
HAL Id: hal-00452291
https://hal.science/hal-00452291

Submitted on 1 Feb 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Edge Orientation Using Contour Stencils
Pascal Getreuer

To cite this version:
Pascal Getreuer. Edge Orientation Using Contour Stencils. SAMPTA’09, May 2009, Marseille, France.
Special session on sampling and (in)painting. �hal-00452291�

https://hal.science/hal-00452291
https://hal.archives-ouvertes.fr


Edge Orientation Using Contour Stencils

Pascal Getreuer (1)

(1) Department of Mathematics, University of California Los Angeles

getreuer@math.ucla.edu

Abstract:

Many image processing applications require estimat-

ing the orientation of the image edges. This estimation

is often done with a finite difference approximation

of the orthogonal gradient. As an alternative, we ap-

ply contour stencils, a method for detecting contours

from total variation along curves, and show it more

robustly estimates the edge orientations than several

finite difference approximations. Contour stencils are

demonstrated in image enhancement and zooming ap-

plications.

1. Introduction

A fundamental and challenging problem in image

processing is estimating edge orientations. Accurate

edge orientations are important for example in edge-

oriented inpainting methods [2], and optical character

recognition features [8].

1.1 ∇u
⊥ for Estimating Edge Orientation

A starting point to edge orientation estimation is to

approximate ∇u⊥ with finite differences. Finite dif-

ference estimation alone is typically too noisy to be

reliable, especially near edges, so the gradient is often

regularized by a convolution ∇u ≈ ∇(G ∗ u) where

G is for example a Gaussian. However, there is a se-

rious problem in that ∇u⊥ and −∇u⊥ both describe

the same edge orientation, so linear smoothing tends

to cancel the desired edge information.

Introduced by Bigün and Granlund [1] and Forstner

and Gulch [3], a better approach is to use the 2 × 2

structure tensor J(∇u) = ∇u ⊗ ∇u. The struc-

ture tensor satisfies J(−∇u) = J(∇u) and ∇u is an

eigenvector of J(∇u). The structure tensor takes into

account the orientation but not the sign of the direc-

tion, thus solving the antipodal cancellation problem.

As developed by Weickert [9], let

Jρ(∇uσ) = Gρ ∗ J(Gσ ∗ u) (1)

where Gσ and Gρ are Gaussians with standard devia-

tions σ and ρ. The eigenvector of Jρ(∇uσ) associated

with the smaller eigenvalue is called the coherence di-

rection, and is an effective approximation of edge ori-

entation.

2. Contour Stencils

Numerical implementation of J(∇u) yet involves es-

timating ∇u. Since numerical estimates of ∇u are

sensitive to noise and unreliable near edges, signifi-

cant amounts of smoothing is still needed for accept-

able results. We abandon ∇u⊥ and approach the es-

timation of edge orientation from an entirely different

principle.

Given a smooth curve C and a parameterization γ :
[0, T ] → C, consider measuring the total variation of

u along C,

TV(C) =

∫ T

0

∣

∣∂tu
(

γ(t)
)∣

∣ dt. (2)

Edge orientations can be estimated by comparing

TV(C) with various candidate curves. Contour sten-

cils [4, 5] is a numerical implementation of this idea.

Let u : Λ → R be a discrete image. Denote by ui,j ,

(i, j) ∈ Λ, the value of u at the (i, j)th pixel, and let

xi,j ∈ R
2 denote its spatial location.
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1 α = (i, j), β = (i + 1, j − 1),
4 α = (i, j + 1), β = (i + 1, j),
1 α = (i + 1, j + 1), β = (i, j + 2),
1 α = (i + 1, j + 1), β = (i + 2, j),
0 otherwise

Figure 1: An example contour stencil S for detecting

a 45◦ orientation.

A contour stencil is a function S : Λ × Λ → R
+ de-

scribing weighted edges between pixels (see Figure 1).

These edges approximate several parallel curves local-

ized over a small neighborhood. As a discretization of

(2), the total variation of S is

TV(S) := 1
|S|

∑

α,β∈Λ

S(α, β) |uα − uβ | , (3)

and |S| :=
∑

α,β S(α, β) |xα − xβ |. For the contour

stencil in Figure 1, |S| = (1 + 1 + 4 + 1 + 1)
√

2 and

TV(S) = 1
|S|

(

|ui,j − ui−1,j+1| + |ui,j − ui+1,j−1|
+ 4 |ui,j+1 − ui+1,j |

+ |ui+1,j+1 − ui,j+2| + |ui+1,j+1 − ui+2,j |
)

.
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Figure 2: The proposed cell-centered contour stencils.

The contours of u are estimated by finding a stencil

with low total variation,

S∗ = arg min
S∈Σ

TV(S) (4)

where Σ is a set of candidate stencils (see Figures 2

and 3). The best-fitting stencil S∗ provides a model of

the underlying contours.

In summary, contour stencil orientation estimation is

done by first computing the TV estimates (3) for each
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Figure 3: A node-centered stencil set.

candidate stencil, and then determining the best-fitting

stencil S∗. For efficient implementation, define

DH
i,j = |vi,j − vi+1,j | , DA

i,j = |vi,j − vi+1,j+1| ,
DV

i,j = |vi,j − vi,j+1| , DB
i,j = |vi,j+1 − vi+1,j | ,

then the TV(S) can be computed as sums of these dif-

ferences, and the differences may be reused between

successive cells. For the proposed stencil sets, contour

stencils cost a few dozen operations per pixel [4].

Input Estimated Orientations

Figure 4: Edge orientation estimation with contour

stencils (using the cell-centered stencils in Figure 2).

Contour stencils extend naturally to nonscalar data by

replacing the absolute value in (3) with a metric. On

color images for example, a suitable choice is the ℓ1

vector norm in YCbCr color space.

3. Comparison

Here we compare contour stencils and several finite

difference methods for estimating edge orientation.



As a test image with fine orientations, we use a small

image of straw (Figure 5).

u

Figure 5: The test image.

As is done with coherence direction (1), any orien-

tation field ~θ can be smoothed by filtering its tensor

product: Gρ ∗ (~θ × ~θ). But for easier comparison, all

methods are shown without smoothing.

∇u⊥ with (5)

Contour Stencils (Σ as in Figure 2)

Figure 6: Comparison of cell-centered methods.

We consider two categories of methods: cell-centered

and node-centered. Define the (i, j)th cell as the

square whose corners correspond to ui,j , ui+1,j ,

ui,j+1, ui+1,j+1. Cell-centered methods compute ori-

entation estimates logically located in the center of the

cells. With node-centered methods, the edge orienta-

tion estimates are centered on the pixels.

Let D+
x denote the forward difference operator

D+
x ui,j = ui+1,j − ui,j and similarly in the other co-

ordinate D+
y . An estimate of ∇u symmetric over the

cell is

∇ui,j ≈
(

(D+
x ui,j + D+

x ui,j+1)/2
(D+

y ui,j + D+
y ui+1,j)/2

)

. (5)

Figure 6 compares ∇u⊥ estimated using (5) with con-

tour stencils using the cell-centered stencil set shown

in Figure 2.

Sobel filter (6)

Contour Stencils (Σ as in Figure 3)

Figure 7: Comparison of node-centered methods.

The Sobel filter [7] is a node-centered approximation

of ∇u,

∂xu ≈





−1 0 1
−2 0 2
−1 0 1



 ∗ u (6)

and similarly for ∂yu. Figure 7 compares the Sobel fil-

ter with contour stencils using the node-centered sten-

cil set from Figure 3.



4. Applications

Contour stencils are useful in applications where

edges are significant.

Input Contour Stencil Enhancement

Figure 8: Simultaneous sharpening and denoising us-

ing contour stencils [4].

Contour stencils can be useful in discretizing image

diffusion processes. Figure 8 demonstrates image en-

hancement using a combination of the Rudin-Osher

shock filter [6] and TV-flow that has been discretized

with contour stencils.

As another application, Figure 9 shows an image

zooming result using contour stencils. The method

approaches zooming as an inverse problem using a

least-squares graph regularization. The regularization

is adapted according to the edge orientations estimated

from the contour stencils.

5. Conclusions

Contour stencils provide reliable orientation estimates

at low computational cost, enabling better results in

image processing applications.

Input Zooming (4×)

Figure 9: (This is a color image.) Edge-adaptive

zooming using contour stencils [5].
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