmin(τ, a)

)
verifies the condition C.2.

Let u0 be a section of the bundle

q
(
KS +

∑

i∈Jp

(
r̂i(τ, a)− ρi

min(τ, a)
)
+
Ŷi|S + µ⋆(Ã)

)
;
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such an object defines canonically a section u of the bundle

q
(
KS +

∑

i∈Jp

r̂i(τ, a)Ŷi|S + µ⋆(Ã)
)

whose zero set contains the divisor
∑

i∈Jp
min{ρi

min(τ, a), r̂i(τ, a)
)
}Ŷi|S. But then the

section u admits an extension to X̂, by 2.C.2 (see also [1], [12], [14]), so in particular
we have

(48) ord
Ŷj∩S

(
‖D

(
τ, a, ρmin(τ, a)

)
‖
)
≥

(
ρj
min(τ, a)− r̂j(τ, a)

)
+

for all j ∈ J , because the metric induced by the extension of u is more singular than
the metric with minimal singularities of the corresponding bundle.

The ring of sections associated to D
(
τ, a, ρmin(τ, a)

)
is finitely generated by induc-

tion, therefore we have

ord
Ŷj∩S

(
‖D

(
τ, a, ρmin(τ, a)

)
‖
)
ν
(
Θσ(τ, a), Ŷj ∩ S

)

where we denote by Θσ(τ, a) the current associated to the algebra of sections of the
bundle D

(
τ, a, ρmin(τ, a)

)
, i.e. the current with minimal singularities in the sense of

Siu, whose definition was recalled in the paragraph 1.

Next, the closed positive current

Θ̂(τ, a)|S −
∑

i∈Jp

min{ρi
min(τ, a), r̂i(τ, a

)
}[Ŷi|S] ∈ {D

(
τ, a, ρmin(τ, a)

)
}

is certainly more singular than the current with minimal singularities of the class above.

Summing up the previous considerations, we have shown that the quantity we are
interested in

(
ρj
min(τ, a) − r̂j(τ, a

)
+

is smaller than the generic Lelong number of the

current Θσ(τ, a) on Ŷj ∩ S, and greater than the generic Lelong number of the current

with minimal singularities of the class {D
(
τ, a, ρmin(τ, a)

)
} along Ŷj ∩ S.

Since the bundle D
(
τ, a, ρmin(τ, a)

)
can be written as KS +Lk, where Lk is big and

klt, the current with minimal singularities in the sense of Siu coincides with the current
with minimal singularities in the sense of Demailly, as it was established in [22] ; in
conclusion, the relation (48) becomes an equality, and 2.C.5 is proved.

Remark. Following the articles [14], [19], one can avoid the use of the closed positive
currents in the definition of the coefficients ρj

min(τ, a). Nevertheless, we prefer the
approach explained above, since the notion of metric with minimal singularities is
meaningful in a very general context, as soon as the cohomology class in question is
pseudoeffective.

We will assume from now on that each τk has rational coordinates, unless explicitly
specified otherwise. The sequence

(
τk

)
converges to the limit τ0 for which no rationality

assumption is made.
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The following corollary is similar to the results established in [19], and can be seen as
a consequence of the preceding arguments, together with elementary convex geometry
considerations. The main idea of the proof goes back at least to [14] (see the paragraph
concerning the rationality of the restricted algebras ; see equally [22] for a use of this
idea in analytic setting).

2.C.6 Corollary. Up to the choice of a subsequence, for all k ≫ 0, there exists an
element τk0 ∈ EY,A such that :

(i) The point τk belongs to the interior of the segment
[
τ0, τk0

]
;

(ii) The restriction of the function τ → a0
min(τ) to the segment

[
τ0, τk0

]
is affine.

(iii)For each τ ∈
[
τ0, τk0

]
, we have

(
τ, a0

min(τ)
)
∈ G, and the functions τ → ρj

min(τ)

defined in (47) are affine on
[
τ0, τk0

]
.

Proof. By the proposition 2.C.5 we have
(
τk, a0

min(τk), ρmin(τk)
)
∈ E|S, for any k ≫ 0 ;

again, we can assume that the vertices (τj, aj, ρj)j=1,...,d+1 of E|S are affinely indepen-
dent (by passing to a subdivision of the polytope if necessary).

The affine coordinates of the point
(
τk, a0

min(τk), ρmin(τk)
)

are written as follows

(
τk, a0

min(τk), ρmin(τk)
)

=
d+1∑

j=1

λj
k(τj, aj, ρj),

where λj
k are positive rational numbers, such that

∑
j λj

k = 1. For each index j, we

can assume that limk→∞ λj
k := λj

0, and we consider the corresponding point

(
τ0, a0, ρ0

)
=

d+1∑

j=1

λj
0(τj , aj, ρj) ∈ E|S,

where the first component is indeed τ0, since τk → τ0.

The function τ → a0
min(τ) defined on EY,A is convex and bounded, therefore we

have

(49) a0 ≤ a0
min(τ0).

Next, due to the possible non-rationality of the coordinates of V0 := (λj
0), we will use

a few classical results from diophantine approximation theory (see [2], [19], [22] for
similar considerations).

Let η > 0 be a positive real ; then there exists a finite set of vectors Vηs = (λj
ηs)

such that :

A.1 We have
∑

j λj
ηs = 1, and moreover the λj

ηs are positive rational numbers ;

A.2 For each s, we have qηs‖V0 − Vηs‖ ≤ η, where qηs is a positive integer, such that
qηsλ

j
ηs ∈ Z+, for each j ;

A.3 We have V0 =
∑

s αsVηs, where αp are positive real numbers, such that
∑

s αs = 1.

A.4 For each s, the point τηs :=
∑

i λi
ηsτi belongs to the minimal rational affine subspace

A(τ0) ⊂ RN which contains τ0.
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We use the coordinates of the vectors Vηs in order to define a point in the polytope
E|S, as follows

(
τηs, aηs, ρηs

)
:=

d+1∑

j=1

λj
ηs(τj, aj, ρj),

By the proposition 2.C.4, there exists a section uηs of the bundle

q0qηs

(
KS +

∑

j∈Jp

(
r̂i(τηs, aηs

)
Ŷi|S + µ⋆(Ã)

)

whose vanishing order on Ŷi|S is precisely q0qηsρ
i
ηs.

The theorem 2.C.2 implies that the section uηs admits an extension to X̂ . Indeed,

the current T in 2.C.2 is obtained by moving the current Θ̂k (see B.4) into the class

{KX + S +
∑

i∈Jp

(
r̂i(τηs, aηs

)
Ŷi + µ⋆(Ã)} ; the loss of positivity induced by this

operation is of order O(‖τk − τηs‖ + |a0
min(τk) − aηs|). We equally have the inequality

qηs|ρi
ηs−ρi

min(τk)| ≤ Cη provided that k ≥ kη, and therefore the assertion A.2 together
with the relation

(
τk, a0

min(τk), ρmin(τk)
)
→

(
τ0, a0, ρ0

)
=

d+1∑

j=1

λj
0(τj, aj, ρj)

shows that the hypothesis of 2.C.2 are satisfied as soon as η is small enough and k is
large enough.

Therefore, for all indexes s we have (τηs, aηs) ∈ G provided that η ≪ 1 ; it follows
that the divisor of zeroes of uηs is greater than

q0qηs

∑

j∈Jp

ρj
min(τηs, aηs)[Ŷj|S],

and this translates as

(50) ρi
ηs ≥ ρi

min(τηs, aηs)

for every i ∈ Jp.

Furthermore, we have
(
τηs, aηs, ρηs

)
∈ E|S and thus the numerical relation C.3

shows that the extension of the section uηs to X̂ induces a closed positive current in
the class {KX +Yτηs

+A}, whose Lelong number along S is equal to aηs ; in particular,
we have τηs ∈ EY,A and moreover

(51) aηs ≥ a0
min(τηs).

By combining (49), (51) and A.3 we infer that

a0
min(τ0) ≥ a0 ≥

∑
αsa

0
min(τηs)
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and therefore we have

(52) aηs = a0
min(τηs), a0

min(τ0) =
∑

αsa
0
min(τηs)

thanks to the convexity of the function a0
min ; we equally have

(53) ρi
0 ≥

∑

s

αsρ
i
min(τηs, aηs).

For further use, we formulate next some conclusions of the arguments provided so far.

(a) We have aηs = a0
min(τηs), as stated in (52).

(b) If τ ∈ A(τ0) belongs to the convex hull Cη of (τηs), then τ ∈ EY,A ; in addition,
the relation (52) implies that the function τ → a0

min(τ) is affine on Cη. This is
an immediate consequence of the relation (52), together with elementary convexity
arguments.

(c) For each τ ∈ Cη, we have
(
τ, a0

min(τ)
)
∈ G, and moreover, the function τ → ρmin(τ)

is affine on a small open set Ω ⊂ Cη containing the point τ0. Indeed, by the property
(a) we obtain

(
τηs, a

0
min(τηs)

)
∈ G for all the indexes s, and combined with the fact

that the function a0
min is affine on Cη, this shows the first part of (c), plus the

convexity of the functions τ → ρj
min(τ) on the set Cη. The next observation is that

we have
(
τ0, a

0
min(τ0), ρmin(τ0)

)
∈ E|S as a consequence of the proposition 2.C.5.

Finally, the fact that this functions are locally affine near τ0 is obtained by using
the diophantime approximation procedure A.1-A.4 described above for the point(
τ0, a

0
min(τ0), ρmin(τ0)

)
.

Next, we introduce the notation Vk := (λj
k), and we consider the vector qηs

(
Vηs − Vk

)
.

Its norm is smaller than 2η, provided that k ≥ kη is large enough. But then there
exists a positive integer q′ηs and of a vector V ′

ηs such that the coordinates of q′ηsV
′
ηs are

integers, and such that we have

(54) qηs

(
Vηs − Vk

)
= q′ηs

(
Vk − V ′

ηs

)

(see e.g. [2], or “any good book on diophantine approximation”). The relation (54)
together with the fact that the coordinates of q′ηsV

′
ηs are integers implies in particular

that the coordinates of V ′
ηs are positive rational numbers, and that their sum is equal

to 1.

Then we consider the vector

(55)
(
τ ′
ηs, a

′
ηs, ρ

′
ηs

)
:=

∑

j∈I1

λ′j
ηs(τj , aj, ρj),

where (λ′j
ηs) are the coordinates of V ′

ηs. The same extension arguments which were

used a few lines above for
(
τηs, aηs, ρηs

)
will show in the first place that

(
τ ′
ηs, a

′
ηs

)
∈ G.

We also obtain that KX + Yτ ′
ηs

+ A ∈ Psef(X) together with

(56) a′
ηs ≥ a0

min(τ ′
ηs)
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and

(57) ρ′j
ηs ≥ ρj

min

(
τ ′
ηs, a

′
ηs

)
.

The relation (54) implies that

Vk =
qηs

qηs + q′ηs

Vηs +
q′ηs

qηs + q′ηs

V ′
ηs

for every s, and therefore we obtain

(58)
(
τk, a0

min(τk), ρmin(τk)
)

=
qηs

qηs + q′ηs

(
τηs, aηs, ρηs

)
+

q′ηs

qηs + q′ηs

(
τ ′
ηs, a

′
ηs, ρ

′
ηs

)
.

The convexity of the function a0
min, together with the relations (52) and (56) shows that

this function is in fact affine on the segment
[
τηs, τ

′
ηs

]
, and that we have a′

ηs = a0
min(τ ′

ηs).
As in the claim (c) above, this implies in the first place that the functions

τ → ρj
min(τ)

are convex on the segment
[
τηs, τ

′
ηs

]
. When combined with the inequalities (50), (57)

and with the relation (58), we obtain that they are affine on the segment
[
τηs, τ

′
ηs

]
, for

every s.

The obvious consequence of these considerations is the existence of a point τk0 ∈
EY,A, such that τk belongs to the interior of segment

[
τ0, τk0

]
, and for which the prop-

erties (ii) and (iii) in the statement 2.C.6 holds. Indeed, we obtain τk0 as a convex
combination of points lying on the segments

[
τηs, τ

′
ηs

]
; we do not provide further

details, but nevertheless the corollary is completely proved.

In conclusion, the proof of the first point of 0.1 is finished ; we derive next some easy
applications of the preceding techniques/results.

We consider the following data (similar to the set-up in the introduction). Let
L ⊂ Rr be a rational polytope, and for let lj : Rr → R be a set of affine forms
defined over Q, where j = 2, ...N . We assume that 0 ≤ lj(θ) ≤ 1 − ε0, for all θ ∈
L, where ε0 is a positive real number. If the point τ :=

(
1, l2(θ), ..., lN(θ)

)
belongs

to EY,A, then we denote by T (θ) the current with minimal singularities in the class

KX + Y1 +
N∑

j=2

lj(θ)Yj + A. We have the next statement (cf. [19], and implicitly [2]),

which will be useful in the next paragraph.

2.C.7 Corollary.

a) We consider the set

E1 := {θ ∈ L :
(
1, l2(θ), ..., lN(θ)

)
∈ EY,A, ν

(
T (θ), Y1

)
= 0}.

Then E1 is a rational polytope.
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b) We assume furthermore that the hypersurfaces (Yj)j 6=1 are mutually disjoint, and
that A is not necessarily ample, but it has the next property : for each δ > 0, there
exists δ > εj > 0 such that A−∑

i6=1 εiYi is ample. As in (46), we define the functions

θ → ρj
min(θ) by the restriction of T (θ) to Y1 ; then ρj

min are piecewise affine on E1.

Proof. The part a) of the preceding statement is a direct consequence of the just
finished proof of 0.1.

Indeed, E1 above is a renamed version of the set G which was considered page 21-22,
so in the first place it is closed. The analysis of its extremal points is carried out as
above, without any modification ; in fact, it is much simpler, since we already have
the (analogue of the) set S above. The substitute for the polytope E|S -previously
constructed by using of the sequence (τk)- is defined as follows.

We denote by E1
|Y1

the set of elements (θ, ρ) ∈ E1 × [0, C]N−1 such that :

• The class α(θ, ρ) := {KY1
+

N∑

j=2

(
lj(θ) − ρj

)
+
Yj|Y1

+ A} is pseudoeffective ;

• We have ordYj∩Y1

(
‖α(θ, ρ)‖

)
=

(
ρj − lj(θ)

)
+
.

As in 2.C.3 we verify that E1
|Y1

is a rational polytope, which contains the points(
q, ρmin(q)

)
for any q ∈ E1 ∩ Qr, see 2.C.4. We conclude by the (analogue of the)

corollary 2.C.6.

For the proof of the part b), the polytope structure of E1 will be crucial.

Let θ ∈ E1 be an arbitrary point. We consider the intersection of E1 with the
minimal affine subspace in Rr defined over Q, which contains θ ; this rational polytope
is denoted by A(θ) ⊂ E1. Since

(
q, ρmin(q)

)
∈ E1

|Y1
for any rational point q ∈ A(θ) we

deduce that
(
θ, ρj

min(θ)
)
∈ E1

|Y1
, by a limit argument.

Next, we remark that for an arbitrary sequence (θk) ⊂ E1 converging to θ0 such
that θk 6= θ0 there exists a sequence θ0k ⊂ E1 such that θk belongs to the interior of
the segment [θ0, θ0k] and moreover the restriction of the function ρj

min to the above
segment is affine (again, modulo the choice of a subsequence). This claim was already
verified in 2.C.6 if the coordinates of the points θk are rational ; we remark that the
only use of the rationality was to infer that

(58)
(
θk, ρmin(θk)

)
∈ E1

|Y1
.

The relation (58) was shown to hold a few lines ago regardless to the rationality of
the components of θk, thanks to the polytope structure of E1. The claim concerning
the restriction of ρj

min to a segment [θ0, θ0k] follows as in the proof of 2.C.6 above, up
to simple modifications which will not be detailed here. Another consequence of these
arguments is the continuity of the functions ρmin up to the boundary of E1.

Let f : E1 → [0, C] be one of the functions ρj
min we are interested in ; it is continuous

and convex, by the preceding considerations. We consider the epigraph of f , defined
as

Epi(f) := {(v, y) ∈ E1 × [0, C] : y ≥ f(v)}.
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We have just proved that for any sequence of points (θk) ⊂ E1 converging to θ0, there
exists a k0 ≫ 0 such that for any k ≥ k0, the restriction of f to a segment [θ0, θk0]
containing θk in its interior is affine. This implies that Epi(f) can only have finitely
many extremal points on the graph of f , so it follows that Epi(f) is a polytope (the
set Epi(f) is closed, thanks to the continuity of f). This in turn is equivalent to the
fact that the function f is polyhedral (or piecewise affine), which is what we wanted
to prove.

We note that there exists a subdivision of E1 into rational polytopes say Ck, such that
the restriction of ρmin to each Ck is affine. The rationality assertion is a consequence of
the fact that the function ρmin is locally affine when restricted to the minimal rational
affine space containing an arbitrary point θ0.

§3 Proof of (ii)

The approach we will follow for the second part of the theorem 0.1 is somehow similar
to the arguments presented in [14]. We recall the next notation

Ar(X) :=
⊕

(m,θ)∈Γd

H0
(
X, k

(
KX +

∑

j=1...N

lj(θ)Yj + A
))

where the data (Γd, l
j) in the formula above is defined as follows :

(i) The functions lj : Rr → R are linear forms with rational coefficients ;

(ii) There exists an r-dimensional rational polytope L ⊂ Rr such that

(ii.1) We have 0 ≤ lj(θ) ≤ 1 − ε0 for all θ ∈ L, where ε0 is a positive real.

(ii.2) The bundle KX +
∑

j=1...N

lj(θ)Yj + A ∈ Psef(X) for all θ ∈ L.

(iii)The multi-index d = (d0, ..., dr) ∈ Zr+1, where each dj is divisible enough ;

(i4)A couple (m, θ) ∈ Γd if and only if θ ∈ L ∩ Qr and moreover mθk ∈ dkZ, for
k = 0, 1, ..., r (by convention, we put θ0 := 1).

We remark that a decomposition of the polytope L into simplexes induce a decomposi-
tion of the algebra Ar(X) as a direct sum, so we can assume that L is a r-dimensional
simplex, generated by the vertices ξ1, ..., ξr+1 ; by hypothesis, the coordinates (ξi

j)of
each ξj is a rational number.

For each point θ ∈ L we can define its affine coordinates

(59) θ =

r+1∑

j=1

ηjξj

where ηj ≥ 0 and
∑

j ηj = 1. The relation (59) above implies that each ηj is an affine
function of the coordinates of θ (with respect to the canonical basis of Rr).

The Q-bundle KX +
∑N

j=1 lj(ξk)Yj + A is pseudoeffective for each k = 1, ..., r + 1,
thanks to the property (ii). By the non-vanishing theorem [2], [22] there exists an
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effective Q-divisor

(60) Ξk :=
N∑

j=1

aj
kYj

linearly equivalent with KX +
∑N

j=1 lj(ξk)Yj +A (strictly speaking, this is not entirely
correct, since the support of the zero set of the section Ξk is not obliged to be contained
in (Yj), but it becomes so after a blow-up ; we do not detail this step here, since it is
completely standard).

We notice that we can assume that Ξk 6= 0 for all k = 1, ..., r + 1. Indeed, assume that
say Ξr+1 = 0 ; then we can reduce the study of the algebra Ar(X) to a smaller rank
algebra, as follows (see [2]).

Let α ∈ L ; we can write it as a convex combination

α = (1 − ηr+1)α1 + ηr+1ξr+1

where θ1 belongs to the polytope whose vertices are ξ1, ..., ξr. Since Ξr+1 = 0, we infer

that the bundle KX +
∑N

j=1 lj(ξr+1)Yj + A is linearly equivalent to zero, and then the
current

T :=
1

1 − ηr+1
Θmin(α)

belongs to the class {KX +
∑N

j=1 lj(α1)Yj + A} (we denote by Θmin(α) the current

with minimal singularities of the class {KX +
∑N

j=1 lj(α)Yj +A}). We clearly have the
equality

Θmin(α) = (1 − ηr+1)T

which in turn implies that

Θmin(α) = (1 − ηr+1)Θmin(α1)

so the finite generation of the algebra Ar(X) is obtained by induction on r, under the
assumption above (we do no treat the case r = 1 separately, since it is completely
similar to the general case).

Hence we will assume for the rest of our arguments that Ξk 6= 0 for all k = 1, ..., r+1,
and let m0 be a positive integer, multiple of the denominators of aj

k, ξi
j and of the

coefficients of (lj). We obtain a non-zero section

(61) sk ∈ H0
(
X, m0

(
KX +

N∑

j=1

lj(ξk)Yj + A
))

whose zeroes divisor is m0Ξk.

Our approach for the finite generation statement 0.1 (ii) is based upon the next simple
result.
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3.1 Proposition. Let δ > 0 be a positive real number. We assume that there exists an
integer d∞ ∈ Z+ divisible enough, and a finite set of sections

σk ∈ H0
(
X, mk(KX +

N∑

j=1

lj(θk)Yj + A)
)

where k = 1, ..., K and (mk, θk) ∈ Γd such that the next requirements are satisfied.

(R.1) There exists a finite set of points αq ∈ L, together with the positive reals δ >
δq > 0 such that L ⊂ ∪qB(αq, δq), where B(αq, δq) is the ball in Rr centered at
αq with radius δs with respect to the norm ‖θ‖ := supj |θj |.

(R.2) Let u be a section of the bundle m
(
KX +

∑
j=1,..,N lj(θ)Yj+A

)
such that (m, θ) ∈

Γd and moreover mθj ∈ d∞djZ+ for all j = 0, ..., r ; we assume that θ ∈
B(αs, δs). Then we have

u = u1 +
∑

p∈I(m,θ)

λdσ
⊗p1

1 ⊗ ... ⊗ σ⊗pk

K

where I(m, θ) is the set of multi-indexes p such that

∑
mkpk = m,

∑
pkmkθk = mθ,

and the section u1 satisfies the vanishing conditions ordYq
(u1) ≥ mδs, for any

integer 1 ≤ q ≤ N such that

r+1∑

m=1

ηm(αs)a
q
m 6= 0.

Then the algebra Ar(X) is finitely generated.

Proof. We denote by A
(d∞)
r (X) the truncation of Ar(X) corresponding to the degrees m

which satisfy the arithmetic conditions in R2. A first observation is that the integer m0

in (61) can be assumed to be a multiple of d∞. We will prove next that Ar(X) is finitely
generated by the elements (σj), (sk), together with a finite number of pluricanonical
sections of small degree.

To this end, let u be a section of m
(
KX +

N∑

j=1

lj(θ)Yj +A
)
, such that ‖θ−α1‖ ≤ δ1.

By hypothesis we have u = P (σ1, ..., σN) + u1 where u1 has the vanishing properties
stated in R.2. We can assume that

(62) mδ1 ≥ max
j,p

{m0a
j
p}

since otherwise u belongs to a fixed, finite subset of A
(d∞)
r (X).

Let k be an integer such that ηk(α1) 6= 0. According to the hypothesis of the
proposition, we have ordYq

(u1) ≥ δ1m in particular for all the indexes q such that Yq

belongs to the support of Ξk. Then the section u1 can be written as

u1 = skvk
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and we verify next that there exists some k for which the section vk above belongs to
the truncation of the algebra Ar(X) as fixed in the preceding proposition-because we
are willing to use the induction on the degree of u. In any case we have

vk ∈ H0
(
X, (m − m0)(KX +

∑

j=1,...,N

lj(θ′)Yj + A)
)

where θ′ is defined by the relation

(63) m0ξk + (m − m0)θ
′ = mθ.

Our goal is to show that for some index k the point θ′ belongs to the polytope L. We
remark that the affine coordinates of θ′ are given by

ηj(θ′) =
m

m − m0
ηj(θ)

if j 6= k and

ηk(θ′) =
mηk(θ) − m0

m − m0
,

so we will have θ′ ∈ L if

(64) mηk(θ) ≥ m0.

If the inequality (64) fails to hold for all k such that ηk(α1) 6= 0, then we obtain an
upper bound for m, because ‖θ − α1‖ ≤ δ1, so we will have

m ≤ Cδ1m + dm0

and of course we can assume that Cδ1 < 1. Therefore, unless m is smaller than a fixed
constant, there exists an index k for which the inequality (64) is verified ; moreover,
the relations (m − m0)θ

′j ∈ d∞djZ follows from (63).

In conclusion, the section vk belongs to A
(d∞)
r (X), and the finite generation of this

algebra is deduced by induction on the degree m. Thus, the proposition is completely

proved, since the d∞ power of any section of Ar(X) belongs to A
(d∞)
r (X).

§3.A The first step

The construction of the generators (σj) will be performed by induction on dim(X), by
using the compactness of L ; we begin by fixing an arbitrary point α0 ∈ L.

By a suitable convex combination of the set of effective Q-divisors Ξk corresponding
to the vertices of L we obtain

(65) KX +
N∑

j=1

lj(α0)Yj + A ≡
N∑

i=1

ri(α0)Yi
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where ri(θ) :=
∑r+1

p=1 η(θ)ai
p ≥ 0 is an affine form with rational coefficients, for each i,

cf. (59), (60).

Let t be a real number ; we consider the following identity, taken from [19] (which
is nothing but the threshold of the Q-divisor constructed in (65) with respect to the

measure
dλ∏ |σYj
|lj(α0)

in the language used in [22]) :

(1 + t)
(
KX +

N∑

j=1

lj(α0)Yj + A
)
≡ KX +

N∑

j=1

(lj(α0) + trj(α0)Yj + A.

The procedure we will describe next can be used under more general hypothesis on the
linear forms (rj, lj) ; the precise requirements are the following.

Initial data. There exists t0, δ0 ∈ R+ such that we have

rj(θ) ≥ 0, lj(θ) + trj(θ) ≥ 0

if ‖θ−α0‖ ≤ δ0 and t ≥ t0. Moreover we have lj(α0)+t0rj(α0) < 1 for all j = 1, ..., N ,
and rj(α0) > 0 for each j ∈ Λ(α0).

We consider the set Λ(α0) := {j ∈ J : rj(α0) 6= 0} ; thanks to the ampleness of A we
can assume that the following quantities

(66) t̃j :=
1 − lj(α0)

rj(α0)

are distinct, for j ∈ Λ(α0).

The smallest among the real numbers above is assumed to be t̃1 ; therefore there
exists ε1 > 0 such that

(67) lj(α0) + t̃1rj(α0) ≤ 1 − ε1

for all j 6= 1 ; we also have

(68) l1(α0) + t̃1r1(α0) = 1,

so we can write

(1 + t̃1)
(
KX +

N∑

j=1

lj(α0)Yj + A
)
≡ KX + Y1 +

N∑

j=2

(lj(α0) + t̃1rj(α0)Yj + A.

We have t0 < t̃1, and it may happen that t̃1 is not rational, so during the next lines

we will construct a rational approximation t1 of t̃1, and we will determine a real δ > 0
such that

(1 + t1)
(
KX +

N∑

j=1

lj(θ)Yj + A
)
≡ KX + Y1 +

N1∑

j=2

l̃j(θ)Yj + A1,
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where l̃j are linear forms with rational coefficients, such that 0 ≤ l̃j(θ) ≤ 1 − ε1

2
if

‖θ − α0‖ ≤ δ.

In order to achieve this, we will use the same arguments as in the paragraph 2.B.

Let γ, δ be positive real numbers and let t1 ∈ [(1 − γ)t̃1, t̃1] ∩ Q. For any θ ∈ L such
that ‖θ − α0‖ ≤ δ, a quick computation shows that we have

(69)
∣∣lj(α0) + t̃1rj(α0) − lj(θ) − t1rj(θ)

∣∣ ≤ C(t̃1)(γ + δ)

where C(t̃1) ≥ 1 is a constant depending on t̃1. The first requirement we impose to δ
and γ is

(70) C(t̃1)(γ + δ) ≤ ε1

2

and then we will have
0 ≤ lj(θ) + t1rj(θ) ≤ 1 − ε1

2

if ‖θ − α0‖ ≤ δ and j 6= 1.

The next conditions on δ, γ are needed in order to transform the expression
(
l1(θ)+

t1r1(θ) − 1
)
Y1 + A. Let

l0 := max
j

lj(α0) < 1

and let CA be a positive and divisible enough integer, such that

(71) CA(1 − l0) ≥ 2

and such that CAA + Yj , CAA − Yj and CAA are very ample line bundles. Let q ≥
C(t̃1)(γ + δ) be a rational number ; we have

(72)
(
l1(θ) + t1r1(θ) − 1

)
Y1 + A ≡

3∑

j=1

l̃N+j(θ)Hj + 1/2A

where HN+1, HN+2, HN+3 are respectively generic hyperplane sections of the linear
systems |Y1 + CAA|, |CAA − Y1| and |CAA|, and where we define

l̃N+1(θ) := l1(θ) + t1r1(θ) − 1 + q, l̃N+2(θ) := q,

and

l̃N+3(θ) :=
(
1 +

1

2CA
− l1(θ) − t1r1(θ) − 2q

)

We choose now the parameters as follows

(73) γ1 := min
( ε1

4C(t̃1)
,

1

12CAC(t̃1)
,

2CA − 1

2CA

(
1 − mini li(α0)

)
)
≤ 1

2
,

q := ε1 and let t1 be any rational number contained in the interval [(1− γ1)t̃1, t̃1] ; we
do not yet fix δ, but instead impose the condition δ ≤ γ1. The first two quantities in
(73) are dictated by (70) and the bounds we wish to impose to the affine forms l̃N+j .
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In conclusion, we have the linear equivalence relation

(74) (1 + t1)
(
KX +

N∑

j=1

lj(θ)Yj + A
)
≡ KX + Y1 +

N+3∑

j=2

l̃j(θ)Yj + A1,

where A1 = 1/2A, and l̃j(θ) := lj(θ) + t1rj(θ) for j = 2, ..., N .

As a motivation for what will follow, we recall that in order to be able to apply the
proposition 3.1 above, we have to show in particular that the algebra Ar(X) is finitely
generated modulo the sections whose normalized vanishing order along Y1 is greater
than a fixed constant. Thus, it is natural to consider the expression

(75)
(1 + t1)

(
KX +

N∑

j=1

lj(θ)Yj + A
)
− θr+1Y1 ≡KX + Y1 +

N+3∑

j=2

l̃j(θ)Yj+

+A1 − θr+1Y1

where the additional parameter θr+1 corresponds to the normalized vanishing order
along Y1. The last part in the formula (75) can be written as follows

(76) A1 − θr+1Y1 = θr+1
(
2CAA1 − Y1

)
+

(
1/2 − 2CAθr+1

)
A1 + 1/2A1.

Next we define ε1 by the next equality

(77) (1 + t1)ε1 :=
1

4CA

and then we have

(78) (1 + t1)
(
KX +

N∑

j=1

lj(θ)Yj + A
)
− θr+1Y1 ≡ KX + Y1 +

N+5∑

j=2

l̃j(θ, θr+1)Yj + A2

where the forms/hypersurfaces corresponding to j = N + 4, N + 5 are obtained via
(76), and A2 = 1/4A. The choice of ε1 as in (77), together with (73) and the fact that
t1 ≥ (1 − γ1)t̃1 implies

(79) r1(α0) ≥ 2ε1, l1(α0) + t1r1(α0) ≥ 2(1 + t1)ε1.

Now we fix δ1 ≤ γ1 small enough in order to insure that

(80) r1(θ) ≥ ε1, l1(θ) + t1r1(θ) ≥ (1 + t1)ε1.

for any θ ∈ L such that ‖θ − α0‖ ≤ δ1. This implies that

(81) l1(θ) + tr1(θ) ≥ (1 + t)ε1.

for any t ≥ t1. If 0 ≤ θr+1 ≤ (1 + t1)ε1 and ‖θ − α0‖ ≤ δ1 we notice that 0 ≤
l̃j(θ, θr+1) ≤ 1 − ε1/2.



36

After all this preliminaries, we introduce the following algebra. We first define the
polytope L′ ⊂ L×

[
0, ε1(1 + t1)

]
given by the couples (θ, θr+1) satisfying the following

conditions :

(a) We have ‖θ − α0‖ ≤ δ1 ;

(b) The bundle KX + Y1 +
∑N+5

j=2 l̃j(θ, θr+1)Yj + A2 ∈ Psef(X), and its generic Lelong
number across Y1 is equal to zero.

The fact that indeed L′ is a polytope is a consequence of the corollary 2.C.7.

Now we recall that in the definition of the algebra Ar(X) we use the element
d = (d0, ..., dr) ∈ Zr+1 in order to define the set Γd. Let n1 be an integer such

that
n1

1 + t1
∈ Z ; we introduce the following set

Γ′
d := {(m′, θ′) : θ′ = (θ, θr+1) ∈ L′ ∩ Qr+1, m′θj ∈ n1

1 + t1
djZ+, m′θr+1 ∈ Z}

and the associated algebra

(82) Ar+1(X, α0) :=
⊕

(m′,θ′)∈Γ′
d

H0
(
X, m′(KX + Y1 +

N+5∑

j=1

l̃j(θ′)Yj + A2)
)
.

We remark that the previous definition is meaningful, as soon as n1 is divisible enough.
We also remark the asymmetry of the arithmetic conditions imposed to θ and θr+1 in
the definition of Γ′

d ; the reasons for this are easily guessed from the formulas (77)-(78),
and they will appear even more clearly in a moment.

Let Ar+1(X, α0)|Y1
be the restricted algebra associated to Ar+1(X, α0) ; we have

the next simple consequence of 2.C.7.

3.A.1 Lemma. The restricted algebra Ar+1(X, α0)|Y1
is finitely generated.

Proof. Our first observation is that the coefficients of Yj above verify the inequality

0 ≤ l̃j(θ′) ≤ 1 − ǫ1/2, for each θ′ ∈ L′, as a consequence of the definitions/choices

previously made. In this context, there exists a birational map µ : X̂ → X such that
-up to a subdivision of L′- we have

µ⋆
(
KX + Y1 +

N+5∑

j=1

l̃j(θ′)Yj + A2)
)

+
∑

i∈I−

l̂i(θ′)Ei = K
X̂

+ Ŷ1 +
∑

i∈I+

l̂j(θ′)Ŷj + µ⋆(A2)

where the hypersurfaces Ŷj corresponding to I+ are mutually disjoint, and the µ-proper
transform of Y1 is equal to its total inverse image (again, we refer to the arguments in
[14] for the existence of µ).

As it was already discussed in the first paragraph of the present article (and also
[1], [14]), via the map µ we can easily identify a truncation of the restricted algebra
Ar+1(X, α0)|Y1

, as follows.

For each θ′ ∈ L′, the current with minimal singularities corresponding to the bundle

KX +Y1 +
∑N+5

j=2 l̃j(θ′)Yj +A2 admits a well-defined restriction to Y1, and let ρj
min(θ′)
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be the Lelong number of this restriction at the generic point of Yj|Y1
. By the corollary

2.C.7, the functions ρj
min are piecewise affine, defined over Q, and let p0 be an integer,

which is a multiple of all the denominators of their coefficients. Then the p0-truncation
of the restricted algebra Ar+1(X, α0)|Y1

is isomorphic to

(83) A :=
⊕

(m′,θ′)∈Γ′
p0d

H0
(
Ŷ1, m

′
(
K

Ŷ1

+
∑

j∈I+

(
l̃j(θ′) − ρj

min(θ′)
)
+
Ŷ

j|Ŷ1

+ µ⋆(A2)
))

.

where the set Γ′
p0d in the expression above is defined as (m′, θ′) ∈ Γ′

d such that

m′θk ∈ p0d
k n1

1 + t1
Z+,

if 0 ≤ k ≤ r and m′θr+1 ∈ p0Z. By induction, the algebra A is finitely generated, and
then the restricted algebra has the same property ; thus the lemma 3.A.1 is completely
proved.

3.A.2 Remark. By the construction of the algebra Ar+1(X, α0) we infer the following
fact, which will play an important role for the rest of the proof of 0.1. Let

v ∈ H0
(
X, m′(KX + Y1 +

N+5∑

j=1

l̃j(θ′)Yj + A2)
)

be an element of this algebra. We have θ′ = (θ, θr+1), and we consider the section

u := v ⊗ σ⊗m′θr+1

Y1
;

we denote by σY1
the canonical section associated to Y1. The above definition is

legitimate, since by the definition of Γ′
d we have m′θr+1 ∈ Z+.

The claim is that we have
u ∈ Ar(X)

and indeed this is obvious, since by the relation (78) we have

u ∈ H0
(
X, m′(1 + t1)(KX +

N∑

j=1

lj(θ)Yj + A)
)

as well as θ ∈ L and m′(1 + t1)θj ∈ n1d
jZ+, for j = 0, ..., r.

Before explaining the end of our proof, we will discuss next the impact of the finite
generation of the restricted algebra Ar+1(X, α0)|Y1

on the properties of our initial
object Ar(X).

Let A
(n1)
r (X) be the truncation of Ar(X), corresponding to the set (m, θ) ∈ Γd

such that mθk ∈ n1d
kZ, for k = 0, ..., r (where the integer n1 is the same as the one

appearing in the construction of the algebra Ar+1(X, α0) a few lines above). Let

u ∈ H0
(
X, m(KX +

N∑

j=1

lj(θ)Yj + A)
)
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be an element of A
(n1)
r (X), such that ‖θ − α0‖ ≤ δ. We write m = (1 + t1)m′ where

m′ ∈ Z thanks to the fact that m ∈ (1 + t1)Z. By the formula (74), the section u
becomes an element of the group

(84) H0
(
X, m′(KX + Y1 +

N+3∑

j=2

l̃j(θ)Yj + A1)
)

(because we tacitly assume that n1 is divisible enough). Let k1 be the vanishing order
of u along the hypersurface Y1 ; we have

u = σ⊗k1

Y1
u1.

If
k1

m
≥ ε1, then we stop ; if not, we observe that u1 is a section of the bundle

m′
(
KX + Y1 +

N+5∑

j=1

l̃j(θ′)Yj + A2

)
,

where θr+1 = k/m′. In other words, u1 is an element of Ar+1(X, α0), as one can deduce
from the relations (a), (b) and the definition of Γ′

d.

We denote by β1, ..., βK the generators of the restricted algebra Ar+1(X, α0)|Y1
, and

then we have
u1 =

∑

p

λpβ
⊗p1

1 ⊗ ... ⊗ β⊗pK

K + σk2

Y1
u2

where k2 ≥ 1 and where the restriction of u2 to Y1 is non-identically zero.

If βk ∈ H0
(
X, m′

k

(
KX +Y1+

∑N+5
j=1 l̃j(θ′k)Yj+A2

))
, then the equality above implies

that

m′(θ, θr+1) =
K∑

k=1

pkm′
k(θk, θr+1

k )

so we have

m′θr+1 =

K∑

k=1

pkm′
kθr+1

k .

For k = 1, ..., K, we define

ωk := βk ⊗ σ
m′

kθr+1

k

Y1
∈ H0

(
X, (1 + t1)m′

k

(
KX +

N∑

j=1

lj(θk)Yj + A
))

.

Thanks to the remark 3.A.2 above, we have ωk ∈ A
(n1)
r (X) and we get

u =
∑

s

λpω
⊗p1

1 ⊗ ... ⊗ ω⊗pK

K + σk1+k2

Y1
u2.

Again, if
k1 + k2

m
≥ ε1, then we stop ; if not, we repeat the same procedure with u2.
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In conclusion, after a finite number of steps, we can write

(⋆) u =
∑

s

λsω
⊗s1

1 ⊗ ... ⊗ ω⊗sK

K + σ⊗mε1

Y1
u[2];

where u[2] is a section of the bundle m(KX +
∑N

j=1 lj(θ)Yj + A) − mε1Y1.

Therefore, after this first step we have shown that our algebra verifies a consistent
part of the requirements of the proposition 3.1.

§3.B Iteration scheme

We turn now our attention to the sections of the algebra Ar(X), whose normalized
vanishing order along Y1 is greater than ε1.

Let t ≥ t1 ; we have the identity

(85)

(1 + t)
(
KX +

N∑

j=1

lj(θ)Yj + A − ε1Y1

)
≡KX +

(
l1(θ) + tr1(θ) − (1 + t)ε1

)
Y1+

+
∑

j∈J,j 6=1

(
lj(θ) + trj(θ)Yj + A

In order to make the exposition a bit cleaner, we introduce further notations :

• lj2 := lj and rj
2 := rj, if j 6= 1, and

• l12 := l1 − ε1 and r1
2 := r1 − ε1 for j = 1.

Then we observe that we have

(86) rj
2(θ) ≥ 0, lj2(θ) + trj

2(θ) ≥ 0

for any θ ∈ L such that ‖θ − α0‖ ≤ δ1, and for any t ≥ t1. For j = 1, we remark that
this is a consequence of the inequality (81), whose importance appear clearly at this
moment.

We also note that we have

(87) lj2(α0) + t1rj
2(α0) < 1, rp

2(α0) > 0

for all j = 1, ..., N and p ∈ Λ(α0). Therefore, after the first step, the new affine forms
(lj2, r

j
2) are satisfying the assumptions in the “initial data” of the preceding section.

We consider the quantities

(88) t̃j2 :=
1 − lj2(α0)

rj
2(α0)

for j ∈ Λ(α0) ; we remark that the smallest of them is strictly greater than t1, by the
inequality (87).
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The procedure described in 3.A applied in the current setting will give the numbers
γ2, δ2, ε2 and t2 ≥ t1 such that the next relations are verified

(89) (1 + t2)ε2 :=
1

4CA

and

(90) rj2
2 (θ) ≥ ε2, lj22 (θ) + trj2

2 (θ) ≥ (1 + t)ε2.

for any θ ∈ L such that ‖θ − α0‖ ≤ δ2 and for any t ≥ t2. The integer j2 is the
index for which the minimum of the quantities (88) is achieved ; we note that we have
j2 ∈ Λ(α0).

We observe that we are not forced to increase the constant CA, because the condition
CA

(
1 − maxj lj2(α0)

)
≥ 1 is automatically satisfied, since lj2 ≤ lj . Also, we will get the

analogue of the relation (78) as follows

(1+ t2)
(
KX +

N∑

j=1

lj2(θ)Yj +A
)
−θr+1Y1 ≡ KX +Yj2 +

∑

j=1,..,N+5,j 6=j2

l̃j2(θ, θr+1)Yj +A2.

With this data, we introduce the analogue of the algebra Ar+1(X, α0), and at the end
of the second step, we will obtain the following conclusion. If j2 = 1, then we get
the finite generation of the algebra Ar(X) locally near the point (a-priori chosen) α0,
modulo sections having the normalized vanishing order along Y1 greater than ε1 + ε2.
If not, the same conclusion holds, modulo sections with normalized vanishing order
greater than ε1 along Y1 and greater than ε2 along Yj2 .

The rest is clear : we keep on iterating the procedure above, so assume that we have
performed this say k times. This means that for each 1 ≤ p ≤ k we have constructed
the following objects.

(a) We have the linear forms ljp and rj
p, such that

(91) ljp := lj −
∑

q∈Λj,q≤p−1

εq, rj
p := rj −

∑

q∈Λj,q≤p−1

εq

where we have q ∈ Λj if and only if the index j achieve the minimum of the
expressions (88) at the qth step.

(b) We obtain a set of real numbers (γp, δp, εp, tp) such that

min
j=1,...,N

1 − ljp(α0)

rj
p(α0)

≥ tp ≥ tp−1, (1 + tp)εp :=
1

4CA

and such that

(92) rj
p(θ) ≥ 0, ljp(θ) + trj

p(θ) ≥ 0

together with

rq
p(α0) > 0, rjp

p (θ) ≥ εp, ljp
p (θ) + trjp

p (θ) ≥ (1 + t)εp



§3 Proof of (ii) 41

if ‖θ − α0‖ ≤ δp, t ≥ tp and q ∈ Λ(α0) ; we denote by jp the index for which the
minimum of the quantities (88) is achieved at the begining of the step p.

(c) We have the identity

(93)

(1 + tp)
(
KX +

N∑

j=1

ljp(θ)Yj + A
)
− θr+1Yjp

≡

≡KX + Yjp
+

∑

j=1,..,N+5,j 6=jp

l̃jp(θ, θr+1)Yj + A2.

(d) We define the polytope L′
p ⊂ L ×

[
0, εp(1 + tp)

]
given by the couples (θ, θr+1)

satisfying the following conditions :

(d′) We have ‖θ − α0‖ ≤ δp ;

(d′′) The bundle KX + Yjp
+

∑
j 6=jp

l̃jp(θ, θr+1)Yj + A2 ∈ Psef(X), and its generic
Lelong number across Yjp

is equal to zero.

(e) Let np be an integer which is divisible enough, such that
np

1 + tp
∈ Z ; we introduce

the following set

Γ′
d(p) := {(m′, θ′) : θ′ = (θ, θr+1) ∈ L′

p ∩ Qr+1, m′θj ∈ np

1 + tp
djZ+, m′θr+1 ∈ Z}

and the associated algebra

Ar+1(X, α0; p) :=
⊕

(m′,θ′)∈Γ′
d
(p)

H0
(
X, m′(KX + Yjp

+
∑

j 6=jp

l̃jp(θ
′)Yj + A2)

)
.

We note that the divisibility constraints we have to impose to np also depends on

the previous steps, as m′θj must clear the denominators of the coefficients of of l̃qp
for q = 1, ..., N + 5 ; in particular, we require npε

q ∈ Z for each q ≤ p. However,
the total number of such constraints is finite.

As we did after the proof of the lemma 3.A.1, we explain next the progression we have
achieved in the direction of the lemma 3.1 after k ≥ 2 iterations.

In the first place, the analogue of the remark 3.A.2 reads in the iterated context as
follows. Let

v ∈ H0
(
X, m′(KX + Yjk

+
∑

j 6=jk

l̃jk(θ′)Yj + A2)
)

be an element of Ar+1(X, α0; k). Then we define

u := v ⊗ σ⊗m′θr+1

Yjk
⊗

k−1∏

p=1

σ⊗mεp

Yjp

where m := (1 + tk)m′ ; we remark that the above expressions are meaningful, by the
divisibility properties of the (np) in the point (e). The observation is that the section
u above belongs to the algebra Ar(X) ; the verification is immediate.
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Next, we define nk :=
∏k

p=1 np, and let A
(nk)
r (X) be the truncation of Ar(X),

corresponding to the set (m, θ) ∈ Γd such that mθs ∈ nkdsZ, for s = 0, ..., r. Let

σ ∈ H0
(
X, m(KX +

N∑

j=1

lj(θ)Yj + A)
)

be an element of A
(nk)
r (X) ; we assume that ‖θ − α0‖ ≤ minj δj . By the relation (⋆),

the section σ can be written as a polynomial of a fixed number of generators, plus

σ⊗mε1

Yj1
σ[2], where

σ[2] ∈ H0
(
X, m(KX +

N∑

j=1

lj2(θ)Yj + A)
)
.

Let ν be the vanishing order of σ[2] along the hypersurface Yj2 . If ν/m ≥ ε2, then we
stop ; if not, there exists a section

v[2] ∈ H0
(
X, m(2)(KX + Yj2 +

∑

j 6=j2

l̃j2(θ
′)Yj + A2)

)

such that

σ[2] = σ⊗ν
Yj2

v[2]

where m = (1 + t2)m(2) (thanks to the relations (93) above). In other words, the
section v[2] becomes an element of the algebra Ar+1(X, α0; 2).

The procedure described at the end of 3.A will show that the section u is equiv-

alent with σ⊗mε1

Yj1
σ⊗mε2

Yj2
σ[3], modulo a polynomial of a finite number of generators

(corresponding to the finite generation of the restricted algebras of Ar+1(X, α0) and
Ar+1(X, α0; 2)).

In conclusion, after k steps we obtain

(†) u =
∑

s

λsω
⊗s1

1 ⊗ ... ⊗ ω⊗sF

F + σ⊗mε1

Yj1
⊗ ... ⊗ σ⊗mεk

Yjk
⊗ u[k+1].

The following lemma shows that if k ≫ 0, then the hypothesis of 3.1 will be fulfilled.

3.B.1 Lemma. After a finite number of iterations of the procedure above, each j ∈
Λ(α0) will be the index for which the minimum of the quantities (88) is obtained.

Proof. We argue by contradiction : assume that there exists an index j0 ∈ Λ(α0) such
that the minimum of (88) is not obtained for j = j0, for any number of iterations. Then
we infer that the sequence (tk) is bounded, because at each step tk is a minimum, in
particular smaller than

(94)
1 − lj0(α0)

rj0(α0)
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and this quantity will be unchanged during the whole iteration process. Then the
relation (92) gives a lower bound for εk, and this contradicts the positivity of rp

j for
some index j, for which the cardinal of the set Λj is large enough. Thus the lemma is
proved, and so it is the theorem 0.1.

3.B.2 Remark. Unfortunately, the arguments provided in this section in order to infer
the finite generation statement depends too much on the fact that we have the strict
positivity term A in the boundary. This is a minor difficulty, and can be bypassed by
a modified version of the statements 2.C.1, respectively 2.C.2 (which will be discussed
elsewhere). However, it seems to us that the severe obstacle in order to remove the
ampleness A from 0.1 is the identification and analysis of the restricted algebra.

3.B.3 Remark. In the finite generation paragraph 10 of the article [19], starting
from (the analogue of) Ar(X) it is proposed an ingenious construction of an enlarged
algebra in order to conclude. It seems to us that the arguments presented this paper
are incomplete, for the reasons we will detail next.

The enlarged algebra used (on pages 39-40 of [19]) can be expressed as

Rj :=
⊕

(q,τ,ρ)∈Cj

H0
(
X, q

(
KX + Fj +

∑

k 6=j

(ρk − fk(τ))Fk + A
))

where the set Cj is given by the following conditions :

(1) τ ∈ ∆, where ∆ is the standard simplex in RN ;

(2) For each k 6= j we have δk(τ) ≤ ρk−fk(τ) ≤ 1, where δk and fk are affine functions
of τ with rational coefficients ;

(3) We have q ∈ R+ such that for each k 6= j we have qρk ∈ Z+, and moreover
q
(
1 + fj(τ)

)
∈ Z+ (we stress on the fact that j is a fixed index).

If we denote by (τj, ρj) the vertices of the polytope described by the conditions (1)
and (2) above, then the affine coordinates of a point (τ, ρ) can be written as

(τ, ρ) =
∑

p

λp(τp, ρp).

Now if q is a rational number satisfying (3), in general it does not follows that for all
p we have

(††) qλp ∈ 1

d0
Z

where d0 is some fixed integer.

In conclusion, the restricted algebra associated to Rj is far too general in order to
apply the results which are proved in [19]-in order to use them, the relation (††) is
needed.

The approach we have presented in this survey avoids exactly this rationality issue,
due to the fact that we only perform a finite number of iterations, and each iteration
needs only a finite number of arithmetic conditions for the order of truncation of the
initial algebra.
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