
HAL Id: hal-00452256
https://hal.science/hal-00452256

Submitted on 1 Feb 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Quantization for Compressed Sensing Reconstruction
John Z. Sun, Vivek K. Goyal

To cite this version:
John Z. Sun, Vivek K. Goyal. Quantization for Compressed Sensing Reconstruction. SAMPTA’09,
May 2009, Marseille, France. Special session on sampling and quantization. �hal-00452256�

https://hal.science/hal-00452256
https://hal.archives-ouvertes.fr


Quantization for Compressed Sensing
Reconstruction
John Z. Sun and Vivek K Goyal

Massachusetts Institute of Technology, Cambridge, MA 02139 USA
johnsun@mit.edu, vgoyal@mit.edu

Abstract:
Quantization is an important but often ignored consider-
ation in discussions about compressed sensing. This pa-
per studies the design of quantizers for random measure-
ments of sparse signals that are optimal with respect to
mean-squared error of the lasso reconstruction. We utilize
recent results in high-resolution functional scalar quanti-
zation and homotopy continuation to approximate the op-
timal quantizer. Experimental results compare this quan-
tizer to other practical designs and show a noticeable im-
provement in the operational distortion-rate performance.

1. Introduction

In practical systems where information is stored or trans-
mitted, data must be discretized using a quantization
scheme. The design of the optimal quantizer for a given
stochastic source has been well studied and is surveyed
in [6]. Here, optimal means the quantizer minimizes the
error as measured by some distortion metric. In this pa-
per, we explore optimal quantization for an emerging non-
adaptive compression paradigm called compressed sens-
ing (CS) [1, 4]. Several authors have studied the asymp-
totic reconstruction performance of quantized random
measurements assuming a mean-squared error (MSE) dis-
tortion metric [3, 5]. Other previous work presented mod-
ifications to existing reconstruction algorithms to miti-
gate distortion resulting from standard quantizers [3, 7] or
modified quantization that can be viewed as the binning of
quantizer output indexes [10].
Our contribution is to reduce distortion due to quantization
through design of the quantizer itself. The key observa-
tion is simply that the random measurements are used as
arguments in anonlinear reconstruction function. Thus,
minimizing the MSE of the measurements is not equiv-
alent to minimizing the MSE of the reconstruction. We
use the theory for high-resolution distributed functional
scalar quantization (DFSQ) recently developed in [9] to
design optimal quantizers for random measurements. To
obtain concrete results, we choose a particular reconstruc-
tion function (lasso [11]) and distributions for the source
data and sensing matrix. However, the general principle
of obtaining improvements through the use of DFSQ the-
ory holds more generally, and we address the conditions
that must be satisfied for sensing and reconstruction. Also,
rather than develop results for fixed and variable rate in

parallel, we present only fixed rate. To concentrate on the
central ideas, we choose signal and sensing models that
obviate discussion of quantizer overload.

2. Background

In our notation, a random vector is always lowercase and
in bold. A subscript then indicates an element of the vec-
tor. Also, an unbolded vectory corresponds to a realiza-
tion of the random vectory.

2.1 Distributed functional scalar quantization

In standard fixed-rate scalar quantization [6], one is asked
to design a quantizerQ that operates separably over its
components and minimizes MSE between a probabilistic
source vectory ∈ R

M and its quantized representation
ŷ = Q(y). The resulting optimization is

min
Q

E
[
‖y − Q(y)‖2

]
,

subject to the constraint that the maximum number of
codewords or quantization levels for eachyi is less than
2Ri . We can use high-resolution theory to find the quan-
tizer point density of the optimal quantizer.
In DFSQ [9], the goal is to create a quantizer that min-
imizes distortion for some scalar functiong(y) of the
source vectory rather than the vector itself. Hence, the
optimization is now

min
Q

E
[
|g(y) − g(Q(y))|2

]

such that the maximum number of codewords or quantiza-
tion levels representing eachyi is less than2Ri . To apply
the following model, we needg(·) andfy(·) to satisfy cer-
tain conditions:
C1. g(y) is smooth and monotonic for eachyi.
C2. The partial derivativegi(y) = ∂g(y)/∂yi is defined
and bounded for eachi.
C3. The joint pdf of the source variablesfy(y) is smooth
and supported in a compact subset ofR

M .
For validg(·) andfy(·) pairs, we define a set of functions

γi(t) =
(

E
[

|gi(y)|2 | yi = t
])1/2

. (1)

We call γi(t) the sensitivityof g(y) with respect to the
source variableyi. The optimal point density is then

λi(t) = C
(
γ2

i (t)fyi
(t)

)1/3
, (2)



for some normalization constantC, which leads to a total
operational distortion-rate

D({Ri}) =
∑

i

2−2RiE

[
γ2

i (yi)

12λ2
i (yi)

]

. (3)

The sensitivityγi(t) serves to reshape the quantizer, giv-
ing better resolution to regions ofyi that have more impact
ong(y), thereby reducing MSE.
Similar results for variable-rate quantizers are also pre-
sented in [9]. However, we will only consider the fixed-
rate case in this paper. The theory of DFSQ can be ex-
tended to a vector of functions, wherexj = g(j)(y) for
1 ≤ j ≤ N . Since the cost function is additive in its com-
ponents, we can show that the overall sensitivity for each
componentyi is

γi(t) =
1

N

N∑

j=1

γ
(j)
i (t), (4)

whereγ(j)
i (t) is the sensitivity of the functiong(j)(y) with

respect toyi.

2.2 Compressed Sensing

CS refers to estimation of a signal at a resolution higher
than the number of data samples, taking advantage of spar-
sity or compressibility of the signal and randomization in
the measurement process [1, 4]. We will consider the fol-
lowing formulation. The input signalx ∈ R

N is K-sparse
in some orthonormal basisΨ, meaning the transformed
signalu = Ψ−1x ∈ R

N contains onlyK nonzero ele-
ments. Consider a length-M measurement vectory = Φx,
whereΦ ∈ R

M×N with K < M < N is a realiza-
tion of Φ. The major innovation in CS (for the case of
sparseu considered here) is that recovery ofx from y
via some computationally-tractable reconstruction method
can be guaranteed asymptotically almost surely.
Many reconstruction methods have been proposed includ-
ing a linear program called basis pursuit [2] and greedy
algorithms like orthogonal matching pursuit (OMP) [12].
In this paper, we focus on a convex optimization called
lasso [11], which takes the form

x̂ = arg min
x

(
‖y − Φx‖2

2 + µ‖Ψ−1x‖1

)
. (5)

As one sample result, lasso leads to perfect sparsity pattern
recovery with high probability ifM ∼ 2K log(N −K)+
K under certain conditions onΦ, µ, and the scaling of the
smallest entry ofu [13]. Unlike in [5], our concern in this
paper is not how the scaling ofM affects performance,
but rather how the accuracy of the lasso computation (5)
is affected by quantization ofy.
A method for understanding the set of solutions to (5) is
the homotopy continuation (HC) method [8]. HC con-
siders the regularization parameterµ at an extreme point
(e.g., very largeµ so the reconstruction is all zero) and
slowly variesµ so that all sparsities and the resulting re-
constructions are obtained. It is shown that there areN
values ofµ where the lasso solution changes sparsity, or
equivalentlyN + 1 intervals over which the sparsity does

Figure 1: A compressed sensing model with quantization
of measurement vectory. The vectorynl denotes the
noiseless random measurements.

not change. Forµ in the interior of one of these intervals,
the reconstruction is determined uniquely by the solution
of a linear system of equations involving a submatrix ofΦ.
In particular, for a specific choiceµ∗ and observed random
measurementsy,

2ΦT
Jµ∗

ΦJµ∗ x̂ + µ∗v = 2ΦT
Jµ∗

y, (6)

wherev = sgn(x̂) andΦJµ∗ is the submatrix ofΦ with
columns corresponding to the nonzero elementsJµ∗ ⊂
{1, 2, . . . , N} of x̂.

3. Problem Model

Figure 1 presents a CS model with quantization. Assume
without loss of generality thatΨ = IN and hence the
(random) signalx = u is K-sparse. Also assume a ran-
dom matrixΦ is used to take measurements, and additive
Gaussian noise perturbs the resulting signal, meaning the
continuous-valued measurement vector isy = Φx + η.
The sampler wants to transmit the measurements with to-
tal rateR and encodesy into a transmittable bitstreamby

using encoderQ. Next, a decoder̂Q produces a quantized
signal ŷ from by. Finally, a reconstruction algorithmG
outputs an estimatêx. The functionG is a black box that
may represent lasso, OMP or another CS reconstruction
algorithm.
We now present a probabilistic model for the input source
and sensing matrix. It is chosen to guarantee finite support
on both the input and measurement vectors, and prevent
overload errors for quantizers with smallR. However, we
emphasize that the following theory is general, and other
choices forx andΦ are possible for large enoughR.
Assume theK-sparse vectorx has random sparsityJ cho-
sen uniformly from all possibilities, and each nonzero
componentxi is distributed iidU(−1, 1). Also assume
the additive noise vectorη is distributed iid Gaussian with
zero mean and varianceσ2. Finally, letΦ correspond to
random projections such that each columnφj ∈ R

M has
unit energy (‖φj‖

2 = 1). The columns ofΦ thus form
a set ofN random vectors chosen uniformly on the unit
(M − 1)-hypersphere. Sincey = Φx,

yi =

N∑

j=1

Φijxj =
∑

j∈J

Φijxj
︸ ︷︷ ︸

zij

.

The distribution of eachzij is found using derived distri-
butions. The resulting pdfs can be shown to be iidfz(z),
wherez is a scalar random variable that is identical in dis-
tribution to eachzij. The distribution ofyi is then the
K − 1 convolution cascade offz(z) with itself. Thus,
fy(y) is smooth and supported for{|yi| ≤ K}, satisfying
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Figure 2: Distribution fyi
(t) for (K, M, N) =

(5, 71, 100). The support ofyi is the range[−K, K],
whereK is the sparsity of the input signal. However, the
probability is only non-negligible for smallyi.

condition C3 for DFSQ. Figure 2 illustrates the distribu-
tion of yi for a particular case.
The reconstruction algorithmG is a function of the mea-
surement vectory and sampling matrixΦ. We will show
that if G(y,Φ) is lasso with a proper relaxation variable
µ, then conditions C1 and C2 are met. Using HC, we see
G(y,Φ) is a piecewise smooth function that is also piece-
wise monotonic with everyyi for a fixed µ. Moreover,
for everyµ the reconstruction is an affine function of the
measurements through (6), so the partial derivative with
respect to any elementyi is piecewise defined and smooth
(constant in this case). Conditions C1 and C2 are therefore
satisfied.

4. Optimal Quantizer Design

We now pose the optimal fixed-rate quantizer design as
a DFSQ problem. For a given noise varianceσ2, choose
an appropriateµ∗ to form the best reconstruction̂x from
the unquantized random measurementsy. We produceM
quantizers to transmit the elements ofy such that the de-
coded messagêy will minimize the distortion between
x̃ = G(y,Φ) and x̂ = G(ŷ,Φ) for a total rateR.
Note G can be visualized as a set ofN scalar functions
x̂j = G(j)(ŷ,Φ) that are identical in distribution due to
symmetry in the randomness ofΦ. Since the sparse input
signal is assumed to have uniformly distributed sparsity
andΦ distributes energy uniformly to all measurements
yi in expectation, we argue by symmetry that each mea-
surement is allotted the same number of bits and that ev-
ery measurement’s quantizer is the same. Moroever, since
the functions representing the reconstruction are identical,
we argue using (4) that the overall sensitivityγcs(·) is the
same as the sensitivity of anyG(j)(ŷ,Φ). Computing (2)
yields the point densityλcs(·).
This is when the homotopy continuation method becomes
extremely useful. For a given realization ofΦ andη, we
can use HC to determine how many elements in the recon-
struction are nonzero forµ∗, denotedJµ∗ . Equation (6)
is then used to find∂G(j)(y, Φ)/∂yi, which is needed to

computeγcs(·). To simplify our notation, letA = ΦJµ∗ .
The resulting differentials can be expressed as

∂G(j)(y, Φ)

∂yi
=

[(
AT A

)−1
AT

]

ji
. (7)

We now present the sensitivity through the following the-
orem:

Theorem 1 Let the noise variance beσ2 and choose an
appropriateµ∗. Definey\i to be all the elements of a
vectory exceptyi. The sensitivity of each elementyi,
which is denotedγ(j)

i (t), can be written as

(

EΦ,y\i

[
fyi|Φ(t|Φ)

fyi
(t)

[(
AT A

)−1
AT

]

ji
| yi = t

]) 1

2

,

whereA is the submatrix ofΦ as described in HC for
µ∗ and some observationy. Moreover, for anyΦ and its
correspondingJ , fyi|Φ(t|Φ) is the convolution cascade of
{zj ∼ U(−Φij , Φij)} for j ∈ J . By symmetry arguments,

γcs(t) = γ
(j)
i (t) for anyi andj.

This expectation is difficult to calculate but can be ap-
proached throughL Monte Carlo trials onΦ, η, andx.
For each trial, we can compute the partial derivative us-
ing (7). We denote the Monte Carlo approximation to that
function to beγ(L)

cs (·). Its form is

γ(L)
cs (t) =

1

L

L∑

ℓ=1

(
fyi|Φ(t|Φℓ)

fyi
(t)

[(
AT

ℓ Aℓ

)−1
AT

ℓ

]2

ji

) 1

2

,

(8)
with i andj arbitrarily chosen. By the weak law of large
numbers, the empirical mean ofL realizations of the ran-
dom parameters should approach the true expectation for
L large.
We now substitute (8) into (2) to find the Monte Carlo ap-
proximation to the optimal quantizer for compressed sens-
ing. It becomes

λ(L)
cs (t) = C

(

γ(L)
cs (t)fyi

(t)
)1/3

, (9)

for some normalization constantC. Again by the weak
law of large numbers,λ(L)

cs (t)
p
−→ λcs(t) for L large.

5. Experimental Results

We compare the CS-optimized quantizer, called the “sen-
sitive” quantizer, to a uniform quantizer and “ordinary”
quantizerλord(t) which is optimized for the distribution
of y. This means the ordinary quantizer would be best
if we want to minimize distortion betweeny and ŷ, and
hence has a flat sensitivity curve over the support ofy.
The sensitive quantizerλcs(t) is found using (9) and the
uniform quantizerλuni(t) = c, wherec is a normalization
constant.
Using 1000 Monte Carlo trials, we estimateγcs(t). The
resulting point density functions for the three quantizers
are illustrated in Figure 3.
Experimental results are performed on a Matlab testbench.
Practical quantizers are designed by extracting codewords
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Figure 3: Estimated point density functionsλcs(t),
λord(t), andλuni(t) for (K, M, N) = (5, 71, 100).
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Figure 4: Results for distortion-rate for the three quantiz-
ers withµ = 0.01 andσ2 = 0.3. We see that the sensitive
quantizer has the least distortion.

from the cdf of the normalized point densities. In the
approximation, theith codeword is the pointt such that

∫ t

−∞

λcs(t
′)dt′ =

i − 1/2

2Ri
,

whereRi is the rate for each measurement. The partition
points are then chosen to be the midpoints between code-
words.
We compare the sensitive quantizer to uniform and or-
dinary quantizers using the parametersµ = 0.1 and
σ2 = 0.3. Results are shown in Figure 4.
We find the sensitive quantizer performs best in experi-
mental trials for this combination ofµ and σ2 at suffi-
ciently high rates. This makes sense becauseλcs(t) is a
high-resolution approximation and should not necessarily
perform well at very low rates.

6. Conclusion

We present a high-resolution approximation to an optimal
quantizer for the storage or transmission of random mea-
surements in a compressed sensing system with lasso re-

construction. Using DFSQ and HC, we find a sensitivity
functionγcs(·) that determines the optimal point density
functionλcs(·) of such a quantizer. Experimental results
show that the operational distortion-rate is best when us-
ing this so called “sensitive” quantizer.
We conclude that proper quantization in compressed
sensing is not simply a function of the distribution of
the random measurements themselves (using either a
high-resolution approximation or practical algorithms like
Lloyd-Max). Rather, quantization adds a non-constant ef-
fect, called functional sensitivity [9], on the distortionbe-
tween the the lasso reconstructions of the random mea-
surements and its quantized version.
A significant amount of work can still be done in this
area. Parallel developments could be made for variable-
rate quantizers. Also, this theory can be extended to other
probabilistic signal and sensing models, and CS recon-
struction methods.
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