An “algebraic” reconstruction of piecewise-smooth functions from integral measurements
Abstract
This paper presents some results on a well-known problem in Algebraic Signal Sampling and in other areas of applied mathematics: reconstruction of piecewise-smooth functions from their integral measurements (like moments, Fourier coefficients, Radon transform, etc.). Our results concern reconstruction (from the moments) of signals in two specific classes: linear combinations of shifts of a given function, and “piecewise D-finite functions” which satisfy on each continuity interval a linear differential equation with polynomial coefficients.
Origin | Files produced by the author(s) |
---|