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The Generalized Annihilation Property A Tool For Solving Finite Rate of Innovation Problems

We describe a property satisfied by a class of nonlinear systems of equations that are of the form F(Ω)X = Y.

Here F(Ω) is a matrix that depends on an unknown Kdimensional vector Ω, X is an unknown K-dimensional vector and Y is a vector of N ≥ K) given measurements. Such equations are encountered in superresolution or sparse signal recovery problems known as "Finite Rate of Innovation" signal reconstruction. We show how this property allows to solve explicitly for the unknowns Ω and X by a direct, non-iterative, algorithm that involves the resolution of two linear systems of equations and the extraction of the roots of a polynomial and give examples of problems where this type of solutions has been found useful.

Introduction

We consider the signal resulting from the convolution between a window ϕ(t) and the sum of K Diracs with amplitude x k located at time t k . Given the N uniform samples y n (T = sampling step )

y n = K k=1 x k ϕ(nT -t k )
where n = 1, 2, . . . , N, (

then FRI problems (see [START_REF] Vetterli | Sampling signals with finite rate of innovation[END_REF][START_REF] Blu | Sparse sampling of signal innovations[END_REF]) consist in retrieving the parameters t k and x k . Solving such problems is conceptually interesting because it shows how to break the standard Nyquist-Shannon bandlimitation rule for the exact reconstruction of signals from their uniform samples [START_REF] Shannon | A mathematical theory of communication[END_REF].

The system of consistent equations (1) can be expressed under the generic form of a nonlinear problem as shown in Fig. 1 (see next page), where the parameters Ω = [ω 1 , ω 2 , . . . ω K ] are related unambiguously to the unknowns t k 's. Because of the variety of settings adapted to this general approach, it happens to be necessary to distinguish between the parameters ω k -which we shall call "abstract parameters"-and the locations t k : typically, the ω k 's will be the zeros of some polynomial and from these ω k 's, we will be able to retrieve the t k 's using a functional relation of the form ω k = λ(t k ) for some invertible function λ(t).

At first sight, solving such a nonlinear system of equations is a daunting task. Fortunately, if the matrix F(Ω) satisfies a property that we shall call "Generalized Annihilation Property" (GAP), this reduces to solving two linear systems of equations sandwiching a nonlinear step that amounts to polynomial root extraction in practical cases.

The filters ϕ(t) that satisfy the GAP are thus especially interesting, since the related FRI problems enjoy a straight non-iterative solution.

The Generalized Annihilation Property (GAP)

We carry on with the previously identified general nonlinear problem, namely

F(Ω) X = Y, (3) 
where the unknowns are Ω = [ω 1 , ω 2 , . . . ω K ] and X = [x 1 , x 2 , . . . x K ], and where the measurements are Y = [y 1 , y 2 , . . . y N ]. This system is said to satisfy the Generalized Annihilation Property whenever there exist K + 1 constant matrices, A k , and K + 1 scalar functions of Ω, h k (Ω), such that we have the identity

K k=0 h k (Ω) A k F(Ω) = 0. (4) 
for any vector of parameters Ω. By right multiplying with X, the above equation implies that any solution Ω of ( 3) is also a solution of the (generalized) annihilation equation

K k=0 h k (Ω)A k Y = 0. (5) 
This equation can be expressed in a matrix form AH = 0 where the unknown is

H = [ h 0 (Ω), h 1 (Ω), . . . , h K (Ω) ] T and the matrix A = A 0 Y, A 1 Y, . . . , A K Y .
Thus, in order to solve [START_REF] Shannon | A mathematical theory of communication[END_REF] for Ω and X, the idea consists in finding the scalar coefficients h k (Ω) that satisfy [START_REF] Stoica | Introduction to Spectral Analysis[END_REF], then retrieving ω 1 , ω 2 , . . . , ω K from the knowledge of h k (Ω), and finally finding X such that F(Ω) X = Y. Without elaborating on the conditions that make this solution unique, a
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Figure 1: Algebraic equivalent of the consistency equations [START_REF] Vetterli | Sampling signals with finite rate of innovation[END_REF].

minimal requirement is that the matrices A k have at least K rows.

In the simple case where the h k (Ω)'s are related to the ω k 's through a polynomial relation

K k=0 h k (Ω)z -k = K k=1 (1 -ω k z -1 ), (6) 
solving (3) boils down to a three-step algorithm that can be summarized as follows:

1. Compute a solution H = [ 1, h 1 , . . . , h K-1 , h K ] T of A 0 Y, A 1 Y, . . . , A K Y H = 0; 2. Compute the roots ω k of the z-transform H(z) = K k=0 h k z -k ; 3. Compute a solution X of F(Ω) X = Y.
Example-Spectral estimation problems boil down to a nonlinear problem of the form (3) involving the Vandermonde matrix:

F(Ω) =      ω 1 ω 2 • • • ω K ω 2 1 ω 2 2 • • • ω 2 K . . . . . . ω N 1 ω N 2 • • • ω N K     
where the frequencies to retrieve, f k , are related to ω k through ω k = e j2πf k . This problem satisfies the GAP for band-diagonal matrices A k which are more precisely given by:

A k = 0 N -K,k I N -K 0 N -K,K-k ,
where 0 m,n is the m × n zero matrix and I n is the n × n identity matrix. A minimal-yet not sufficient-condition for the unicity of the solution is N ≥ 2K. Since the A k can be seen as shifting operators by k samples, the annihilation equation is analogous to a filtering equation-with an annihilating filter. The annihilation algorithm is then equivalent to Prony's method [START_REF] Prony | Essai expérimental et analytique[END_REF]. Of course, spectral estimation in the presence of noise has been addressed by numerous researchers since the 1970's [5, 6, 7, 8, 9, 10, 11].

Some GAP Kernels

The GAP is actually shared by many interesting filters that can be used in sampling schemes, resulting in easily solvable FRI problems. Among them, the first ones to be identified were the periodized sinc, the infinite (i-e., not periodized) sinc and the Gaussian kernels [START_REF] Vetterli | Sampling signals with finite rate of innovation[END_REF]. Even more interestingly, recent research indicates that this property may somewhat be related to the Strang-Fix conditions which makes a very intriguing connection with approximation theory [START_REF] Dragotti | Sampling moments and reconstructing signals of finite rate of innovation: Shannon meets Strang-Fix[END_REF], and considerably broadens the class of FRI-admissible kernels. In all cases investigated so far, the scalar coefficients h k (Ω) satisfy (6).

Periodized sinc (Dirichlet) filter

Solving the FRI problem in the case of a periodic stream of Diracs is equivalent to considering [START_REF] Vetterli | Sampling signals with finite rate of innovation[END_REF] where ϕ is a periodized sinc kernel, e.g., a Dirichlet kernel

ϕ(t) = k ′ ∈Z sinc(B(t -k ′ τ )) = sin(πBt) Bτ sin(πt/τ )
where τ is the period of the Dirac stream and B some bandwith (chosen so that Bτ is an odd integer) [START_REF] Blu | Sparse sampling of signal innovations[END_REF]. This problem can be reformulated using the annihilation equation (4) by defining the following annihilation matrices

A k = 0 Bτ -K,k I Bτ -K 0 Bτ -K,Bτ -k W
where W = [e -j2πmn/N ] for |m| ≤ ⌊Bτ /2⌋ and 1 ≤ n ≤ N , is the N -DFT submatrix of size Bτ × N . Then, the abstract parameters ω k are related to the locations t k through ω k = e -j2πt k /τ . This kernel has been found useful for the estimation of UWB channels [START_REF] Maravić | Lowsampling rate UWB channel characterization and synchronization[END_REF] and for image superresolution [START_REF] Baboulaz | Exact feature extraction using finite rate of innovation principles with an application to image super-resolution[END_REF].

Infinite sinc filter

The filter ϕ(t) is given by ϕ(t) = sinc Bt with B = 1/T . When ϕ * x (t) is sampled uniformly at frequency B, the nonlinear system of equations satisfies the GAP. The abstract parameters ω k are related to the locations t k through ω k = t k and the annihilation matrices are given by

A k =        K K K K-1 • • • K 0 0 • • • 0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 0 • • • • • • K K K K-1 • • • K 0        ×           1 0 • • • • • • 0 0 2 k . . . . . . . . . . . . 3 k . . . . . . . . . . . . . . . 0 0 • • • • • • 0 N k          

Gaussian filter

The filter ϕ(t) is given by ϕ(t) = exp(-t 2 /σ 2 ). When ϕ * x (t) is sampled uniformly at frequency T -1 , the nonlinear system of equations satisfies the GAP. The abstract parameters ω k are related to the locations t k through ω k = exp(2t k T /σ 2 ) and the annihilation matrices are given by

A k = 0 N -K,k I N -K 0 N -K,K-k ×         e T 2 σ 2 0 • • • • • • 0 0 e (2T ) 2 σ 2 . . . . . . . . . . . . . . . 0 0 • • • • • • 0 e (N T ) 2 σ 2        
A version of this solution (actually, for a Gabor kernel) was used in Optical Coherence Tomography, showing the possibility to resolve slices of a microscopic sample below the coherence length of the illuminating reference light [START_REF] Blu | A new highresolution processing method for the deconvolution of optical coherence tomography signals[END_REF].

Finite Support Strang-Fix filters

Through linear combinations of its shifts, the finite support filter ϕ(t) is assumed to reconstruct polynomials up to some degree L -1 (standard Strang-Fix condition [START_REF] Strang | A Fourier analysis of the finite element variational method[END_REF]) or exponentials e a l t where a l -a 0 is linear with l = 0, 1, . . . , L -1. More precisely, in the standard Strang-Fix case, we denote by c l,n the coefficients such that n∈Z c l,n ϕ(nT -t) = t l where l = 0, 1, . . . , L -1, by T the sampling step, and by [0, S] the support of ϕ(t).

Then, the abstract parameters ω k are related to the locations t k through ω k = t k and the annihilation matrices are given by

A k =      c k,1 c k,2 • • • c k,N c k-1,1 c k-1,2 • • • c k-1,N . . . . . . . . . c k-L+1,1 c k-L+1,2 • • • c k-L+1,N     
.

Additionally, there is a constraint on the minimal number of samples N for the GAP to hold, which is that N be larger than ⌈(S + max k {t k })/T ⌉.

Conclusion

We have shown how to unify the different techniques used in FRI signal reconstruction through an algebraic property that we call the Generalized Annihilation property. In essence, this property allows to solve nonlinear system of equations within two noniterative steps. We hope that this property can be used to solve other FRI problems (i.e, with new kernels) in particular in dimensions higher than 1 (for instance, like in [START_REF] Kandaswamy | Analytic sensing: reconstructing pointwise sources from boundary Laplace measurements[END_REF]), and maybe to solve other types of problems not directly related to sampling.