Sélection de variables pour l'apprentissage simultanée de tâches - Archive ouverte HAL Access content directly
Conference Papers Year : 2009

Sélection de variables pour l'apprentissage simultanée de tâches

Abstract

Recently, there has been a lot of interest around multi-task learning (MTL) problem with the constraints that tasks should share common features. Such a problem can be addressed through a regularization framework where the regularizer induces a joint-sparsity pattern between task decision functions. We follow this principled framework but instead we focus on lp − l2 (with p ≤ 1) mixed-norms as sparsity-inducing penalties. After having shown that the l1 − l2 MTL problem is a general case of Multiple Kernel Learning (MKL), we adapted the available efficient tools of solving MKL to the sparse MTL problem. Then, for the more general case when p < 1, the use of a DC program provides an iterative scheme solving at each iteration a weighted 1 − 2 sparse MTL problem.
Fichier principal
Vignette du fichier
cap2009.pdf (147.29 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-00452332 , version 1 (02-02-2010)

Identifiers

  • HAL Id : hal-00452332 , version 1

Cite

Rémi Flamary, Alain Rakotomamonjy, Gilles Gasso, Stephane Canu. Sélection de variables pour l'apprentissage simultanée de tâches. Confrénce D'Apprentissage (CAp), May 2009, Hammamet, France. pp.109-120. ⟨hal-00452332⟩
121 View
64 Download

Share

Gmail Facebook Twitter LinkedIn More