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Abstract. Here we introduce two new notions of approximate matching
with application in computer assisted music analysis. We present algo-
rithms for each notion of approximation: for approximate string matching
and for computing approximate squares.

Keywords: String algorithms, approximate string matching, dynamic program-
ming, computer-assisted music analysis.

1 Introduction

This paper focuses on a set of string pattern-matching problems that arise in
musical analysis, and especially in musical information retrieval. A musical score
can be viewed as a string: at a very rudimentary level, the alphabet could simply
be the set of notes in the chromatic or diatonic notation, or the set of intervals
that appear between notes (e.g. pitch may be represented as MIDI numbers and
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pitch intervals as number of semitones). Approximate repetitions in one or more
musical works play a crucial role in discovering similarities between different
musical entities and may be used for establishing “characteristic signatures”
(see [6]). Such algorithms can be particularly useful for melody identification
and musical retrieval.

Both exact and approximate matching techniques have been used for a variety
of musical applications (see overviews in McGettrick [23] ; Crawford et al [6];
Rolland et al [28]; Cambouropoulos et al [4]). The specific problem studied in
this paper is pattern-matching for numeric strings where a certain tolerance is
allowed during the matching procedure. This type of pattern-matching has been
considered necessary for various musical applications and has been used by some
researchers (see, for instance, Cope [5]). A number of efficient algorithms will be
presented in this paper that tackle various aspects of this problem.

Most computer-aided musical applications adopt an absolute numeric pitch
representation (most commonly MIDI pitch and pitch intervals in semitones; du-
ration is also encoded in a numeric form). The absolute pitch encoding, however,
may be insufficient for applications in tonal music as it disregards tonal quali-
ties of pitches and pitch-intervals (e.g. a tonal transposition from a major to a
minor key results in a different encoding of the musical passage and thus exact
matching cannot detect the similarity between the two passages). One way to
account for similarity between closely related but non-identical musical strings is
to use what will be referred to as J-approximate matching (and y-approximate
matching). In §-approximate matching, equal-length patterns consisting of in-
tegers match if each corresponding integer differs by not more than 4- e.g. a
C-major {60, 64,65,67} and a C-minor {60, 63,65, 67} sequence can be matched
if a tolerance 6 = 1 is allowed in the matching process (y-approximate matching
is described in the next section). Two simple musical examples that illustrate
the usefulness of the proposed pattern-matching techniques are presented in Ap-
pendices I and II.

Exact repetitions have been studied extensively. The repetitions can be either
concatenated with the original substring or they may overlap or they may not.
Algorithms for finding non-overlapping repetitions in a given string can be found
in [1,8,15,21,18,26] and algorithms for computing overlapping repetitions can
be found in [3,13,14,25]. A natural extension of the repetitions problem is to
allow the presence of errors; that is, the identification of substrings that are
duplicated to within a certain tolerance k (usually edit distance or Hamming
distance). Moreover, the repeated substring may be subject to other constraints:
it may be required to be of at least a certain length, and certain positions in it
may be required to be invariant.

Furthermore, efficient algorithms for computing the approximate repetitions
are also directly applicable to molecular biology (see [11,17,24]) and in particular
in DNA sequencing by hybridization ([27]), reconstruction of DNA sequences
from known DNA fragments (see [29,30]), in human organ and bone marrow
transplantation as well as the determination of evolutionary trees among distinct
species ([29]).



Another type of repetition that is used in computer assisted music analysis is
that of finding evolutionary chains: given a string ¢ (the “text”) and a pattern p
( the “motif”), find whether there exists a sequence u; = p,us, .. ., uy occurring
in the text t such that u;y; occurs to the right of u; in ¢ and u; and u;y; are
“similar” for 1 < i < ¢ (i.e. they differ by a certain number of symbols). In
[9] and [7] algorithms for overlapping and non-overlapping evolutionary chains
were presented and several variants of the problem were studied: computing the
longest chain, computing the chain with the least number of errors.

The paper is organised as follows. In the next section we present some basic
definitions for strings and background notions for approximate matching. In Sec-
tion 3 we present an algorithm for §-approximate (the first notion of approxima-
tion) pattern matching. In section 4 we present an algorithm for §, y-approximate
(the second notion of approximation) pattern matching. In section 5 we present
algorithms for computing all § and {4, v}- approximate squares in a given text.
Finally in Section 6 we present our conclusions and open problems.

2 Background and basic string definitions

A string is a sequence of zero or more symbols from an alphabet X; the string
with zero symbols is denoted by e. The set of all strings over the alphabet X' is
denoted by X*. A string z of length n is represented by z; ...x,, where z; € X
for 1 < i < n. A string w is a substring of z if x = wwv for u,v € X*; we
equivalently say that the string w occurs at position |u| + 1 of the string . The
position |u| + 1 is said to be the starting position of w in x and the position
|w| 4+ |u| the end position of u in z. A string w is a prefix of z if x = wu for
w € X*. Similarly, w is a suffix of z if = uw for u € X*.

The string zy is a concatenation of two strings z and y. The concatenations
of k copies of x is denoted by z*. For two strings = x1 ...z, and y = y1 ... ym
such that xp_;41...25 = y1...y; for some ¢ > 1, the string 1 ... TpYit1 .- Ym
is a superposition of x and y. We say that  and y overlap.

Let x be a string of length n. A prefix z;...2,, 1 <p < n, of z is a period
of z if ; = x4, for all 1 <4 < n —p. The period of a string z is the shortest
period of . A string y is a border of z if y is a prefix and a suffix of x.

Let X be an alphabet of integers and § an integer. Two symbols a, b of X' are
said to be d-approximate, denoted a =4 b if and only if

ja—b <&

We say that two strings x,y are §-approximate, denoted z 2 y if and only if
|z| = |y|, and z; =5 y;, Vi € {1..|z|} (2.1)

Let v be an integer. Two strings z,y are said to be y-approximate, denoted

z £ y if and only if
|]

2| = [y|, and > |a; —yi| <7 (2.2)
1



Furthermore, we say that two strings z, y are {-y, d }-approximate, denoted x L0 Y,
if and only if z and y satisfy conditions (2.1) and (2.2).

3 J-Approximate Pattern Matching

The problem of d-approzimate pattern matching is formally defined as follows:
given a string t = ¢ ...t, and a pattern p = p; ... p, compute all positions j of
t such that 5

p=t[j..j +m—1]

The algorithm is based on the O(1)-time computation of the “Delta states”
DStatej,j € {1..n} by using bit operations under the assumption that m < w,
where w is the number of bits in a machine word. The basic steps of the algorithm
are as follows:

1. First we compute the “Delta table” DT': we set DT (a)) = r, where a denotes
a symbol occurring in ¢ and r = ry ...r,, is a binary word with r; equal to
1if |a — p;| < 4, otherwise r; is equal to 0 for ¢ € {1..m}.

2. Let LeftShift be a bit-wise operation that shifts the bits of a binary word
by one position to the left. We define

DState; = (LeftShift(DState;—1) OR 1) AND DT[t;] (3.1

for j=1...n and DStatey = 0; hence this procedure is called “SHIFT-AND”.
Once we have computed the DT table, we can use it to compute the DState;
for j=1 ...n, using the recursive formula (3.1).

3. We say that there is a d-approximate match (or simply d-match) at position
j —m+ 1if and only if the m-th bit of DState; is 1 or equivalently if and
only if DState;, is greater or equal to 2™~! when it is viewed as a decimal
integer.

Ezample. For ¥={1, ..., 9} let us consider p=3,4,6,2, t=3,4,6,2,8,2,4,5,7,1
and 6=1. In the preprocessing table, DT'(«) denotes the positions where |a—p;| <
4. For example, DT[3] = 1011 because |3 — p;| < 1 fori=1,2,4.

.| p: | DT[1]| DT[2]| DT[3]| DT[4]| DT[5]| DT[6]| DT[7]| DT[8] | DT[9]
2] 1 1 1 0 0 0 0 0 0
5|6 0 0 0 0 1 1 1 0 0
24| 0 0 1 1 1 0 0 0 0
3] 0 1 1 1 0 0 0 0 0

Table 1. The table DT for pattern p = 2,6,4,3 and alphabet X' = {1,...,9}.

The table below evaluates DState; using the relation (3.1). For example,



DStatey = (LeftShift(DStates) OR 1) AND DTt4]
=(LeftShift(0100) OR 1) AND DT|2]
= (1000 OR 1) AND 1001
= 1001 AND 1001
= 1001
which implies that there is a match starting at position 1 of ¢, since the 4-th
bit of DStatey is 1.

j 1 2 3 4 5 6 7 8 9 10

t; 346 2 | 8] 2] 4715 | 7 1
LeftShift(DState; 1) OR 1[0001|0011|0111]| 1001 [0011[0001 [0011]0111 |11 01| 1001
DT[t] 1011 (0011|0100 | 1001 |0000 | 1001 [0011|0110| 0100 | 1000
DState; 0001 | 00110100 | 1001 | 0000 | 0001 | 0011|0110 | 0100 | 1000
[DState;]10 1 [ 349 0136 ]| 4 8

Table 2. Computing the Dstates and finding the §-approximate matches.

A §-approximate match occurs at position j—m+1 of t if [DState;]19 > 2™,
where [DState;]19 denotes the DState; as a decimal integer. Therefore, there is
one match ending at position 4 of ¢ ({3,4,6,2}) and another one at position 10
of t ({4,5,7,1}) since {DStates, DStateip} > 23.

3.1 Pseudo-code

Fig. 1 gives a complete specification of the algorithm. In the line 3 we have the
preprocessing phase which compute the DT table. In line 6 we use the recursive
formula to compute the DStates. Finally, in line 7 we apply the matching criteria
to see whether there is a d-approximate match or not.

1. procedure SHIFT-AND(p, ¢,6) {n=|t|, m=|p| }

2. begin

3. DTi[o] + {(1) f&gwifj S0 Vie{lm), Vaex

4. DStatep < 0

5. for j < 1to n do

6. DStatej < (LeftShift(DState;_,) OR 1 ) AND DTIt;]
7. if DState; > 2™~ ! then write j-m+1

8. od

9. end

Fig. 1. The SHIFT-AND Procedure.



3.2 Running time

Assuming that the pattern length is no longer than the memory word size of
the machine (thus O(1) size), the time complexity of the preprocessing phase is
O(n) (since we need to evaluate DT only for the symbols that occur in ¢) and
the time complexity of the searching phase in O(n). Figure 2 shows the timing
for different text sizes.

Time (in secs.)

1 1
Pattern Size = 20 D Pattern Size = 15
084 06=2 ~ 08 rd=2
8
0.6 $ 06 r
£
0.4 © 04
£
0.2 4 F o2k
0@ 06
0 200 400 600 800 1000 0 200 400 600 800 1000
Text Size (k) Text Size (k)

Fig. 2. Timing curves for the SHIFT-AND Procedure.

4 {4,~}-Approximate Pattern Matching

The problem of {4, ~}-approzimate pattern matching is formally defined as fol-
lows: given a string ¢t = ¢ ...t, and a pattern p = p; ... p,, compute all positions
j of t such that

8 e
p 2 t[j.j+m—1]

In order to solve this problem we first make use of the SHIFT-AND algorithm
to find the d-approximate matches of the pattern p in ¢t. Once we find a §-
approximate match we want to know whether it is also a y-approximate match.
To do so, we seek to compute successive “Delta States” DState; and “Gamma
States” GStates; in O(1) time using bit operations under the assumption that
m < w where w is the number of bits in a machine word. The main steps of the
algorithm are as follows:

1. We need to compute the “Delta Table” DT as we did before and the “Gamma
Table” GT table; we set GT'(o) = r, where a denotes a symbol in the
alphabet and r =7y ...r,, is a word with r; equal to |a — p;| if |a — p;| < 4,
otherwise r; is equal to 0 for i € {1..m}. Each r;, i € {1..m} is stored as a
binary number of d bits where d = [log(§ x m)].

! Using a SUN Ultra Enterprise 300MHz running Solaris Unix.



2. Let LeftShift be a bit-wise operation that shifts the bits of a binary word
one position to the left and RightShift shifts the bits of a binary word d
positions to the right. Once we have computed the DT and GT tables, we
can use them to compute the DState; and G State; for j=1 ...n, using the
recursive formulas

DState; = (LeftShift(DStatej—1) OR 1) AND DTIt;] (4.1)

GState; = RightShift(GState;_1,d) + GT|[t;] (4.2)

We also need to define the seeds DStateg=0 and G Stateg=0. We call this
procedure “SHIFT-PLUS” because we use the “shift” and “plus” operators
to compute each new state.

3. We say that there is a match ({0, y}-approximate match) at position j—m+1
if and only if the m-th bit of DState; is 1 and the m-th block of d bits taken
as an integer is < 7.

Ezample. For our example let ¥ = {1,...,9}, the pattern p = 3,4,6,2, the
text t = 3,4,6,2,8,2,4,5,7,1, 6 = 1 and v = 3. We will use blocks of size 3
(d = 3) to store the |a — p;| values where |a — p;| < 4. For example, GT[3] =
000 100 000 100 because |3 — p;| < 1 for i=1,2,4 and the differences are 0,1,1
respectively. (see left hand table of table 3).

lp7,123456789 j12345678910
t;13]4l6[2]8[2]4[5|7[1
o[1fo|1]ololo]o]0 ]
oft(o[T[o]T|L]0]0]0O
1| 3lolojo|olololo|o|o
3lolojolololo|ololo]o
ololo|o|olo|o|o|0
ololojo|o|olo|o|o]|0O
olo[t]o]|t[o]o]o]0
T{0[1]0|L]0]|1]0[0]0
2|4 ]0lo|ololo|o|olo]0
4(olojolololo|ol1|o]o0
ololo|o|o|o|o|o|0
ololojo|o|olo|o|o]|0O
ololo]o|t[o]1]0]0
oft(o[t[o]T|0[0[1]0O
s|6]0/0|0l0]o]0]|0|0]0
6lolojolololo|ol1|1]0
010]010]0]0]0J0]0 ololojo|o|olo|o|o]|0O
2383888888 1[ol1[0[1]0[1[0[0]0
¢ ololololololololo 2(ololo|o|olo|o|0|1]0
ololojojo|olo|o|o|1

Table 3. The left hand side table is the “Gamma Table” GT and the right hand side
table is the table for finding {v, § }-approximate matches.

The right hand table above shows the computation of the DStates and the
GStates using (4.2). For example,

GStates = RightShift( 000010010000,3 ) + 000000100000

= 000000010010 + 000000100000 = 000000110010

We already know that there are two d-approximate matches ending at posi-
tions 4 and 10 of . Now we can use the last three bits of G State, and GState g
to find out the values of v, which are 0 and 4 respectively (see right hand table
of Fig. 3).



4.1 Pseudo-code

Fig. 3 below gives a complete description of the algorithm. In the lines 3 and 4 are
the preprocessing phase which compute the DT table and GT table respectively.
In lines 8 and 9 we compute the next DState and G State respectively. Finally,
in line 10 we apply the matching criteria to see whether there is a match or not.

1. procedure SHIFT-PLUS(p, ¢, 6,v) {n=I|t, m=|p|}

2. Dbegin

3. DT;[a] «+ {é gtljg‘wifj <9 Vi e {1.m},Vae X

4. GTdi—d...di—l[Ol] — {|0a Ot}Il)(Z'I‘V&:ifSSDTI[a] =1 Vi € {1..m},Va ey
5 DStateg <+ 0

6. G Stateg <+ 0

7. for j < 1to n do

8. DState; « (LeftShift(DState;—1) OR 1) AND DT]t;]

9. GStatej + RightShift(GStatej_1, d) + GT[t;]

10. if DState; > 2™~ ! AND GStategm—_d..am—1 <~ then write j-m+1
11. od

12. end

Fig. 3. The SHIFT-PLUS Algorithm.

4.2 Running time

Assuming that § x m < 2¢ — 1 the time complexity of the preprocessing phase
is O(6 x m + | X]) and the time complexity of the searching phase in O(n), thus
independent from the alphabet size and the pattern length. Figure 4 shows the
timing for different text sizes.

07 T pattem Size = 20 o
attern Size = Pattern Size = 15 NE

~06715=2 T
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Fig. 4. Timing curves for the SHIFT-PLUS Algorithm.
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5 Computing Approximate Squares

The problem of computing all §-approximate squares is formally defined as fol-
lows: given a string t = t; ...t, and an integer d, compute all positions j of ¢ for
which there exists a word u of length m such that

t[j..J + m] 2 u and t[j +m+1..j + 2m)] Lu

where u is said to be the root of the square.

The problem of computing all {4, y}-approzimate squares is formally defined
as follows: given a string ¢t = t;...t, and two integers § and ~, compute all
positions j of ¢ for which there exists a word u of length m such that

tlj..j +m] 2y and ti+m+1..j+2m) Wy

where u is said to be the root of the square.
When we look for a square we will run into two possibilities: the root does
or does not occur necessarily in the square.

5.1 Consider an approximate square such that the root occurs in
the square

The diagonal diag(i) corresponds to the pair of positions (7,7 + ¢) and therefore
to the candidates for squares of length 2i. There exists an approximate square
of length 2i at position j if there exists a run of values not greater than § of
length at least i on the diagonal diag(i) starting at position j.

For example, consider diag(2) (see table 4) and § = 1. We are trying to
locate runs of length at least 2 containing only values not greater than § = 1.
We obtain:

Position | Square Roots
14 (2,3,1,4) | (2,3) or (1,4)

For this example we only have a d-approximate square starting at position
14 which root can be either (2,3) or (1,4). Note that the roots certainly occur in
the square.

5.2 Consider an approximate square such that the root does not
occur necessarily in the string

We say that there exists an approximate square of length 2¢ at position j if there
exists a run of values not greater than 26 of length at least i on the diagonal
diag(i) starting at position j. In other words, we are using 24 instead of 4.

For example, consider diag(2) (see table of Fig. 4) and 6 = 1. We are trying
to locate runs of length at least 2 containing only values not greater than 2§ = 2.
We obtain:



-
o

5 15 19
r=2-3-54-1-71-5-53-311231457

|7/ 1 2 3 4 6 7 8 9 10 11 (12| 13|14 | 15 16 17 18 19

31541715533/ 1[1]2 {457

T [OTE T T TS IO T T 235
>3] [[0[2[7[2[4[4]2[2[6]0[4[4[5]6 4] 78 ][10]~ diag(18)
5[5] [ -[0[9[4[2[6]0[0[8[2[6[6]7]|8[6]0[10]12]~ diag(17)
T4 T -[0[5 (11309173321 [3]0[1]3]|~ diag(16)
5T 1] [ -] [ [0 6 2444222342565~ diag(15)
s 7] [ == -[-[0[8]2[2[10]4[8[S[0[T0[8[TI[12]14]|~ diag(14)
T T [ -| -]0[6[6[2[4]0]0[1][2[0]3 48|~ diag(13)
sT5] [ =[] -[ - [-]0[0[8[2[6[6]7[8]6]0[10]12]~ diag(12)
s[5 [ =1 -] - -[0[8[2[6[6]7[8[6]0[10]12]~ diag(11)
Tk T o o [0 6221021 [2]4]~ diag(10)
o3 [T == = [ - -] -[0[4[4[5[6 478 [10]~ diag(9)
|1 T == = = =[-[0]0[1[2[0[3]4]6]|~ diag(8)
| 1 T = = = == -[0[1[2[0[3[4]6]|~ diag(?)
] 2 T == == =] = = =[] =[0I [1[2]3[5]|~ diag(6)
w13 [ = === == = =] = - =[] -[0 212 4]~ diag(5)
6| 1 T == == = = = =[] =[ -] -[0[3 46|~ diag(4)
A o= == = == == =[] =[ -] -0 T3]~ diag(3)
=5 T == == = = = === =[] -0 2]~ diag(2)
o 7] T = == =T == =T =T 0~ diag(1)
N diag(0)

Table 4. Table for computing approximate squares.

Position | Square Roots

5 (-1,-7,1,-5) | (0,-6)

9 (-5,3,-3,1) | (-4,2)

12 (1,1,2,3) (1,2) or (2,2)

13 (1,2,3,1) (2,1) or (2,2)

14 (2,3,1,4) (1,3), (1,4), (2,3) or (2,4)

Furthermore, consider diag(3) and § = 1. We are trying to locate runs of
length at least 3 containing only values not greater than 2§ = 2. We obtain:

Position | Square Roots

1 (2,-3,-5,4,-1,-7) | (3,-2,-6)

6 (-7,1,-5,-5,3,-3) | (-6,2,-4)

12 (1,1,2,3,1,4) (2,0,3), (2,1,3) or (2,2,3)
13 (1,2,3,1,4,5) (0,3,4), (1,3,4) or (2,3,4)

In those cases where we want to consider a {0,y }-approximate square we just
check each d-approximate match to see if it is also a {4, v}-approximate square.

In the last example we will like to consider § = 1 and v = 4. This means
that we are trying to locate runs of length at least 2 containing only values not
greater than 20 = 2 but with v < 4. We obtain:

Position | Square Roots vy
12 (1,1,2,3,1.4) | (2,0,3), (2,1,3) or (2,2,3) 4
13 (1,2,3,1,4,5) | (0,3,4), (1,3,4) or (2,3,4) 4




5.3 Pseudo-code

Fig. 5 gives the algorithm that solves the J-approximation square problem. Fig. 6
below gives the algorithm that solves the {d,~}-approximation square problem.

1. procedure DELTASQUARES(t, §) {n=|t| }
2. Dbegin
3. for diag < 2 to n/2 do
4. i+ 0;dsum «< 0
5. for j < diag to n do
6. diff < [ti] - 0]
7. if dif f <0 then dsum < dsum + 1
8. else dsum < 0
9. if dsum > diag then write j — 2 * diag + 2
10. i +1
11. od
12. od
13. end
Fig. 5. The DELTASQUARES Algorithm.
1. procedure DELTAGAMMASQUARES(t, 8, v) {n=|t }
2. begin
3. for diag <+ 2 to n/2 do
4. i+ 0; dsum < 0; gsum < 0
5. for j « diag to n do
6. dif f « [t[s] = ¢[j]|
7. if dif f < § then
8. begin
9. dsum < dsum + 1
10. gsum < gsum + dif f
11. if dsum > diag then gsum < gsum — |t[i — diag] — t[j — diag]|
12. end
13. else
14. begin
15. dsum < 0; gsum + 0
16. end
17. if dsum > diag AND gsum < g then write j — 2 xdiag + 2
18. i +1
19. od
20. od
21. end

Fig. 6. The DELTAGAMMASQUARES Algorithm.



5.4 Running time

The complexity of these algorithms is easily seen to be O(n?). Figure 7 shows
the timing for different text sizes.

7 7
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Fig. 7. Timing curves for {4, }-approximate squares.

6 Conclusion and Open problems

The running time of the computation of §-approximate squares can be reduced
to O(nlogn); A theoretical algorithm is presented in [16] that shadows the Main
and Lorentz algorithm ([21]).

The following two problems are still open:
Problem 1. Given a string ¢t = #1 ... %, and two integers m and d, compute all
positions j of ¢, that there exists a string  such that
b

tj.j+ml=t

tj+m+1.j+2m2i

ti+tm+1.j+C+1)m] i

Problem 2 Given a string t = ¢1 . ..t, and three integers m,  and -, compute
all positions j of ¢, that there exists a string ¢ such that

. 8 2
tlj..j +m] 2 ¢

. . 0,y ¢
ti+m+1.j+2m] 2§

t+tm+ 1.5+ +1)m] 2 ¢
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Pitch Interval Pattern: {1,-1,3,0}

Pitch Interval String:
{1,-13,0,-5,2-2,3,0,-5,0,2,0,2,3,-2,-1,-2,2,1,-1,3,0,-5,2-2,3,0,-5,2,2,1,-1,-2,-2,7,2,-2,2,0,3,-1,-2,0,
-2,0,0,-3,-4,7,-2,-35,-3,-4,4,-2,2,1,-1,30,-5,2,-2,3,0,-5,2,2,1,-1,-2,0,2,0,1,2,2,2,1,-12,4,-2,10,-9}

APPENDIX |
Melody from Mozart’s Sonda in A major

Thismelody may be represented asa string o pitch intervals (in number of semitones). If exact
matching is employed, threeidentical insances of the search pattern are found (patterns a, ¢ and f);
the other 4 instances are not matched. If d-approximate matching is employed for &=1, then al seven
instances depicted above are found.
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Pitch Interval Pattern: {5,-1,1,4,3,5,0}

Pitch Interval String:
{5-1,1435,0,-1,-2,-2,5,-10,2,1,4,-9,2,2,3,-5,-7,5,-1,1,4,3,9,0,-2,-2,-1,1,4,-7,3,-1,-1,-1,2,-4,-12,
5-1,14330,-1,-2,-2,4,-7,2,1,-1,-2,-5,3)5,-1,1,4,35,0,-1,-2,-2,4,-7,2,1,-1,-2,-5,-2,-7,
5-1,14350,-1,-2,-2,5,-10,2,1,4,-9,2,2,3,-5,-7,5,-1,1,4,3,9,0,-2,-2,-3,-2,5,-10,2,1,4,-7,2,1,4,-12,2,1}

APPENDIX II
Melody from Schumann’s Traumerei

Thismelody may be represented asa string o pitch intervals (in number of semitones).

If exact matchingis employed only 3 identical instances of the given pattern are found (patterns a, d
and e); the other 3 ingtances are not matched. If &-approximate matching is employed for =2, then 4
instances are found (patterns a, ¢, d and e); for 6=4 all 6 instances depicted above are discovered (y-
approximate matching may be additionally appli ed to restrict d-approximate matching espedally for
larger 6 values and for larger melodic corpuses.



