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Since the impulse given by P. Malliavin, the stochastic calculus of variations 
has been mainly applied to stochastic differential equations with C°° coefficients, 
see Ocone [01] for a comprehensive exposition. 

But it is also important for applications to get regularity results for solutions 
of SDE with less smooth coefficients and in particular under Lipschitz hypotheses 
which axe, in dimension greater than one, the most natural hypotheses of existence 
and uniqueness of solutions. 

The celebrated integration by parts method cannot apparently be extended be­
yond the case of functionals in the domain VL of the Ornstein-Uhlenbeck operator 
(ID2,2 with the notations of Watanabe [Wl]), so that the regularity of solutions of 
Lipschitzian SDE must come from specific technics. Especially well adapted are 
Dirichlet forms methods which allow to exploit intensively the fact that Lipschitz 
functions operate on D2 , i = V\/—L. 

We give here an account of results already obtained in this direction by Dirichlet 
forms methods and we present in details a new example which gives rise to an 
extension of the stochastic calculus. The first part introduces the framework of the 
Dirichlet space related to the Ornstein-Uhlenbeck semigroup on the Wiener space 
and recalls the absolute continuity criterion (cf [B-Hl] [B-H2]) for functionals in 
ID24 o r ^ 2 4 a n ( i s o m e consequences on Lipschitz SDE. 

The second part is devoted to the regularity of solutions of Lipschitz SDE with 
respect to initial data . It is shown tha t the solution is differentiable in a slightly 
weakened sense. Tha t gives for example the following simple result: under these 
hypotheses, if the initial variable XQ has a density, then Xt has a density for all t. 



After recalling the definition of the capacity associated with the Ornstein-
Uhlenbeck Dirichlet form, it is shown in the third part, that the solutions of Lip-
schitz SDE can be refined, by taking quasi-continuous versions for each i, into 
processes with continuous paths outside a polar set and unique up to a quasi-
evanescent set. The main tool here is an extension of the Kolmogorov theorem 
on existence of continuous versions to the case where the measure is changed to a 
capacity. 

This allows to study the solutions of Lipschitz SDE under measures which 
do not charge polar sets. In the last part, using Wiener chaos decompositions 
of positive distributions, we show that this property allows an extension of the 
stochastic calculus by constructing a finite energy measure singular with respect 
to the Wiener measure and for which the coordinates do not build a semimartingale. 
This answers a conjecture formulated in [B-H4]. 

I The structure of Dirichlet space on the Wiener 
space associated with the Ornstein - Uhlenbeck 
semigroup* 

The Wiener space 
ft = {UJ e C(1R+, JRd)]u;(0) = 0} 

is equipped with the topology of uniform convergence on compact sets, with its 
Borelian <r-a!gebra and with the Wiener measure m which makes the coordinates 
a standard Brownian motion. T denotes the m-completed <j-algebra of a(Bt;t £ 
K+), and Tt the /"-m-completed a-algebra of cr(B8; s < t). 

We consider on L2(m) the Ornstein-Uhlenbeck semigroup Pt a strongly contin­
uous symmetric Markovian semigroup characterized by 

Pt[exp{J h(s).dBa - l\\hf}} = expie-'* J h(s).dB. - i||e-t /afc||a} 

Vh€H = L2(R+,TRd). 

The self-adjoint operator generator of Pt is denoted by L. It corresponds to Pt (cf 
[B-Hl]) a Dirichlet form with domain 

D = V(V-L) 

given by 
((«,«)) = || V=Iu||i,(m). 

That means that the space ID with the norm (||w||£/2(m) + ((w,u)) )1^2 is complete 
and that normal contractions operate: For all u € ID, for all measurable v such 



that VU\V(UJ)\ < \u(u>)\ and Vu>,t</|v(u;) — v(u>')\ < \u(u) — u(u/)|, one has v £ TD 
and((v,v))<((t*, t i )) . 

This Dirichlet form is local ([B-Hl] p239) and possesses a carre-du-champ op­
erator, i.e. a symmetric bilinear continuous map T from D x ID into jL1(m) such 
that W , v G DnX°°(m) , 

2((tiv,u)) — ((v,u2)) == I vT(u,u)dm. 

This Dirichlet structure (ft,.?7,m; ((.,.)), D) is related to the Sobolev spaces which 
are classically defined on the Wiener space in the following way: 

Let IDPv,,p G (1, oo), s G 1R the closure of the linear space generated by polyno­
mials in continuous linear forms on ft for the norm 

\\F\\p,a = \\(I-L)^F\\p 

(cf [Wl]). Then D = D2 ) 1 and \\F\\l, + ( ( F , F ) ) = M f l . 
Let 

6. = / L(s)ds 
Jo 

where £nis a complete orthonormal system of H = X2(IR+, IR"*), then for all u £ D 
the following limit exists in probability (cf [B-H2]) 

V{»(«)(w) = limrMuCw + ttn) ~ «(w)] 

and one has 

The derivation operator D (cf [Wl]) which can be defined by 

n 

and which is continuous from D = D2,i into L2(ft, # ) is related to the carre-du-
champ operator T by 

r(u,tt) = < Du,Du ># , Vu G ID2,i. 

This relation between the carre-du-champ operator and the derivations in the 
directions of Cameron-Martin vectors (f G ft s.t. £ £ H) allows, by an extension 
of the co-area formula of Federer [Fl], to obtain the following absolute continuity 
criterion: 

Proposition 1 . Let u = (w1?... ,un) G (JD2,i)n, </&e image by u of the measure 

det[T(u,u*)].rn 

is absolutely continuous with respect to the Lebesgue measure on IRn. 



When n = 1, this result is true for any local Dirichlet space (cf [B-Hl]) and 
also for the local energy part in any Dirichlet space on a locally compact space (cf 

[Bl]). 
In fact proposition 1 remains valid for u in (D^i ) n defined by 

E>Ji = {u : fi -* IR; 3Qn € T, fi„ T ^ Vn3t/n 6 B2>1 , u = u n onf t n } 

and for u G ID^J, T(u, tx) depends only on tx. 
An important application of the extension of Dirichlet forms methods to the 

case of the Wiener space is the study of stochastic differential equations. Let us 
specify the Lipschitz hypotheses which will be in force in the sequel: 

Two Borelian functions cr, 6 are given 

a : H+ x R n —• UnXd 

b : IR+ x IRn —> IRn 

and there exists K : IR+ —• 1R+ such that 

VTGIR+, V<G[0,T], Vx,yGlRn 

\v(t,x)\V\b(t,x)\<K(T)(l + \x\) 

\a(t, x) - o(t, y)\ V \b(t, x) - b(t, y)\ < K{T){\x - y\). 

One is concerned by the equation 

dXt = *(t,Xi).dBi + b(t,Xt)dt. (1) 

From the fact that contractions hence Lipschitz functions operate on the Dirich­
let space, it follows (cf [B-Hl] [B-H2]) that the solution of (1) is such that the map 
t -—> Xt is continuous from 1R+ into (©2,1 )n and by writing down a stochastic 
differential equation satisfied by the matrix T(Xt^X*) it is possible to bring out 
conditions under which Xt has a density by application of proposition 1. 

For example if Ak = {(*,y) : <K*?y) ls °^ rank k} and if Tk is the essential 
beginning of Ak for (Xt)t>o> one gets that for t such that m({t > Tk}) > 0 and for 
almost all subspace V of JRn of dimension fc, the projection of Xt on V, knowing 
{t > Tjt}, has a density with respect to the Lebesgue measure on V. 

I I Regularity of solutions of Lipschitz SDE with 
respect to the initial da ta 

Under these Lipschitz hypotheses, it is known (cf [K2]) that there exists a version 
(Xf (k>))(t,a:)€]Ft+xRn of the solution of (1) starting at x, such that for almost all UJ 



the map (£, x) —» Xf(u) is continuous and for all t > 0 x —» X?(u>) is an onto 
homeomorphism of IRn. 

If it is supposed further that a and b are C1,0f with respect to a: then x —» Xf (a;) 
is an onto C1- diffeomorphism. 

Under the only Lipschitz hypotheses, X* is of course not Cl with respect to 
x in general, but it is possible to show that the Jacobian -§^(X*(a;)) exists in a 
weakened sense and satisfies a SDE which can be written explicitly. 

For this, consider the space Q, = H n x Q, equipped with the probability m = 
h(x) dxxm where m is the Wiener measure on 0, and h a strictly positive continuous 
function such that fh(x)dx = 1, / \x\2h(x)dx < +oo. The cr-algebras generated 
by applications J55, s < t and completed for m are denoted by Tt. 

(fi, in) gets a natural Dirichlet form associated with the derivations in directions 
given by the canonical basis of IRn. In other words the tool is here the form 

du dv «-.•))-/»££)* 
with domain and operators d/dxi suitably defined. 

We denote by (Xt)t>o [resp. (I?t)t>o] the class of the process (X?)t>o [resp. of 
the Brownian motion (Bt)t>o\ enlarged up to m-evanescent sets. 

Proposition 2 . Under the Lipschitz hypotheses, 
a) for m-almost all u, V* > 0, Xfa) G {Hioc(lR

n))n 

b) there exists a process (Mt(x,u))t>o, (ft)-adapted, with continuous paths and 
values in (j?£n(IR), such that 

for m-almost all u>, Vi > 0, {§^(X*(u;)) = Mt(x,uj) dx — a.e.] 
c) let a1 and V be fixed Borelian versions of the derivatives -§^cr(t,x) and 

T^b(t,x), then M is the unique (Tt)-adapted continuous solution, defined up to 
an m-evanescent set, of the SDE 

i dMt = [a'(t, Xt).Mt] dBt + [b'(t, Xt).Mt] dt 
1 Mo = / 

It follows from this proposition and from a variant of proposition 1 applied 
to the Dirichlet structure on Q explained above that the equation (1) with initial 
value a random variable independent of (Bt) possessing a density , has a solution 
which admits a density for all t > 0. This was known, apparently, in dimension 
greater than one, only under C1,Qf hypotheses. 

In dimension 1, there is an explicit solution : if we write as before o\, V for 
fixed Borelian versions of the derivatives of a and b with respect to x, the process 

Y' = exp j f (£ot(s,X')dBi - ±£te(syXn?ds) + £v{3,Xf)da} 



is such that for m-almost all u, 

Va, 0 6 H, V* > 0, Xf(«) - X?(u>) = / ' Y?(u) dx. 
Ja 

III Regularity, up to a polar set, of the solutions 
and their flows* 

The Dirichlet form on the Wiener space associated with the Ornstein-Uhlenbeck 
operator makes it possible to look at properties of the Brownian motion satisfied 
up to a zero capacity set (cf [F3], [K1],[S2]). 

We study here, from this point of view, properties of solutions of Lipschitz SDE. 
A work in the same spirit was done independently by J. Ren (cf [Rl]) for equations 
with C°°-coefficients and with thin sets associated with Cp,5-capacities (cf [Ml]). 

We denote by C the capacity associated with the Ornstein-Uhlenbeck Dirichlet 
form. It is defined by 

C(G) = m/{||tx||2a; u £ D , xz > 1 m - a.e. on G} 

if G is an open set, and by 

C(G) = inf{C(G) G open and G D A} 

ifAef. 
If C(A) = 0, A is said to be a polar set. 
/ : fi —* H is said to be quasi-continuous with respect to the capacity C if 

Ve > 0,3ftc open with C(Q€) < e such that / restricted to the complementary Qc
e 

of fic is continuous. 
Two processes (UA)A€A> (^A)ACA defined on Q, are said to be C-indistinguishable 

if there exists a polar set A such that Va; ^ A, VA £ A, u\(u) = v\(u>). 
Under the Lipschitz hypotheses, we know that the solution X%(UJ) of equation 

(1) starting at x is such that for fixed i,x, Xf £ IDJj. It follows that this random 
variable admits a quasi-continuous version defined up to a polar set . The following 
extension of the Kolmogorov theorem gives conditions under which it is possible 
to put these quasi-continuous versions together to get a continuous process outside 
a polar set. 

Proposition 3 . Let (ux)xe^r be a family of elements of D and p, <*i, . . . , a r 

stricly positive real numbers. Suppose the following conditions hold 



<> V x , y € K r \ux -uy\
p€JD 

o 3L : IR+ -»IR+, V.R > 0, Vx, y G HT 
1*1 V |y| < IR = • || |u. - tt,|»||l4 < £ ( * ) E U |*.- - y , f 

Tfeen ifeere exists a family (vx)x€j^- such that 
i) x —> vx(u>) ts continuous 
ii) for all x vx is a quasi-continuous version of ux. 
The family (vx) is unique up to C-indistinguishability and the following unifor­

mity properties hold: 
There exist open sets (fic)oo with compact complementary fi£ such that 
a) Ve > 0, C(fic) < e and the map (x,u;) G IRr x ft£ —• v«(w) G IR w continuous 
b) V#, 0 < A < a,(l - E-=i l/a,-)/2p * = 1 , . . . , r 

3tf > 0, Ve > 0, Vi? > 0, 3?7 > 0, 
(a; G Ql \x\ V |y| < IR, |* - y\ < r,) =» |tir(«,) - t ; » | < If E U I*, - V.-|ft-

This criterion allows to show that under the Lipschitz hypotheses and for a 
given fixed initial condition x G H n , the solution X? of equation (1) can be made 
more accurate into a process (Xt)t>o unique up to C-indistinguishability such that 

i) t —» Xt is continuous, 
ii) for all t Xt is quasi-continuous and Xt = X* m — a.s.. 
This result has been extended, by using a Banach valued space TD2li by D. Feyel 

and A. de la Pradelle [F2] to the case of Ito processes of the form 

Xt = / as.dBs + I p8.ds 
Jo Jo 

with a, /3 G L2(TR+,TD) and adapted. 
The previous criterion of Kolmogorov type, allows also to obtain a quasi-

continuous version Xf of Xf which is for w outside a polar set, continuous in 
(t,x) and an onto homeomorphism with respect to x; but for this C1,or-hypotheses 
in x are needed for a and b (cf [B-H4]). 

With C2'a-hypotheses, the differentiability with respect to x of the flow is ob­
tained with a quasi-continuous regular Jacobian matrix -^Xf(uj) continuously de­
pending on (t,x) for u; outside a polar set (see [B-H4] theorems V.l and V.2 for 
more precise results). 



IV Stochastic calculus under a probability which 
does not charge polar sets 

We keep in the sequel the preceding globally Lipschitz hypotheses and look at the 
solution of 

Xt = x + f <T(S, X,).dB, + f b(s, Xs) ds (2) 
Jo Jo 

which is continuous in t, quasi-continuous in u> and unique up to C-indistinguishability. 
This process is well defined under any probability measure on the Wiener space 

which does not charge polar sets. 

A. The first case is when the right hand side of (2) also makes sense under such a 
measure v. 

To be precise with the changes of measure we introduce the a-fields J^ = 
&{Bs-> s < t) without any completion. 

It can be shown (cf [B-H4]) that there exists an (^)-adapted solution , Xt , 
of (2) such that, for fixed i, Xt is quasi-continuous in a;, and for quasi every u>, 
t —• Xt(w) is continuous. Then if v is a probability measure on £1 which does not 
charge polar sets and such that the process (Bt) is an (^)-semimartingale under 
i/, the process Xt is the solution of the same SDE under i/, that is to say Xt satisfies 
i/-a.e. 

Vi Xt = x+ fta(s,Xs)
l<dB9+ f'bis.X^ds 

Jo Jo 

where / a(s, Xs)
 v- dBa denotes the stochastic integral under v. 

For a one dimensional Brownian motion (d = 1), the law of the Brownian 
bridge 1E[ . \Bi = a] is an example of such a measure v which is singular with 
respect to the Wiener measure (cf [B-H4]). For d > 1 the same result is obtained 
by taking the conditional law of the Brownian motion given that B\ belongs to an 
(n — l)-dimensional hyperplan with the Gauss measure on it. 

B. The case which gives rise to a true extension of the classical stochastic calculus 
is when under v (Bt) fails to be a semimartingale so that the right hand side has 
no direct meaning by itself. 

We construct now a family of such measures on the Wiener space in the case 
d = 1 for simplicity. 

The idea is to consider a conditional law of the form IE[. | f$ h0(s)dBs = 0] for 
/ io€£ 2 ( [0 , l ] ) , /o h2

0{s)ds = l. 
For using computations by decomposition on the Wiener chaos, we define this 

object as the positive measure which coincides on ID fl C(Q) with the distribution 
on the Wiener space 

v = V & o ( M ho = [ hQ(s)dBs (3) 



in the sense of Meyer-Yan [M2]. 
The characteristic functional of v is 

ff„(0 = e-*<Wo>a «€Cr((0,l]) (4) 

so that its decomposition on the chaos is written 

n nV 

with 

where 

/n = < ^ C P ifn = 2p 
/„ =0 ifn = 2p + l y } 

/«(/) = n! / / ( 5 l , . . . , 5n)<f£ s i . . . dBSn 
J0<»1<...<an<l 

for symmetric / € l2([0, l]n) . 
So 1/ is a distribution of Watanabe and putting u2p —. T^JT^PC^P) one has 

IM|£> = 
2 _ (2p)! 

(p!)222P 

It follows that t/ has a finite energy that is to say 

iHit1=ET^iKr<i+|T^.^=<+oc. 

Formula (4) extends to £ 6 I2([0,1]) 

< i / , £ ( 0 > = e ~ * < W k o > a (6) 

where 

S(0 = exp{£z,dBa-±£eads}. 

Let h0,hi,..., / i n , . . . be a complete orthonormal system of L2([0,1]), it follows 
from (6) that if g is a polynomial one has 

< v,g{h0,hi,...,tin) > = < m,flf(0,fei,...,fcn) > (7) 

and v is then a positive distribution of Watanabe hence v is a measure (cf [N-U]). 
For t G [0,1] we consider also the distrbutions vt defined by 

Uut(0 =< * , £ ( * 1 M ) >= e-*<Wol™>a, 

A similar computation as the previous one gives 

N k - i < lMk-i 
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The family (ut) is a distribution martingale in the sense of Yan [Yl] and the i/t's 
are probabilities on fi. 

Following the notations of [Yl] we compute now the adapted projection of the 
distribution Du where D is the gradient operator. We have 

(D,nt)=g ̂ y v . ((wM)*-,2^aivo) 
and by using the formulae of Shigekawa [Si] 

hln(h**) = 7n+1(fc®<"+1>) + nWhlfl^ih^-V) 

we obtain 

(̂ M " ̂ I - S P ' W " (8) 

where || . || is the norm of £2([0,1]) and 

(^ol[o,*]) = / h0(s)dBsl 
*/0 

and with 

a = inf{t : / h2
0(s)ds = l}. 

Jo 
If we write (8) in the following form 

(Du)«(t) = CM-* 

the formula of Ito-Ustunel [Ul] gives 

u = rn + 6(((.)v.) 

From now on, we suppose a < 1 and h0 with bounded variation. (/i0l[o,t]) 
possesses then a version which is an (J^)-adapted process continuous in (t,u>) on 
[0,1] x O. In the sequel £ is supposed to be defined from this version. (The following 
construction is also possible without supposing the variation of h0 to be bounded. 
A version of (/iol[o,t]) should be chosen continuous in t and quasi-continuous in a;, 
what is always possible). 

That leads to the following lemma: 

Lemma 4 . The process 
rt 

,ds Mt = Bt- f (s 
Jo 

(where the integral is, for t > a, a semi-convergent integral) is an (J^)-Brownian 
motion under v. 
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Proof. Using the fact that the measure v restricted to the <7-field J^ is the measure 
vu we break up the interval [0,1] in [0,a), {a}, (a, 1]. 
a) First if t < a, the distribution vt is a random variable in L2, in other words the 
measure vt has a density in L2 with respect to m. 

Indeed setting $ = JjJ hl(s) ds. 

It follows then from (8) that if we set nt = ^ we have 

n t = 1 + / (5^, d£ 5 for * < a (9) 

and because P[/J £* <£s < +oo] = 1 for t < a we get 

nt = exp[/ (sdBs-~ (2
3 ds) 

Jo Z Jo 

hence nt > 0 and in fact vt and m are equivalent, vt being a probability it holds 
JEnt = 1 and the classical Girsanov theorem (cf [LI]) applies and gives the result. 
b) The study of the limit of Mt for t f a is obvious under */, and Mt is an J^-
Brownian motion under v on [0,a]. 
c) At last it follows easily from formula (7) that under v a-fields J^ and cr(B3 — 
Ba,Q, < s < 1) axe independent and that 

< v, GF > = < i/, G ><m1F> 

if G is ^-measurable and if F is <r(Bs — B a , a < 5 < Immeasurable, what gives 
the result by 

Mt = Ma + Bt- Ba for t > a. 

• 

Writing Bt = M t + /o C* ^> w e s e e *^a ' *n o rder that the coordinates (2?t) fail to 
be a semimartingale, it is sufficient to choose h0 in such a way that the continuous 
process Jg C* ds fails to have a finite variation in the neighbourhood of a under i/. 

As m and i/ are mutually singular, we must express (s in terms of the Brownian 
motion Mt under v. 

Lemma 5 . For t < a, it holds 

hQ(s) 

' - ^ f ^ 
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Proof. This comes from the fact that the relation Mt — Bt — /o C» ds yields 

ft h0(s) 
ds Mt = Bt+[ r a j , , [*ho(u)dBu 

Jo iuhl{u)du 7o 

and it is not difficult to see that this relation can be turned into the following 

ds. M, = Bl + [\hMJlJ!gLrvaM^ 

To show that it is possible to choose h0 in such a way that 

Jo v — a.s. 

• 

(10) 

we perform some transformations: 
Let u be a function from [0, oo) into (0, oo) such that 

Jo t + 1 (11) 

The map y —• a — f£° ^ ^ dt being stricly increasing, we can define a function 
t : [ 0 , a ) ^ [ 0 , c o ) b y 

Vs 
u*(t) t°° U It) 

€ [0, a) a - / —^f dt = s. 1 ; Jt(s) t + 1 

Then if we set 

ho(s) = -* 
«') + 1 

it holds /0
a hl(t) dt = 1 and /,° fcg(i) dt = j ^ hence 

Ioh2
0(u)du 

(12) 

(13) 

£(*) = 

But the process 

f:hl(u)du 

h0(s) 
Jo / , K{u)du 

is a continuous martingale with bracket 

<YY > = &hl(u)du 

ft
ahl(u)du' 
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Therefore there exists a Brownian motion (Wt) such that Yt = W^t) and the integral 
to be studied can be written 

I =ti\ho(t)\\Wm\dt 

Since by (12) it holds £'(£_1(5)) = $j$ o n e S e t s w i t h (1 3) 

'-r^w- (M) 
Hence it is enough to find a function u > 0 satisfying (11) and such that in (14) 
one gets +oo. For this we use the following version of a lemma of Jeulin [Jl]: 

Lemma 6 . Let Rt be a positive measurable real process on a probability space 
( 0 , P ) such that 

1) the law v of Rt does not depend on t 
2) K{0}) = o 
3) f xdu(x) < +oo 

then for any positive Radon measure \i on IR+ 

0 f~dfi(t) <+oc =» •f?Rtdii(t)eL1(W) 
ii) f~ d/i(t) = +oo =» /0°° Rt dfjL(t) = +oo Fa.s . 

Proof. The point i) is clear because 

]EiJt = J x du(x) < +oo. 

For the second point let n € IN and Jn = {f£° Rt dfi(t) < n}. Suppose F ( Jn) > 0, 
then 

E[ l j . f t ] = JJ° du E [ l J n l w > . } ] = J0~ duE[(lJn - 1{*,<*})+] 
>f~du(lP(Jn)-v([0,u}))+ 

and by the hypothesis 2) \imu-+ov([0,u]) = 0, hence the last integral is equal to 
an > 0. By integration 

roo 

»P( Jn) > On / dl*(t) 
Jo 

nl 

what gives ii) by contraposition. 

It follows by taking Rt = ^ p that / = +oo as soon as 

r°° u(s)x/s f / i r N 

/o ( J W ^ = + C ° (15) 
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There are several functions satifying (11) and (15), for example u(s) = l/(- + 
log(s + 1)), which gives 

g2a 2(a-t) 

V') = a - t WO-
Let us summarize the preceding discussion. Let ho associated with u by (12) 

and (13) and let v be the distribution on the Wiener space associated with ho by 
(3) and (4). v is a distribution of Watanabe in JD2,_i and is also a positive measure 
which does not charge polar sets. 

For t < a, on the a-field J^ the measures m and v are equivalent, (Bs)s<t is an 
(^)-Brownian motion under m and an (^)-semimartingale under v. 

For t > a, the measures m and v are mutually singular on the <7-field ^ , 
(B3)s<t is not an (^))-semimartingale under i/, nevertheless the process 

hQ(v) B°~ f r* J ^ fho^)dBu dv Jo [jy h£(u)du Jo 

is an (^)-Brownian motion under i/. 
It is possible to build examples of measures which do not charge polar sets 

and for which the singularity which is here at the point a, appears along a whole 
interval. Such measures are solutions in sense of distributions of Watanabe of the 
stochastic differential equation which defines the exponential of Doleans. This will 
be published elsewhere. 
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