Résumé : Cette article traite de la sélection de variables pour l'apprentissage simultanée de taches de discrimination SVM . Nous formulons ce problème comme étant un apprentissage multi-taches avec pour terme de régularisation une norme mixte de type ℓp -ℓ2 avec p ≤ 1 . Cette dernière permet d'obtenir des modèles de discrimination pour chaque tâche, utilisant un même sous-ensemble des variables. Nous proposons tout d'abord un algorithme permettant de résoudre le problème d'apprentissage lorsque la norme mixte est convexe (p = 1). Ensuite, à l'aide de la programmation DC, nous traitons le cas non-convexe (p < 1) . Nous montrons que ce dernier cas peut être résolu par un algorithme itératif où, à chaque itération, un problème basé sur la norme mixte ℓ1 -ℓ2 est résolu. Nos expériences montrent l'interêt de la méthode sur quelques problèmes de discriminations simultanées.
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Introduction

Multi-Task Learning (MTL) is a statistical learning framework which seeks at learning different models in a joint manner. The idea behind this paradigm is that, when the tasks to be learned are similar enough or are related in some sense, it may be advantageous to take into account these relations between tasks. Several works have experimentally highlighted the benefit of such a framework [START_REF] Caruana R | Multi-task learning[END_REF]. However, the notion of relatedness between tasks is rather vague and depends on the problem at hand. For instance, one can consider that models resulting from related tasks should have similar norms [START_REF] Evgeniou | Regularized multi-task learning[END_REF][START_REF] Kato | Multi-task learning via conic programming[END_REF]. In other works, task relatedness is represented through a probabilistic model [START_REF] Tresp | Learning gaussian processes from multiple tasks[END_REF]. Prior knowledge on tasks are then translated into an appropriated regularization term or into a hierarchical Bayesian model that can be handled by a learning algorithm.

In this work, we consider that tasks to be learned share a common subset of features or kernel representation. This means that while learning the tasks, we jointly look for features or kernels that are useful for all tasks. In this context of joint feature selection, for multiple related tasks several works have already been carried out. For instance, [START_REF] Jebara | Multi-task feature and kernel selection for svms[END_REF] has introduced a maximum entropy discrimination for solving such a problem. Some other works cast the problem into a probabilistic framework which uses automatic relevance determination and a hierarchical Bayesian model for selecting the relevant features [START_REF] Bi | An improved multi-task learning approach with applications in medical diagnosis[END_REF][START_REF] Xiong | Probabilistic joint feature selection for multi-task learning[END_REF]. Another trend considers to use a regularization principle and thus minimizes a regularized empirical risk while the regularization term favors a common sparsity profile in features for all tasks. Such an approach have been investigated by [START_REF] Argyriou | Convex multi-task feature learning[END_REF] and [START_REF] Obozinski | Multi-task feature selection[END_REF]. In this latter work, the authors propose a ℓ 1ℓ 2 regularization term which can be interpreted as a convex extension of the sparsity-inducing ℓ 1 norm in single task learning.

This paper also considers this regularization principle for joint feature selection across tasks. Our contribution is two fold. First we consider the multi-task learning problem in a SVM framework with a kernel representation. The proposed algorithms rely on sparsity-inducing (ℓ pℓ 2 ) mixed-norms regularizers which encourage sparse kernel selection among a prescribed set of kernels. This set of basis kernels can be made large enough at will, gathering information about the different sources of the input samples. From this framework, we show that our formulation in the convex case turns into a multiple kernel learning problem. Therefore, an efficient algorithm is derived based on off-the-shelf MKL solvers [START_REF] Rakotomamonjy | SimpleMKL[END_REF]. At the second stage, we extend the analysis to a non-convex regularization term in order to gain in sparsity The difficulty raised by this formulation is tackled via a DC programming [START_REF] Thoai | Dc programming : overview[END_REF]. This leads to an iterative scheme which solves at each iteration, a reweighted MTL problem.

In the next section, we present the general formulation of the sparse MTL problem as well as a brief review of closely spirit-related works. Algorithmic developments are presented in Section 3. Then, some empirical results that illustrate the behavior of our algorithms are given in Section 4 while some concluding remarks are drawn in Section 5.

2 Multi-Task feature/kernel selection framework This section introduces our framework for sparse MTL and discusses the connection with other works.

Framework

Suppose we are given T classification tasks to be achieved from T different datasets

{x i,1 , y i,1 } n1 i , • • • , {x i,T , y i,T } n T i
, where any x i,• ∈ X and y i,• ∈ {+1, -1} and n i denotes the i th dataset size. For a given task t, we are looking for a decision function of the form :

f t (x) = M k=1 f t,k (x) + b t ∀t ∈ {1, • • • , T } (1) 
where any function f The objective of this work is to learn the decision function f t of each task under the constraints that all these functions share a common sparse profile of their kernel representation. Hence, the pursued hope is to build a learning algorithm able to yield many vanishing functions f t,k for all t.

For achieving this goal, we cast our problem as the following optimization problem :

min f1,••• ,f T C • t,i L(f t (x i,t ), y i,t ) + Ω(f 1 , • • • , f T )
where L(f t (x), y) is a loss function, Ω a sparsity-inducing penalty function involving all f t and C a trade-off parameter that balances both antagonist objectives.

Joint sparsity-inducing penalty

For a single task empirical minimization problem, sparse models are usually induced by the use of a ℓ 1 -norm regularizer [START_REF] Tibshirani R | Regression selection and shrinkage via the lasso[END_REF]. For a Multi-Task Learning problem, this approach can be properly generalized by the use of appropriate norm. For instance, [START_REF] Obozinski | Multi-task feature selection[END_REF] propose a regularizer of the form

Ω(f 1 , • • • , f T ) = M k=1 T t=1 f t,k 2 H k 1/2
which is equivalent to a ℓ 1 -norm for a single linear task. This regularizer can be generalized by

Ω p,q (f 1 , • • • , f T ) = M k=1 T t=1 f t,k q H k p/q (2)
where typically p ≤ 1 and q ≥ 1. For this regularizer, a ℓ q norm is applied to the vector of all task norms in H k and then a ℓ p pseudo-norm is applied to the resulting vector. The ℓ q norm in the regularizer controls the weights of each task for the space H k and how this kernel representation will be shared across tasks. For instance, large value of q (like q = ∞) means that as soon as f t,k H k is non-zero, another task t ′ can have a non-zero norm for f t ′ ,k without increasing significantly the regularizer Ω p,q . The ℓ p pseudo-norm controls the sparsity of the kernel representation for all tasks.

Such a regularizer has already been proposed for single task learning for achieving composite absolute penalization (Zhao et al., to appear) or for composite kernel learning [START_REF] Szafranski | Composite kernel learning[END_REF].

However, in the context of multi-task learning, some particular cases of the mixednorm Ω p,q have been considered. [START_REF] Obozinski | Multi-task feature selection[END_REF] use p = 1 and q = 2 while [START_REF] Liu | Non parametric regression and classification with joint sparsity constraints[END_REF] and [START_REF] Quattoni | Transfer learning for image classification with sparse prototype representations[END_REF] propose the use of p = 1 and q = ∞. For all these works, the authors have focused on convex situations since Ω p,q is known to be convex whenever p, q ≥ 1 and non-convex for p < 1 and q ≥ 1.

Recently, several works on sparse single learning models have stressed the need of non-convex penalties for achieving better sparsity. For instance, [START_REF] Knight | Asymptotics for lasso-type estimators[END_REF] suggested the use of the so-called Bridge penalty which simply consists in replacing the ℓ 1 norm with a ℓ p norm with p < 1. In our multi-task learning framework, this can be naturally generalized by using the regularizer given in Equation (2) with p < 1.

Relation with other works

Before delving into the details of algorithms for solving the ℓ p -ℓ 2 regularized sparse MTL, let us relate the proposed approach to the recent similar methods.

As far as we know, the first works which proposed mixed-norms for joint-sparsity inducing regularizer come from the signal processing community [START_REF] Cotter | Sparse solutions to linear inverse problems with multiple measurement vectors[END_REF][START_REF] Tropp | Algorithms for simultaneous sparse approximation. part ii : Convex relaxation[END_REF]. These works have investigated the use of ℓ 1ℓ 2 and ℓ 1ℓ ∞ penalties together with least-squares loss function for sparse signal approximations.

Due to its convexity, the penalty ℓ 1ℓ 2 has attracted many interests for jointly sparse multi-task learning. Indeed the seminal works of [START_REF] Argyriou | Convex multi-task feature learning[END_REF] and [START_REF] Obozinski | Multi-task feature selection[END_REF] have opened the road to regularized sparse MTL. These two works differ in their algorithmic approach : while Argyriou et al. proposed an alternating minimization approach, Obozinski et al. used an homotopy method for solving the problem. In both cases, their algorithms consider a smooth loss function. Several probabilistic approaches actually boil down to be equivalent to the use of ℓ 1ℓ 2 penalty [START_REF] Xiong | Probabilistic joint feature selection for multi-task learning[END_REF][START_REF] Bi | An improved multi-task learning approach with applications in medical diagnosis[END_REF] Our work differs from the previously mentioned in several ways. At first, we consider a kernel selection framework which is general enough to include feature selection or grouped-feature selection as a special case [START_REF] Bach | Consistency of the group Lasso and multiple kernel learning[END_REF]. Then, instead of considering smooth and differentiable loss functions, we use a hinge loss cost function as [START_REF] Quattoni | Transfer learning for image classification with sparse prototype representations[END_REF]. However, in the latter work, the features are extracted from an unsupervised KPCA projection of the labeled data onto the space spanned by some available unlabeled samples followed by a multi-task learning with a linear SVM and the mentioned ℓ 1ℓ ∞ penalty.

According to us, the approach proposed hereafter is more general and explores the possibility of combining many different kernels. Furthermore, we benefit from the efficiency of SVM algorithm and multiple kernel learning tools upon which we built our convex MTL solver. Finally, we go beyond the convex cases and consider the use of a larger class of sparsity-inducing regularisation term which includes the ℓ 1ℓ 2 norm as a special case. The DC procedure allows to solve the problem as an iterative reweighted MTL problem.

Algorithms for jointly sparse multi-task SVM

In this section, we propose some algorithms for solving the sparse multi-task SVM problem when using Ω p,q as a regularizer with p ≤ 1 and q = 2. At first, we consider the convex problem with p = 1 and then we introduce an algorithm which solves the problem when p < 1. In the sequel, we use the following notation for more clarity :

f •,k = T t=1 f t,k 2 H k 1/2 3.1 The ℓ 1 -ℓ 2 case
The optimization problem related to the sparse multi-task SVM can be posed as follows :

min f1,••• ,f T C t,i H(f t (x i,t ), y i,t ) + M k=1 f •,k
where H(f t (x), y) = max(0, 1yf t (x)) is the Hinge loss function and C the usual SVM parameter. This optimization problem is clearly convex but non-smooth because of the Hinge loss and the regularizer. However, the algorithmic difficulties are essentially due to the non-differentiability of f •,k at 0. Similarly to recent works on MKL, we use a variational form of Ω 1,2 which makes this latter differentiable at the expense of adding new variables to the optimization problem [START_REF] Rakotomamonjy | SimpleMKL[END_REF] :

min f1,••• ,f T ,d C t,i H(f t (x i,t ), y i,t ) + k f •,k 2 d k s.t k d k = 1, d k ≥ 0 ∀k
Here and in what follows, we take the convention that u 0 = 0 if u = 0 and ∞ otherwise. After, expanding f •,k 2 and re-arranging the sums, we note that for a fixed d (vector with entries d k ), each task can be trained independently as made explicit through the following equivalent optimization problem :

min d J(d) = t J t (d) s.t k d k = 1, d k ≥ 0 ∀k (3) with J t (d) = min ft C i H(f t (x i,t ), y i,t ) + k f t,k 2 d k (4) 
This latter formulation shows how our sparse multi-task SVM problem is strongly related to the MKL problem. At first, we remark that the Equations (3-4) boil down to be the MKL problem when only a single task is considered. When several tasks are in play, the vector d makes explicit that they are linked through their shared sparse kernel representation.

For solving this optimization problem, we build on the gradient-based MKL algorithm [START_REF] Rakotomamonjy | SimpleMKL[END_REF]. This MKL algorithm can be straightforwardly extended to our problem by noting that the minimization problem (4) yields the objective value of a SVM problem with kernel K = k d k K k . Indeed the minimization with respects to f t in (4) is equivalent to the minimization over the functions f t,k , ∀k
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Algorithm 1 ℓ 1ℓ 2 sparse MTL solver

d 1 k = 1 M for k = 1, • • • , M . for n = 1, 2, • • • do Solve each SVM task with K = M k=1 d k K k . Compute ∂J ∂d k for k = 1, • • • , M
as given in Equation ( 6). Compute descent direction D n and optimal step γ n such that d n+1 ← d n +γ n D n . if stopping criterion then break end if end for and b t according to the expression (1) of the t th decision function. For instance, the optimality condition w.r.t. f t,k is :

f t,k (•) = d k i α i,t y i,t K k (x i,t , •)
where the α i,t are the Lagrange multipliers related to the classical SVM constraints embedded in the hinge loss. The same algebra for the bias b t yields i α i,t y i,t = 0. Therefore, it comes up the dual problem corresponding to (4) turns into min αi,t 1 2 i,j α i,t α j,t y i,t y j,t k d k K k (x i,t , x j,t )i α i,t s.t α i,t y i,t = 0, and 0 ≤ α i,t ≤ C ∀i (5)

Then since the objective function of the sparse multi-task learning given in Equation ( 3) is just a sum of single task SVM objective value, its gradient is simply :

∇ d k J(d) = - 1 2 t i,j α ⋆ i,t α ⋆ j,t y i,t y j,t K k (x i,t , x j,t ) (6) 
where the α ⋆ are the optimal alpha's that minimize Equation (5). Equations ( 5) and ( 6) provide the ingredients to apply the recipes of SimpleMKL algorithm to the sparse multi-task learning (we refer the reader to the aforementioned paper for more details about the machinery of MKL). The different steps of our ℓ 1ℓ 2 MTL solver are briefly summarized in Algorithm 1.

Regarding convergence and complexity of this algorithm, we can state that they are strongly related to the ones of gradient-descent based MKL. Hence, we can just remind that convergence towards the problem global minimum is ensured if each SVM task is exactly solved (e.g with 0 duality gap) which means that the gradient in Equation ( 6) is exact. The algorithm 1 complexity is then of the same order of SimpleMKL ones. Indeed, the main difference is that T SVM tasks have to be solved and that the gradient computation involves the T tasks.

3.2

The ℓ pℓ 2 (with p < 1 ) case Now that we are able to solve the sparse MTL problem using a ℓ 1ℓ 2 mixed norms, we propose an algorithm which solves the non-convex case where ℓ pℓ 2 (with p < 1 Apprentissage multi-tâches parcimonieux ). For this novel situation, let rewrite the regularization term as :

Ω p,2 = M k=1 g( f •,k ) (7) 
where the upper level penalty function is g(u) = u p , u > 0 with p < 1. Clearly, this function is non-convex. To address this issue, we investigate the use of DC programming [START_REF] Thoai | Dc programming : overview[END_REF] which is a general framework for optimizing non-convex objective functions that can be expressed as a difference of convex functions (or a sum of a convex and concave functions i.e. min θ J(θ) = min θ J vex (θ) + J cav (θ)). The trick of the DC algorithm is broadly used in machine learning (see for e.g. [START_REF] Sriperumbudur | Sparse eigen methods by d.c. programming[END_REF] for recent publication). For situations where the concave function is differentiable, the DC algorithm is an iterative procedure where at the i th iteration, one optimizes the problem :

θ (i+1) = min θ J vex (θ) + ∇ θ J cav (θ (i) ), θ -θ (i)
until convergence. For our multi-task problem, we propose a decomposition that enables us to use the ℓ 1ℓ 2 MTL solver. Indeed, we suggest the following decomposition :

g(u) = g vex (u) + g cav (u) = u -(u -u p )
which leads to

J vex = C t,i H(f t (x i,t ), y i,t ) + k f •,k J cav = k (-f •,k + f •,k p )
An illustration of such a decomposition in one dimension case is given in Figure 1 for u = |θ|. Notice that here, we are interested only on the positive part on these curves.
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Now according to this decomposition, we have :

∇ f t,k J cav = -1 + p f •,k p-1 ∇ f t,k f •,k
where the derivative

∇ f t,k f •,k = f t,k (•)
f •,k is easily derived. Therefore, at each DC iteration, after tedious algebras and owing to the first-order approximation

f (i) t,k ,f t,k f (i) t,k = f t,k , we show that : min f1,••• ,f T C t,i H(f t (x i,t ), y i,t ) + k p f •,k f (i) •,k 1-p
This latter equation demonstrates that, in order to solve the non-convex ℓ pℓ 2 case using a DC programming approach, one needs to solve iteratively a weighted

ℓ 1 -ℓ 2 multi-task problem min f1,••• ,f T C t,i H(f t (x i,t ), y i,t ) + M k=1 β k f •,k (8) 
where β k are some fixed coefficients, which in our case would depend on the iteration and are defined at the i th iteration as :

β k = p f (i) •,k 1-p , ∀ k = 1, • • • , M (9) 
This definition of the β k requires implicitly the positivity of f •,k . To ensure this condition, a small term ǫ is added to f •,k in (7). Hence, this involves to consider rather

β k = p ǫ+ f (i) •,k
1-p . This trick suggested as well by [START_REF] Candès | Enhancing sparsity by reweighted ℓ 1 minimization[END_REF] avoids numerical instabilities. Now, the equivalent optimization problem with smooth regularization is simply :

min f1,••• ,f T ,d C t,i H(f t (x i,t ), y i,t ) + k β 2 k f •,k 2 d k s.t k d k = 1, d k ≥ 0 ∀k (10) 
Note that the optimality conditions of this problem with respects to f t,k is simply given by the expression

f t,k (•) = d k β 2 k i α i,t y i,t K k (x i,t , •)
. Consequently, at each DC iteration, we have to solve a weighted sparse MTL problem, where the weights are applied to the basis kernels. Hence, Equation (10) can be solved using the ℓ 1ℓ 2 algorithm just by replacing the kernel K k (x, x ′ ) with

1 β 2 k K k (x, x ′ ).
Details of the ℓ pℓ 2 problem solver are given in Algorithm 2. About its complexity, we can state that since the ℓ pℓ 2 algorithm is based on iter iterations of the ℓ 1ℓ 2 algorithm (after appropriate rescaling of the kernels), its complexity can be approximated as iter times the ℓ 1ℓ 2 algorithm complexity. However, in order to speed-up convergence for ℓ pℓ 2 , warm-starting the ℓ 1ℓ 2 with results from previous iteration can be Algorithm 2 ℓ pℓ 2 sparse MTL solver beneficial. Indeed, one may expect for instance, that many of the vanishing coefficients d k at a given iteration will stay at zero at the next iteration.

β k = 1 for k = 1, • • • , M Compute K k kernel matrices for all tasks repeat K β k ← K k
The local convergence of Algorithm 2 is guaranteed. Indeed, the DC programming approach proceeds by surrogating the concave part of the objective function with its affine majorization at each iteration. Therefore, the minimized function decreases until a guaranteed convergence to at least a local minimum [START_REF] Thoai | Dc programming : overview[END_REF]. Here we illustrate the usefulness of sparse Multi-Task learning on a Brain-Computer Interface problem. Indeed, sparse MTL can be very relevant to BCI because of the need of channel/variable selection and because of the data non-stationarity with respects to different subjects or even with respects to different acquisition sessions for a single subject.

The dataset we use is the training set of P300 Speller dataset from BCI 2003 competition and we treat the problem as a single trial classification of EEG signals. Such a dataset is composed of 11 acquisition sessions for which a subject has been asked to spell words of 3 to 5 characters. For each session, 540 to 900 EEG signals (180 for a character) have been acquired and paired with a positive or negative stimuli responses. After preprocessing as in [START_REF] Rakotomamonjy | Ensemble of SVMs for improving brain-computer interface p300 speller performances[END_REF], the signal becomes a vector of dimension 896 (14 time frames for each of the 64 channels).

Here, sparse MTL is particularly relevant because channel selection is known to enhance BCI classification performance and furthermore, we believe that MTL can help handling inter-session variabilities. For instance, for the same problem, [START_REF] Rakotomamonjy | Ensemble of SVMs for improving brain-computer interface p300 speller performances[END_REF] use an ensemble of linear SVMs where each SVM has been trained independently and using only examples belonging to the same acquisition sessions. Here, we train these SVMs using our sparse MTL approach and thus we impose that all linear SVMs share the same sparsity profile.

The experimental protocol is then the following. We have considered only 4 acquisition sessions, thus 4 tasks. For these sessions, we have randomly picked 180 training examples and used the remaining as testing examples. C has been fixed to 10 which is small enough for achieving good sparsity. This overall procedure has been repeated 10 times.

Table 1 summarizes the average performance of 4 different algorithms : a MKL SVM trained on all training examples (FullMKL), an ensemble of MKL SVM (SepMKL) where each SVM has been trained according to data from a single session (this approach is equivalent to the state-of-the art method) , our sparse ℓ pℓ 2 MTL with respectively p = 1 and p = 0.5. Algorithm performance has been evaluated according to AUC obtained by feeding the test set to all SVMs and by summing all obtained scores. The final score is then used for computing AUC.

Interpreting these results tells us that performance of the 4 algorithms are equivalent with a slight advantage for sparse MTL with p = 0.5. Interestingly, taking into account a relation between tasks allows slightly better performances than training tasks independently. The most interesting point for our sparse MTL approach is the performance we achieve using only about 5% of the variables. For real-time application of BCI, such a dimensionality reduction is of primary importance.

Conclusion

In this paper, we investigated the use of mixed-norms for Multi-Task SVM with joint sparsity constraint. After having proposed a class of penalty function based on a ℓ pℓ 2 norm, we first derive an algorithm which addresses the convex optimization problem when p = 1. For the case p < 1, we fitted the optimization problem into the DC programming framework, and proposed an iterative reweighted version of the ℓ 1ℓ 2 algorithm. One interesting point of the algorithms we propose is that they can both take advantage of any progress made in SVM and MKL efficiency. Experimental results brought evidence that ℓ p -ℓ 2 penalties lead to enhanced performance and better sparsity especially in situations where a large number of variables are in play.

Future works aim at proposing a generic algorithm that can handle the general situation of ℓ pℓ q norm and at theoretically analyzing the consistency of our reweighted algorithm.

  and thus they simply provided a probabilistic interpretation of the work of Obozinski et al. More recently, Liu et al. (2009) and Quattoni et al. (2008) considered solving the multi-task learning by using a ℓ 1ℓ ∞ regularization. While Liu et al. provided algorithms for smooth loss functions, Quattoni et al. considered the Hinge loss and derived a linear programming method for solving the resulting problem.

  FIG. 1 -Difference of convex functions representation for an ℓ p quasi-norm (here p = 0.5).

  FIG. 2 -Performance comparisons between ℓ 1ℓ 2 and ℓ pℓ 2 penalty for different experimental situations. For each experimental situations, we have kept fixed all except one of parameters : number of training examples n, number of relevant variables r, problem dimension d and number of tasks T . top-left) varying n. top-right) varying r. bottom-left) varying d bottom-right) varying T .

  •,k belongs to a Reproducing Kernel Hilbert Space (RKHS) H k of kernel K k , b t is the bias term and M is the number of basis kernels provided. Note that depending on the input space X , H k can be of different forms. For instance, if X = R d , H k can be a subset based on a single or several dimensions of R d . H k can be also an infinite dimension space.

  TAB. 1 -Average AUC performances of 4 different algorithms on the BCI datasets. The number of variables that have been kept in the decision function is also given.

	Algorithms	AUC	# variables
	MTL 1	85.72 ± 1.8 192 ± 11
	MTL 0.5	86.37 ± 1.3	43 ± 6
	FullMKL	86.17 ± 1.8 214 ± 12
	SepMKL	84.15 ± 1.8 272 ± 13
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