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Abstract: where¢(t) is some known function. For each term in the
sum, the signal has two real parametgrandt;. If the
density oft;s (the number that appear per unit of time) is
finite, the signal has FRI. It is shown constructively in [10]
that the signal can be recovered from (noiseless) uniform
Famples of:(t)*h(t) (ata sufficient rate) whep(t)«h(t)

Is a sinc or Gaussian function. Results in [2] are based on

As an example of the concept of rate of innovation, signals
that are linear combinations of a finite number of Diracs
per unit time can be acquired by linear filtering followed
by uniform sampling. However, in reality, samples are
not noiseless. In a recent paper, we introduced a nove
stochasti@algorithm to reconstruct a signal with finite rate . . : :

! : : : .~ similar reconstruction algorithms and greatly reduce the
of innovation from itsnoisy samples. Even though vari- O :

; . restrictions on the sampling kerne(t).

ants of this problem has been approached previously, sat- ) 2 . .
. : : : In practice, though, acquisition of samples is not a noise-
isfactory solutions are only available for certain classies

. . . less process. For instance, an analog-to-digital converte
sampling kernels, for example kernels which satisfy the (ADC) has several sources of noise, including thermal
Strang—Fix condition. In our paper, we considered the '

infinite-support Gaussian kernel, which does not satisfynmse’ aperture uncertainty, comparator ambiguity, and

. - uantization [11]. Hence, samples are inherently noisy.
the Strang—Fix condition. Other classes of kernels can be?‘his motivateEs lur central que?stiorc;iven the siénal Y

employed. Our algorithm is based on Gibbs sampling, a ; : ; .
. : model (i.e. a signal with FRI) and the noise model, how
Markov chain Monte Carlo (MCMC) method. This paper well can we approximate the parameters that describe the

summarizes the algorithm and provides numerical 5|mula-Signal and hence the signal itselffh this work, we ad-

tions that demonstrate the accuracy and robustness of ouy . . : .
dress this question by developing a novel algorithm to re-

algorithm. construct the signal from the noisy samples. The main
contribution is to show that a stochastic approach can ef-

1. Introduction fectively circumvent the ill-conditioning of algebraicte-
niques.

The celebrated Nyquist-Shannon sampling theorem [4, 6]This paper is an abridged version of [7], where many ad-

states that a signai(¢) known to be bandlimited t€),,.x ditional details can be found.

Hz is uniquely determined by samples ©ft) spaced

1/(20max) sec apart. The textbook reconstruction proce- 2. Problem Definition and Notation

dure is to feed the samples as impulses to an ideal lowpass

(sinc) filter. Furthermore, ik(t) is not bandlimited orthe  The basic setup is shown in Fig. 1. As mentioned in the
samples are noisy, introducing pre-filtering by the appro- introduction, we consider a class of signals characterized
priate sincsampling kernegives a procedure that finds the by a finite number of parameters. In this paper, similar
orthogonal projection to the space Qf,..-bandlimited to [2, 3, 10], the class is the weighted sumioDiracs
signals. Thus the noisy case is handled by simple, linear, K

time-invariant processing. (t) = ch(;(t ). @)
Sampling has come a long way since the sampling theo- —

rem, but until recently the results have mostly applied only . o . .

to signals contained in shift-invariant subspaces [9]. Mov (The use of a Dirac delta simplifies the discussion. _It can
ing out of this restrictive setting, Vettest al.[10] showed be replacgd by a known pglgxét) and then gbsorbed |-nto
that it is possible to develop sampling schemes for certainth€® Sampling kerneh(t), yielding an effective sampling
classes of non-bandlimited signals that are not subspace&€™Mel @(t) * (1)) The signal to be estimated(t) is

As described in [10], for reconstruction from samples it is filtered using a Gaussian lowpass filter

necessary for the class of signals to hénée rate of in- 2

novation(FRI). The paradigmatic example is the class of h(t) = exp (_@) ®3)

signals expressed as ) _ ) ) "
with width o}, to give the signak(¢). Even thoughh(t)

2(t) = Z@db(t ) 1) does not have compact support, |t.can be well approxi-
k mated by a truncated Gaussian, which does have compact



X(t) || C/TD || (4% y[n]
T e[n]

Figure 1: Block diagram showing our problem setufx,)

is a signal with FRI given by (2) anki(¢) is the Gaussian
filter with width o}, given by (3). e[n] is i.i.d. Gaussian
noise with standard deviatios. and y[n] are the noisy
samples. Fromy[n] we will estimate the parameters that
describer(t), namely{(cx, tx) }-_,, ando., the standard
deviation of the noise.

support. The filtered signal(t) is sampled at rate df/T
Hz to obtainz[n] = z(nT) forn = 0,1,..., N — 1.
Finally, additive white Gaussian noise (AWGN)n] is
added toz[n] to give y[n]. Therefore, the whole acqui-

sition process from(t) to {y[n]} Y-} can be represented
by the modelMm

K
= Ck €Xp (—
k=1

forn=0,1, ..., N —1. The amount of noise added is a
function ofo.. We define the signal-to-noise ratio (SNR)
o =[]
Yo

in dB as
dB. 5
z[n] —y[n]l2> ©

In the sequel, we will use boldface to denote vectors. In
particular,

T

) elal @

S

SNR £ 101og;, (

= [y[()], y[l]v ) y[N - 1]]T7 (6)
c = [e,co ..., k], @)
t = [ti,te, ..., tx]" (8)

We will be measuring the performance of our reconstruc-
tion algorithms by using the normalized reconstruction er-

ror
ffooo |cht(t) - Z(t)|2 dt
S k@Rt

wherez. (t) is the reconstructed version oft). By con-
struction€ > 0 and the closef is to 0, the better the re-

1>

&

9)

construction algorithm. The problem can be summarized 4.

as:Giveny = {y[n]|n =10, ... ,N — 1} and the model
M, estimate the paramete{$cy, t;) 1, . Also estimate
the noise variance?.

Ideally, we would like to minimize£ in (9) directly, but

this does not seem to be tractable since the dependenceg.

of y[n] on {t;}/< , is highly nonlinear. Thus, we pro-

pose the use of a stochastic algorithm (known as the Gibbs

sampler) for the maximum likelihood (ML) estimation of
{t;,}i_,. The Gibbs sampler is a proxy for minimizitg
This is followed by linear least squared error (LLSE) esti-
mation of {c; }££ | as a tractable and effective means for
approximate minimization of .

3. Presentation of the Gibbs Sampler

The algorithm introduced in [7] is a stochastic opti-
mization procedure based on Gibbs sampling to es-
timate 60 {c,t,0.}. Detailed derivations and a
self-contained introduction to Gibbs sampling are given
in [7], and code written in MATLAB can be found at
http://web.mit.edutvtan/frimcmc. Here, we merely sum-
marize the main steps of the algorithm and the intuition
behind Gibbs sampling.

The overall procedure is given in Algorithm 1. The algo-
rithm uses Gibbs sampling (Algorithm 2) to estimate the
set of Dirac positiongt, } 7, . It then uses a least-squares
procedure to estimate the weighits, } X_, . The basic idea

of Gibbs sampling is to exploit the fact that it is easier to
compute samples drawn approximately according to the
posterior distribution of the parameters given the data tha
it is to directly minimize£. This is true when one can
analytically determine the conditional distribution ofeon
parameter given the remaining parameters and the data.
(The required derivations are presented in [7].) After a
number of iterationg, called theburn-in period samples
drawn through Gibbs sampling can be treated as if they
are drawn from the true posterior. Thus, samples drawn
in I additional iterations can be averaged to obtain a good
approximation of the mean of the posterior distribution.

Algorithm 1 Parameter Estimation and Signal Recon-
struction Algorithm
Require: Datay, Model M
1: Obtain estimates{fk},{(:1 and 6. using the Gibbs
sampler detailed in Algorithm 2 with the dayaand
the modelM given in (4).

2: Obtain estimate$c, } £, using a linear least squares
estimation procedure anff,}% , from the Gibbs
sampler.

Computezes:(t) = Z(t) * h(t) given the parameters
{(ek,tx) <, and the known pulsg(t).
4. Compute reconstruction errérgiven in (9).

3:

Algorithm 2 The Gibbs Sampling Algorithm

Require: y, I, 1,0 = {c© £ 51
1. fori«1: I+Ibdo

,) ~ p( |C l Y .Cgi_l), - ,‘c%_l),t(ifl)laéi_l))
( ) p( |C(l) ng_l), o ac([é_l)7t(i71)0'6(jz_l))
5: C(I_? ~ p( |Cl ’céz)’ - C(}? . t(i_-l)’aéiil))
6: (Z) ~ p(t1|c(1) t(z 1) t(z 1)’ . at([éil), 06(31,1))
7: t( @) Np(t e, ¢ z) t(z 1) "t%—l)’aéz_l))
9: tg? Np(tK|c(i)’t§i)7tgi)7“ t%) Lo (1 1))
10: ng) N p(oe|c(i),t(i))

11: end for
12: Computefyvse using least squares
13: return Ovivske




Sampling ¢;. ¢ is sampled from a Gaussian distribu-
tion given by

B 1

07(; D) = TS T o ) 10

plarld-oy i) =N (- o) 0
where
A nT—tk)
ap = 202 Z exp ( ) , (11)
€ n=0

A 1 e nT—tk)
S22 P\ T

[ n=0 h

X ZK: Crr €Xp <—M) —y[n] p. (12)

2
_ 203
K #k

K| N]| 0. | SNR
AFIRF (Fig. 2@))|| 5 | 30 | 10 ° | 137 dB
GS(Fig.2(b)) || 5 | 30| 25 | 10.2dB

Table 1: Parameter values for comparing annihilating filter
and root-finding (AF/RF) against Gibbs sampling (GS).

4. Numerical Results and Experiments

In this section, the annihilating filter and root-finding al-
gorithm [10] provides a baseline for comparison. After
exhibiting its instability, we provide simulation resutts
validate the accuracy of the algorithm we proposed in Sec-
tion 3. More extensive experimentation, including com-
parisons to [3] and applications to an audio signal, is re-
ported in [7].

It is easy to sample from Gaussian densities when the pa-

rameterg «y, k) have been determined.

Sampling tx. ti is sampled from a distribution of the
form
N-1

1
p(tk|0—tkayaM) X Eexp | — 20.2 7;)7k
T — t4)? T — tr)?
conp (T2 (_u)]
o} 20},
(13)
where
A
’yk = Ci7 (14)
K
T — t)?
Vi é 2Ck Z Ck’ €XpP (—%> - U[n]
K =1
K #k
(15)

It is not straightforward to sample from this distribution.

We used rejection sampling [5, 8] to generate sarmﬁjés
from p(tx|0_¢,,y, M). The proposal distributiod(t)

4.1 Annihilating Filter and Root-Finding

In [10], for signals of the form (2) and certain sampling
kernels, the annihilating filter was used as a means to lo-
cate thel;, values. Subsequently a least squares approach
yielded the weights;,. It was shown that in the noiseless
scenario, this method recovers the parameters exactly. In
the same paper, a method for dealing with noisy samples
is suggested. Unfortunately, this method seems to be in-
herently ill-conditioned. In Fig. 2, we show a pair of sim-
ulations with the parameters as tabulated in Table 1. We
observe from Fig. 2(a) that (even with an oversampling
factor of N/(2K) = 3) the annihilating filter and root-
finding method is not robust to even a miniscule amount
of added noise.

4.2 Gibbs Sampling Algorithm

Initial Demonstration. To demonstrate the evolution
the Gibbs sampler, we performed an initial experiment
with parameters as above, with the exception that the noise

was chosen to be an appropriately scaled Gaussian, sincétandard deviation was increased;to= 2.5, giving an

it is easy to sample from Gaussians.

Sampling o.. o is sampled from the ‘Square-root
Inverted-Gamma’ [1] distributiofG /% (0.; ¢, A),

p(oe|0,gc,y, M) =

NPy (Bt ( /\)
————exp | —— | Ljo,+00)(0e), (16
(%) 0,400)(0e),  (16)

@
o]

where

1>

17)

N
0=

é%l chexp( ”T2 ; ))r (18)

Thus the distribution of the variance of the noiseis In-

SNR 0of10.2 dB. We plot the iterates of the most chal-
lenging parameters—thigs—in Fig. 3. We observe that
the sampler converges in fewer than 20 iterations for this
run, even though the parameter values were initialized far
from their optimal values. The true filtered signél) and

its estimatez.s (¢) are plotted in Fig. 2(b). Note the close
similarity betweere (t) andzes(t).

Further Experiments on Simulated Data. To further
validate our algorithm, we performed extensive simula-
tions on different problem sizes with different levels of
noise [7]. These experiments support the conclusion that
the Gibbs sampler algorithm is insensitive to initializa-
tion. Italwaysfinds approximately optimal estimates from
any starting point because the Markov chain provably con-

verted Gamma, which corresponds to the conjugate priorverges to the stationary distribution [8]. We also find that

of o2 in the expression ol (e; 0, 02) [1] and thus it is
easy to sample from.

the noise standard deviatien can be estimated accu-
rately; this may be important in some applications.
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(&) The reconstruction using annihilating filter and root-
finding completely breaks down when noise of a small stan-
dard deviatioro. = 10~% (SNR = 137 dB) is added.
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(b) The Gibbs sampling technique gives a much better recon-
struction even at a higher noise level = 2.5 (SNR = 10.2
dB).

Figure 2: Demonstration of the instability of annihilat-
ing filter/root-finding approach and the improvement from
Gibbs sampling.

40 60 80 100
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0 20

Figure 3: Evolution of theys in the GS algorithm. The
true values are indicated by the broken red lines.

5. Concluding Comments

We addressed the problem of reconstructing a signal with
FRI given noisy samples. We showed that it is possible to
circumvent some of the problems of the annihilating fil-
ter and root-finding approach [3,10]. We introduced the
Gibbs sampling algorithm to find the locations and aug-
mented with a least squares approach to find the weights.
The success of the Gibbs sampling algorithm does not
depend on the choice of kernk(t), but rather the i.i.d.
Gaussian noise assumption. The formulation of the Gibbs
sampler does not depend on the specific form@]j. In

fact, we used a Gaussian sampling kernel to illustrate that
our algorithm is not restricted to the classes of kernels con
sidered in [2].

A natural extension to our work here is to assign structured
priors toc, t ando.. These priors can themselves be de-
pendent on their own set bfyperparametergyiving a hi-
erarchical Bayesian formulation. In this way, there would
be greater flexibility in the parameter estimation process.
We can also seek to improve on the computational load of
the algorithms introduced here and in particular the sam-
pling of ¢}, via rejection sampling.
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