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Abstract:

Analog-to-digital conversion comprises of two fundamen-

tal discretization steps: sampling and quantization. Re-

cent results in compressive sensing (CS) have overhauled

the conventional wisdom related to the sampling step, by

demonstrating that sparse or compressible signals can be

sampled at rates much closer to their sparsity rate, rather

than their bandwidth. This work further overhauls the

conventional wisdom related to the quantization step by

demonstrating that quantizer overflow can be treated dif-

ferently in CS and by exploiting the tradeoff between

quantization error and overflow.

We demonstrate that contrary to classical approaches that

avoid quantizer overflow, a better finite-range scalar quan-

tization strategy for CS is to amplify the signal such that

the finite range quantizer overflows at a pre-determined

rate, and subsequently reject the overflowed measure-

ments from the reconstruction. Our results further sug-

gest a simple and effective automatic gain control strategy

which uses feedback from the saturation rate to control the

signal gain.

1. Introduction

Analog-to-digital converters (ADCs) are an essential part

of most modern sensing and communications systems.

They are the interface between the analog physical world

and the digital processing world that extracts the informa-

tion we are interested in. Ever-increasing demands for in-

formation has pushed the requirements on ADCs to their

current physical limits. Fortunately, recent theoretical de-

velopments in the area of compressive sensing (CS) enable

us to significantly extend the capabilities of current ADCs

to keep pace with demand.

CS is a framework that allows signals that have sparse rep-

resentation, i.e., few non-zero elements, or few non-zero

coefficients in some basis, to be sampled at a rate close to

the sparsity rate, rather than the Nyquist rate. CS employs

linear measurement systems and a non-linear reconstruc-

tion algorithms to acquire and recover sparse signals.

Most of the CS literature to-date focuses on one particular

aspect of ADCs, namely sampling. In this paper we re-

examine the other significant aspect, quantization. Specif-

ically, we show that the core tenets of CS enable us to

reduce the error due to quantization by allowing the quan-

tizer to saturate more often than usual and removing the

saturated measurements from the reconstruction process.

The organization of this paper is as follows. Section 2.

presents a brief background on analog-to-digital conver-

sion, compressive sampling, and finite-range quantization.

Section 3. presents a brief analysis of finite-range quanti-

zation for CS. We show that CS measurements and the

quantization error are i.i.d. Gaussian, and analyze the pro-

posed reconstruction strategy. Section 4., presents numer-

ical results that validate our analysis. We conclude with a

brief discussion in Sec. 5.

2. Background

2.1 Analog-to-digital conversion

Analog-to-digital conversion consists of two discretization

steps: sampling, which converts an analog signal to a set

of discrete measurements, and quantization, which con-

verts each real-valued measurement to a discrete one cho-

sen from a pre-determined set. Although both steps are

necessary to represent a signal in the discrete digital world,

classical results due to Shannon and Nyquist demonstrate

that the sampling step is information preserving if a suffi-

cient number of samples, i.e., measurements, are obtained.

On the other hand quantization always degrades the signal.

The system design to goal is to take enough measurements

such that the signal does not alias, and to acquire enough

bits to limit the quantization distortion.

2.2 Finite-range quantization

Scalar quantization is the process of converting the contin-

uous value of the measurements to one of several discrete

values through a non-invertible function R(·). In this pa-

per we focus on uniform quantizers with quantization in-

terval ∆. Thus, the quantization points are qk = q0 + k∆,

and every scalar a is quantized to the nearest quantiza-

tion point R(a) = argminqk
|a − qk|. For an infinite-

range quantizer this implies that the quantization error is

bounded by |a − R(q)| ≤ ∆/2.

In practice quantizers have finite range, dictated by hard-

ware constraints such as the voltage limits of the de-

vices and the finite bit-rate of the quantized representa-

tion. Without loss of generality we assume a midrise B-

bit quantizer that represents a symmetric range of val-

ues |a| < T , where T > 0 is the quantization thresh-

old. The corresponding quantization points are at qk =



∆/2 + k∆, k = −2B−1, . . . , 2B−1 − 1. This assump-

tion implies a quantization interval ∆ = 2−B+1T . Any

measurement with magnitude greater than T saturates the

quantizer and “clips” to magnitude T , i.e., it quantizes to

the quantization point T − ∆/2.

Most classical quantization error analysis assumes that

the measurements are scaled such that the quantizer never

clips. This is a sensible quantization strategy for classi-

cal approaches using linear reconstruction. In that context,

saturation events cause significant signal distortion and are

undesirable. For that reason, extreme attention is often de-

voted to pre-ADC automatic gain control (AGC) systems

to ensure that the quantizer saturates only rarely. Under

this assumption the analysis of a finite or an infinite range

quantizer is equivalent in terms of the quantization error.

Thus, an infinite-range quantizer is often assumed for its

mathematical simplicity.

2.3 Compressive sampling (CS)

The theory of compressive sampling (CS) overhauls the

conventional wisdom on the sampling process. Specifi-

cally, [2] and the references therein show that the number

of measurements that are sufficient to exactly reconstruct a

sampled signal are significantly fewer than the Shannon-

Nyquist rate as long as the signal is sparse, i.e., can be

represented with very few non-zero components in some

basis.

The key components of CS are randomized measurements

and non-linear reconstruction. Specifically, a Nyquist-

rate sampled discrete-time signal x can be sampled at a

lower rate by using a random matrix Φ, of dimension

M × N :

y = Φx, (1)

and reconstructed exactly, if the signal is K-sparse, i.e.,

only has K non-zero components in some basis and

the matrix Φ satisfies the Restricted Isometry Property

(RIP) [2]:√
1 − δ2K‖x‖2 ≤ ‖Φx‖2 ≤

√
1 + δ2K‖x‖2 (2)

for all 2K-sparse signals x, where δ2K is the RIP con-

stant of Φ. RIP guarantees that the norm of the measure-

ments does not deviate significantly from the norm of the

K-sparse signal x.

To reconstruct x̂ from y+n, where n is noise with ‖n‖2 =
η, we perform the optimization

α̂ = min
α

‖α‖1 s.t. ‖ΦΨα − y‖2 < η, x̂ = Ψα̂ (3)

where Ψ is a basis and ‖α‖1 =
∑

i |αi| is the ℓ1 norm of

the coefficient vector. Reconstructing using (3) guarantees

that the norm of the reconstruction error is bounded by cη,

where c is a system-dependent constant [2].

In this paper we use the two key components of CS,

namely randomized measurements and non-linear recon-

struction, to overhaul the conventional wisdom on scalar

quantization. In the next sections we demonstrate that the

CS measurement process makes the quantization error a

white noise process. We use that result demonstrate that

in the context of non-linear reconstruction it is advanta-

geous to scale the signal such that the quantizer saturates

at a positive rate and reject the saturated measurements

from the reconstruction.

3. Finite-range quantization for CS

The non-linear reconstruction methods used in CS and the

democratic nature of the measurements, suggests that with

only a small performance penalty, we can choose to ig-

nore measurements. Specifically, in this work we choose

to deliberately saturate the quantizer and ignore the mea-

surements that saturated. In the analysis that follows we

demonstrate the advantages of this approach compared to

scaling the measurements such that they do not saturate

or incorporating the saturated measurements in the recon-

struction.

The analysis is based on three distinct results:

1. CS measurements approximately follow an i.i.d.

Gaussian distribution, making the quantization error

a well characterized white noise process.

2. Clipping without quantization followed by drop-

ping the saturated measurements preserves the signal

norm and the RIP.

3. Once quantization is introduced, the signal-to-

quantization noise ratio can be minimized by select-

ing a positive saturation rate and rejecting the satu-

rated measurements.

The subsequent sections state and sketch the proofs for

these results and their consequences. Due to space limita-

tions, we defer complete proofs and extended analysis to

future publications.

3.1 Distribution of CS measurements

We assume the measurement matrix Φ in (1) is randomly

generated using a zero-mean sub-Gaussian distribution

with variance 1/M . Under this assumption, all the mea-

surements yi =
∑

j(Φ)i,jxj are i.i.d. zero-mean random

variables with variance ‖x‖2
2/M . Using the Lyapunov

variant of the Central Limit Theorem, it is also straight-

forward to show that as the dimension N of the signal x

increases the yi become normally distributed. The state-

ment becomes non-asymptotic if the elements of Φ are

themselves distributed as a Gaussian. Our initial experi-

ments show that commonly used CS matrix families reach

asymptotic behavior even for small N .

The implications of this statement are threefold:

1. The expected number of measurements exceeding in

magnitude a threshold T‖x‖2/
√

M is 2Q(T ), where

Q(x) = 1√
2π

∫ +∞
x

e−t2/2dt is the tail integral of the

standard Gaussian distribution.

2. The ratio of T‖x‖2/
√

M determines the saturation

rate. Thus, scaling the signal such that a specific sat-

uration rate is achieved provides a very effective gain

control strategy.

3. The quantization error is a white process, although it

is correlated to the measurements.

We should note that in the sequel only the ratio

T
√

M/‖x‖2 is relevant. This ratio is the threshold we se-

lect by varying the parameter T . The
√

M factor reflects

that in practical systems the variance of the elements of

the measurement matrix is not a function of the number of

measurements. The normalization by ‖x‖2 reflects that in

practice automatic gain control or prior signal knowledge

is used to determine the proper gain in the input.



3.2 Analysis of finite-range CS measurements

In this section we introduce clipping at threshold

T‖x‖2/
√

M , without quantization. We reject the clipped

measurements and demonstrate that if the remaining mea-

surements, denoted using ỹ, are sufficient in number, the

measurement process still satisfies the RIP and preserves

the norm of K-sparse signals. We use the notation (̃·) to

denote the relevant quantities after the saturated measure-

ments are dropped: M̃ is the number of remaining mea-

surements and Φ̃ the mutilated measurement matrix corre-

sponding to the remaining measurements.

Assuming the result of Sec. 3.1, the expected number of

saturated measurements is 2MQ(T ). The remaining M̃
measurements follow a truncated Gaussian distribution:

ỹi ∝
{

N
(
yi; 0,

‖x‖2

2

M

)
, |yi| <

T‖x‖2

2√
M

0, otherwise.
(4)

Thus, the expected norm of ỹ is equal to:

E{‖ỹ‖2
2} = M(1 − 2Q(T ))σ2

T , (5)

where σ2
T is the variance of (4). Thus, the scaled system

Gỹ = GΦ̃x (6)

G =

( ‖x‖2
2

M(1 − 2Q(T ))σ2
T

)1/2

(7)

=

( √
2π√

2π(1 − 2Q(T )) − 2Te−T 2/2

)1/2

(8)

preserves the expected value of the norm of the signal. It is

also straightforward to demonstrate that the density of the

norm of the signal concentrates around its expected value

with very high probability, in manner similar to [1, 3].

It is also possible to demonstrate that the resulting Φ̃,

which is now signal-dependent, preserves the RIP for all

K-sparse signals, as long as M̃ = O(K log (N/K)), or

equivalently M = O(K log (N/K)/(1 − 2Q(T )). The

proof is beyond the scope of this paper [5]. However, it

is important since it guarantees recovery of the signal, and

the robustness to noise we need in the next section.

3.3 Quantization noise

In this section we quantize the thresholded measurements

using quantization interval ∆ = 2−B+1T‖x‖2/
√

M :

R(ỹ) = ỹ + ǫ̃Q, (9)

where ǫ̃Q is the vector of the quantization error. From

the results of Sec. 3.1 and the distribution of the measure-

ments after thresholding it follows that ǫQ is a white ran-

dom vector with elements distributed as a wrapped trun-

cated Gaussian random variable and bounded by ±∆/2.

For small quantization intervals the distribution is well ap-

proximated by a uniform distribution in the same interval,

with variance ∆2/12 [6]. Assuming a unit norm input x

the expected squared norm of the quantization error is:

E{‖ǫ̃Q‖2
2} = M(1 − 2Q(T ))∆2/12 (10)

= 2−2B(1 − 2Q(T ))T 2/3. (11)

It can also be shown that for large M the measure of this

norm concentrates around its mean. When properly scaled

with the G in (8), the quantization error becomes:

E{‖Gǫ̃Q‖2
2} =

√
2π2−2B

3

T 2

√
2π − Te−T2/2

(1−2Q(T ))

, (12)

which suggests an optimal threshold T that minimizes the

error.

If the RIP is guaranteed, the norm of reconstruction error

can be bounded by c‖Gǫ̃q‖2
2 with very high probability

[2]. For most practical applications, the minimizing T in

(12) is not sufficient to guarantee RIP, and therefore we

select the smallest T that does.

A similar analysis can be performed if we keep all the sat-

urated measurements. In this case the RIP always holds

and the measurement error is equal to:

E{‖ǫQ‖2
2} = (13)

= M

(
(1 − 2Q(T ))

∆2

12
+

2Q(T )‖x‖2
2

M
σ2

trunc

)
, (14)

= ‖x‖2
2

(
(1 − 2Q(T ))

2−2B

3
+ 2Q(T )σ2

trunc

)
, (15)

where σ2
trunc is the variance of the tail distribution for a

standard Gaussian random variable, as truncated by the

saturation. Detailed analysis of this can be found in [4].

At T decreases, both σtrunc and Q(T ) increases, which

means the error due to the saturated measurements in-

creases at the error due to the unsaturated measurements

decreases. The optimal T in this case minimizes (15).

The two strategies can be compared to select the opti-

mal given the operating conditions. Especially in low-bit

conditions, reducing the quantization interval pays off in

terms of the error. However, the tail effects cause a sig-

nificant penalty if we keep the measurements, and the bet-

ter strategy is to discard them. As we discuss in the next

section in our extensive simulations under a large variety

of practical conditions discarding the measurements per-

forms better than using them.

4. Experimental validation

4.1 Experimental setup

Signal model: We study the performance of our approach

using signals sparse in the frequency domain: in each trial

K non-zero Fourier coefficients αn are drawn from an

i.i.d. Gaussian distribution, normalized to have unit norm,

and randomly assigned to K frequency bins out of the N -

dimensional space. The sampled signal x is the DFT of the

generated Fourier coefficients. Beyond quantization we do

not include additional noise sources. In addition to exactly

sparse signals, we have performed extensive simulations

with compressible signals and confirmed similar results.

However, compressible signals are beyond the scope of

this paper.

Measurement matrix: For each trial a measurement ma-

trix is generated using a Rademacher distribution: each el-

ement is drawn independently to be +1 or −1 with equal

probability. Our extended experimentation, not shown

here in the interest of space, shows that our results are

robust to large variety of measurement matrix classes.

Reconstruction metric: We report the reconstruction

signal-to-noise ratio (SNR) in decibels (dB):

SNR , 10 log

( ‖x‖2
2

‖x − x̂‖2
2

)
, (16)

where x̂ denotes the reconstructed signal.
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Figure 1: Reconstruction SNR (dB) vs. quantizer saturation threshold (T ) using a 4-bit quantizer and downsampling rate M

N
=

1
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. . .

13

16
when (a) the saturated measurements are used for reconstruction and (b) the saturated measurements are discarded before

reconstruction. (c) Side-by-side comparison of (a) and (b) for M

N
=

3

16
and 15

16
: by lowering the threshold T and rejecting saturated

measurements, we achieve the highest reconstruction SNR.

4.2 Experimental results

We performed extensive simulations with a variety of sig-

nal parameters. Due to space limitations, we present here

the results for N = 2048, K = 60, and B = 4 which

are typical of the system performance. In our experiments

we vary M such that M
N = 1

16 . . . 15
16 and the threshold T

in the range [0, 0.18]. For each parameter combination we

repeat 100 trials, each trial with a different signal x and

matrix Φ as described in Sec. 4.1.

For each trial we quantize the measurements using a finite-

range quantizer and use them to reconstruct the signal (a)

by incorporating the saturated measurements in the re-

construction and (b) by discarding the saturated measure-

ments before reconstruction. Both cases use the linear pro-

gram (3) with the appropriate value for η. We denote the

reconstructed signal with x̂keep and x̂discard, respectively.

The results are shown in Fig. 1, which plots the average

reconstruction SNR versus the quantizer dynamic range T
for a variety of M

N . In particular, Figs. 1 (a) and (b) display

the SNR of x̂keep and x̂discard, respectively. Figure 1 (c)

compares the two approaches for the two extreme cases of
M
N = 3

16 and M
N = 15

16 .

The plots demonstrate that lowering the threshold T such

that the saturation rate is non-zero achieves a higher re-

construction SNR compared to scaling such that no mea-

surements clip. Furthermore, rejecting saturated measure-

ments performs better than incorporating them in the re-

construction. This is best illustrated in Fig. 1 (c): the

optimal point on the dashed line, which corresponds to

discarding saturated measurements, exhibits better SNR

than the optimal point on the solid line, which corresponds

to incorporating saturated measurements. As expected,

the curves coincide when the saturation rate is effectively

zero.

We also performed this experiment for larger values of K
and B. As expected with higher B, we achieve less per-

formance gain. As B grows, the quantization error goes

down and thus reducing the quantization interval by drop-

ping measurements is less effective. As K increases, re-

jecting measurements remains an optimal strategy. How-

ever, when K is large enough such that the non-saturated

measurements do not satisfy RIP, our method performs

worse than incorporating the saturated measurements.

5. Discussion

Our results demonstrate that CS overthrows the conven-

tional wisdom on finite range quantization. Specifically

the common practice of scaling the signal such that the

ADC does not overflow is not optimal in light of the non-

linear reconstruction. Our results demonstrate that allow-

ing the signal to saturate is advantageous because it de-

creases the quantization interval in the unsaturated mea-

surements. The non-linear reconstruction methods allow

us to discard saturated measurements and prevent the sat-

uration error from affecting the reconstruction process.

Our results further suggests a simple automatic gain con-

trol (AGC) strategy, in which the deviation of the average

clipping rate from the desired one is used as a feedback

to modify the gain. Since the desired clipping rate is non-

zero, the feedback is symmetric and increases the gain if

the clipping rate is too low. In comparison, classical AGC

systems rely on the clipping rate only when the gain is too

high and should be reduced. Since in such systems a zero

clipping rate is the desired behavior, the AGC needs to rely

on other signal features to ensure the gain is sufficient to

provide a good signal-to-quantization noise ratio.
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