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Abstract:

As an example of the concept of rate of innovation, signals
that are linear combinations of a finite number of Diracs
per unit time can be acquired by linear filtering followed
by uniform sampling. However, in reality, samples are
not noiseless. In a recent paper, we introduced a novel
stochasticalgorithm to reconstruct a signal with finite rate
of innovation from itsnoisysamples. Even though vari-
ants of this problem has been approached previously, sat-
isfactory solutions are only available for certain classesof
sampling kernels, for example kernels which satisfy the
Strang–Fix condition. In our paper, we considered the
infinite-support Gaussian kernel, which does not satisfy
the Strang–Fix condition. Other classes of kernels can be
employed. Our algorithm is based on Gibbs sampling, a
Markov chain Monte Carlo (MCMC) method. This paper
summarizes the algorithm and provides numerical simula-
tions that demonstrate the accuracy and robustness of our
algorithm.

1. Introduction

The celebrated Nyquist–Shannon sampling theorem [4,6]
states that a signalx(t) known to be bandlimited toΩmax

Hz is uniquely determined by samples ofx(t) spaced
1/(2Ωmax) sec apart. The textbook reconstruction proce-
dure is to feed the samples as impulses to an ideal lowpass
(sinc) filter. Furthermore, ifx(t) is not bandlimited or the
samples are noisy, introducing pre-filtering by the appro-
priate sincsampling kernelgives a procedure that finds the
orthogonal projection to the space ofΩmax-bandlimited
signals. Thus the noisy case is handled by simple, linear,
time-invariant processing.
Sampling has come a long way since the sampling theo-
rem, but until recently the results have mostly applied only
to signals contained in shift-invariant subspaces [9]. Mov-
ing out of this restrictive setting, Vetterliet al.[10] showed
that it is possible to develop sampling schemes for certain
classes of non-bandlimited signals that are not subspaces.
As described in [10], for reconstruction from samples it is
necessary for the class of signals to havefinite rate of in-
novation(FRI). The paradigmatic example is the class of
signals expressed as

x(t) =
∑

k

ckφ(t− tk) (1)

whereφ(t) is some known function. For each term in the
sum, the signal has two real parametersck andtk. If the
density oftks (the number that appear per unit of time) is
finite, the signal has FRI. It is shown constructively in [10]
that the signal can be recovered from (noiseless) uniform
samples ofx(t)∗h(t) (at a sufficient rate) whenφ(t)∗h(t)
is a sinc or Gaussian function. Results in [2] are based on
similar reconstruction algorithms and greatly reduce the
restrictions on the sampling kernelh(t).
In practice, though, acquisition of samples is not a noise-
less process. For instance, an analog-to-digital converter
(ADC) has several sources of noise, including thermal
noise, aperture uncertainty, comparator ambiguity, and
quantization [11]. Hence, samples are inherently noisy.
This motivates our central question:Given the signal
model (i.e. a signal with FRI) and the noise model, how
well can we approximate the parameters that describe the
signal and hence the signal itself?In this work, we ad-
dress this question by developing a novel algorithm to re-
construct the signal from the noisy samples. The main
contribution is to show that a stochastic approach can ef-
fectively circumvent the ill-conditioning of algebraic tech-
niques.
This paper is an abridged version of [7], where many ad-
ditional details can be found.

2. Problem Definition and Notation

The basic setup is shown in Fig. 1. As mentioned in the
introduction, we consider a class of signals characterized
by a finite number of parameters. In this paper, similar
to [2,3,10], the class is the weighted sum ofK Diracs

x(t) =

K
∑

k=1

ckδ(t− tk). (2)

(The use of a Dirac delta simplifies the discussion. It can
be replaced by a known pulseφ(t) and then absorbed into
the sampling kernelh(t), yielding an effective sampling
kernel φ(t) ∗ h(t).) The signal to be estimatedx(t) is
filtered using a Gaussian lowpass filter

h(t) = exp

(

−
t2

2σ2
h

)

(3)

with width σh to give the signalz(t). Even thoughh(t)
does not have compact support, it can be well approxi-
mated by a truncated Gaussian, which does have compact
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Figure 1: Block diagram showing our problem setup.x(t)
is a signal with FRI given by (2) andh(t) is the Gaussian
filter with width σh given by (3). e[n] is i.i.d. Gaussian
noise with standard deviationσe andy[n] are the noisy
samples. Fromy[n] we will estimate the parameters that
describex(t), namely{(ck, tk)}Kk=1, andσe, the standard
deviation of the noise.

support. The filtered signalz(t) is sampled at rate of1/T
Hz to obtainz[n] = z(nT ) for n = 0, 1, . . . , N − 1.
Finally, additive white Gaussian noise (AWGN)e[n] is
added toz[n] to give y[n]. Therefore, the whole acqui-
sition process fromx(t) to {y[n]}N−1

n=0 can be represented
by the modelM

M : y[n] =

K
∑

k=1

ck exp

(

−
(nT − tk)2

2σ2
h

)

+ e[n] (4)

for n = 0, 1, . . . , N − 1. The amount of noise added is a
function ofσe. We define the signal-to-noise ratio (SNR)
in dB as

SNR
△
= 10 log10

(

∑N−1
n=0 |z[n]|2

∑N−1
n=0 |z[n]− y[n]|2

)

dB. (5)

In the sequel, we will use boldface to denote vectors. In
particular,

y = [y[0], y[1], . . . , y[N − 1]]⊤, (6)

c = [c1, c2, . . . , cK ]⊤, (7)

t = [t1, t2, . . . , tK ]⊤. (8)

We will be measuring the performance of our reconstruc-
tion algorithms by using the normalized reconstruction er-
ror

E
△
=

∫∞

−∞
|zest(t)− z(t)|2 dt
∫∞

−∞
|z(t)|2 dt

, (9)

wherezest(t) is the reconstructed version ofz(t). By con-
structionE ≥ 0 and the closerE is to 0, the better the re-
construction algorithm. The problem can be summarized
as:Giveny = {y[n] |n = 0, . . . , N − 1} and the model
M, estimate the parameters{(ck, tk)}Kk=1. Also estimate
the noise varianceσ2

e .
Ideally, we would like to minimizeE in (9) directly, but
this does not seem to be tractable since the dependence
of y[n] on {tk}Kk=1 is highly nonlinear. Thus, we pro-
pose the use of a stochastic algorithm (known as the Gibbs
sampler) for the maximum likelihood (ML) estimation of
{tk}Kk=1. The Gibbs sampler is a proxy for minimizingE .
This is followed by linear least squared error (LLSE) esti-
mation of{ck}Kk=1 as a tractable and effective means for
approximate minimization ofE .

3. Presentation of the Gibbs Sampler

The algorithm introduced in [7] is a stochastic opti-
mization procedure based on Gibbs sampling to es-
timate θ = {c, t, σe}. Detailed derivations and a
self-contained introduction to Gibbs sampling are given
in [7], and code written in MATLAB can be found at
http://web.mit.edu/∼vtan/frimcmc. Here, we merely sum-
marize the main steps of the algorithm and the intuition
behind Gibbs sampling.
The overall procedure is given in Algorithm 1. The algo-
rithm uses Gibbs sampling (Algorithm 2) to estimate the
set of Dirac positions{tk}Kk=1. It then uses a least-squares
procedure to estimate the weights{ck}Kk=1. The basic idea
of Gibbs sampling is to exploit the fact that it is easier to
compute samples drawn approximately according to the
posterior distribution of the parameters given the data than
it is to directly minimizeE . This is true when one can
analytically determine the conditional distribution of one
parameter given the remaining parameters and the data.
(The required derivations are presented in [7].) After a
number of iterationsIb called theburn-in period, samples
drawn through Gibbs sampling can be treated as if they
are drawn from the true posterior. Thus, samples drawn
in I additional iterations can be averaged to obtain a good
approximation of the mean of the posterior distribution.

Algorithm 1 Parameter Estimation and Signal Recon-
struction Algorithm
Require: Datay, ModelM

1: Obtain estimates{t̂k}Kk=1 and σ̂e using the Gibbs
sampler detailed in Algorithm 2 with the datay and
the modelM given in (4).

2: Obtain estimates{ĉk}Kk=1 using a linear least squares
estimation procedure and{t̂k}Kk=1 from the Gibbs
sampler.

3: Computezest(t) = x̂(t) ∗ h(t) given the parameters
{(ĉk, t̂k)}Kk=1 and the known pulseh(t).

4: Compute reconstruction errorE given in (9).

Algorithm 2 The Gibbs Sampling Algorithm

Require: y, I, Ib, θ
(0) = {c(0), t(0), σ

(0)
e }

1: for i← 1 : I + Ib do
2: c

(i)
1 ∼ p(c1|c

(i−1)
2 , c

(i−1)
3 , . . . , c

(i−1)
K , t(i−1)σ

(i−1)
e )

3: c
(i)
2 ∼ p(c2|c

(i)
1 , c

(i−1)
3 , . . . , c

(i−1)
K , t(i−1)σ

(i−1)
e )

4:
... ∼

...
5: c

(i)
K ∼ p(cK |c

(i)
1 , c

(i)
2 , . . . , c

(i)
K−1, t

(i−1), σ
(i−1)
e )

6: t
(i)
1 ∼ p(t1|c(i), t

(i−1)
2 , t

(i−1)
3 , . . . , t

(i−1)
K , σ

(i−1)
e )

7: t
(i)
2 ∼ p(t2|c(i), t

(i)
1 , t

(i−1)
3 , . . . , t

(i−1)
K , σ

(i−1)
e )

8:
... ∼

...
9: t

(i)
K ∼ p(tK |c(i), t

(i)
1 , t

(i)
2 , . . . , t

(i)
K−1, σ

(i−1)
e )

10: σ
(i)
e ∼ p(σe|c(i), t(i))

11: end for
12: Computeθ̂MMSE using least squares
13: return θ̂MMSE



Sampling ck. ck is sampled from a Gaussian distribu-
tion given by

p(ck|θ−ck
,y,M) = N

(

ck;−
βk

2αk
,

1

2αk

)

, (10)

where

αk
△
=

1

2σ2
e

N−1
∑

n=0

exp

(

−
(nT − tk)2

σ2
h

)

, (11)

βk
△
=

1

σ2
e

N−1
∑

n=0

exp

(

−
(nT − tk)2

2σ2
h

)

×















K
∑

k′=1
k′ 6=k

ck′ exp

(

−
(nT − tk′ )2

2σ2
h

)

− y[n]















. (12)

It is easy to sample from Gaussian densities when the pa-
rameters(αk, βk) have been determined.

Sampling tk. tk is sampled from a distribution of the
form

p(tk|θ−tk
,y,M) ∝ exp

[

−
1

2σ2
e

N−1
∑

n=0

γk

× exp

(

−
(nT − tk)2

σ2
h

)

+ νk exp

(

−
(nT − tk)2

2σ2
h

)

]

(13)

where

γk
△
= c2

k, (14)

νk
△
= 2ck















K
∑

k′=1
k′ 6=k

ck′ exp

(

−
(nT − tk′ )2

2σ2
h

)

− y[n]















.

(15)

It is not straightforward to sample from this distribution.
We used rejection sampling [5,8] to generate samplest

(i)
k

from p(tk|θ−tk
,y,M). The proposal distributioñq(tk)

was chosen to be an appropriately scaled Gaussian, since
it is easy to sample from Gaussians.

Sampling σe. σe is sampled from the ‘Square-root
Inverted-Gamma’ [1] distributionIG−1/2(σe; ϕ, λ),

p(σe|θ−σe
,y,M) =

2λϕσ
−(2ϕ+1)
e

Γ(ϕ)
exp

(

−
λ

σ2
e

)

I[0,+∞)(σe), (16)

where

ϕ
△
=

N

2
, (17)

λ
△
=

1

2

[

y[n]−
K
∑

k=1

ck exp

(

−
(nT − tk)2

2σ2
h

)

]2

(18)

Thus the distribution of the variance of the noiseσ2
e is In-

verted Gamma, which corresponds to the conjugate prior
of σ2

e in the expression ofN (e; 0, σ2
e) [1] and thus it is

easy to sample from.

K N σe SNR
AF/RF (Fig. 2(a)) 5 30 10−6 137 dB

GS (Fig. 2(b)) 5 30 2.5 10.2 dB

Table 1: Parameter values for comparing annihilating filter
and root-finding (AF/RF) against Gibbs sampling (GS).

4. Numerical Results and Experiments

In this section, the annihilating filter and root-finding al-
gorithm [10] provides a baseline for comparison. After
exhibiting its instability, we provide simulation resultsto
validate the accuracy of the algorithm we proposed in Sec-
tion 3. More extensive experimentation, including com-
parisons to [3] and applications to an audio signal, is re-
ported in [7].

4.1 Annihilating Filter and Root-Finding

In [10], for signals of the form (2) and certain sampling
kernels, the annihilating filter was used as a means to lo-
cate thetk values. Subsequently a least squares approach
yielded the weightsck. It was shown that in the noiseless
scenario, this method recovers the parameters exactly. In
the same paper, a method for dealing with noisy samples
is suggested. Unfortunately, this method seems to be in-
herently ill-conditioned. In Fig. 2, we show a pair of sim-
ulations with the parameters as tabulated in Table 1. We
observe from Fig. 2(a) that (even with an oversampling
factor of N/(2K) = 3) the annihilating filter and root-
finding method is not robust to even a miniscule amount
of added noise.

4.2 Gibbs Sampling Algorithm

Initial Demonstration. To demonstrate the evolution
the Gibbs sampler, we performed an initial experiment
with parameters as above, with the exception that the noise
standard deviation was increased toσe = 2.5, giving an
SNR of 10.2 dB. We plot the iterates of the most chal-
lenging parameters—thetks—in Fig. 3. We observe that
the sampler converges in fewer than 20 iterations for this
run, even though the parameter values were initialized far
from their optimal values. The true filtered signalz(t) and
its estimatezest(t) are plotted in Fig. 2(b). Note the close
similarity betweenz(t) andzest(t).

Further Experiments on Simulated Data. To further
validate our algorithm, we performed extensive simula-
tions on different problem sizes with different levels of
noise [7]. These experiments support the conclusion that
the Gibbs sampler algorithm is insensitive to initializa-
tion. It alwaysfinds approximately optimal estimates from
any starting point because the Markov chain provably con-
verges to the stationary distribution [8]. We also find that
the noise standard deviationσe can be estimated accu-
rately; this may be important in some applications.
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(a) The reconstruction using annihilating filter and root-
finding completely breaks down when noise of a small stan-
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(b) The Gibbs sampling technique gives a much better recon-
struction even at a higher noise levelσe = 2.5 (SNR = 10.2
dB).

Figure 2: Demonstration of the instability of annihilat-
ing filter/root-finding approach and the improvement from
Gibbs sampling.
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Figure 3: Evolution of thetks in the GS algorithm. The
true values are indicated by the broken red lines.

5. Concluding Comments

We addressed the problem of reconstructing a signal with
FRI given noisy samples. We showed that it is possible to
circumvent some of the problems of the annihilating fil-
ter and root-finding approach [3, 10]. We introduced the
Gibbs sampling algorithm to find the locations and aug-
mented with a least squares approach to find the weights.
The success of the Gibbs sampling algorithm does not
depend on the choice of kernelh(t), but rather the i.i.d.
Gaussian noise assumption. The formulation of the Gibbs
sampler does not depend on the specific form ofh(t). In
fact, we used a Gaussian sampling kernel to illustrate that
our algorithm is not restricted to the classes of kernels con-
sidered in [2].
A natural extension to our work here is to assign structured
priors toc, t andσe. These priors can themselves be de-
pendent on their own set ofhyperparameters, giving a hi-
erarchical Bayesian formulation. In this way, there would
be greater flexibility in the parameter estimation process.
We can also seek to improve on the computational load of
the algorithms introduced here and in particular the sam-
pling of tk via rejection sampling.
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