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Average Case Analysis of Multichannel Basis Pursuit

We consider the recovery of jointly sparse multichannel signals from incomplete measurements using convex relaxation methods. Worst case analysis is not able to provide insights into why joint sparse recovery is superior to applying standard sparse reconstruction methods to each channel individually. Therefore, we analyze an average case by imposing a probability model on the measured signals. We show that under a very mild condition on the sparsity and on the dictionary characteristics, measured for example by the coherence, the probability of recovery failure decays exponentially in the number of channels. This demonstrates that most of the time, multichannel sparse recovery is indeed superior to single channel methods.

Introduction

Recovery of sparse signals from a small number of measurements is a fundamental problem in many different signal processing tasks such as image denoising [START_REF] Candès | Stable signal recovery from incomplete and inaccurate measurements[END_REF], analogto-digital conversion [START_REF] Mishali | Blind multi-band signal reconstruction: Compressed sensing for analog signals[END_REF][START_REF] Eldar | Compressed sensing of analog signals[END_REF], radar, compression, inpainting, and many more. The recent framework of compressed sensing (CS), founded in the works of Donoho [START_REF] Donoho | Compressed sensing[END_REF] and Candes [START_REF] Candès | Stable signal recovery from incomplete and inaccurate measurements[END_REF], studies acquisition methods as well as efficient computational algorithms that allow reconstruction of a sparse vector x from linear measurements y = Ax, where A is referred to as the measurement matrix. The key observation is that y can be relatively short, and still contain enough information to recover x. Determining the sparsest vector x consistent with the data y = Ax is generally an NP-hard problem [START_REF] Davis | Adaptive greedy approximations[END_REF]. To determine x in practice, a multitude of efficient algorithms have been proposed. The most extensively studied recovery method by now is the ℓ 1 -minimization approach (Basis Pursuit). Greedy methods, such as simple thresholding [START_REF] Schnass | Average performance analysis for thresholding[END_REF] or orthogonal matching pursuit (OMP) [START_REF] Tropp | Greed is good: Algorithmic results for sparse approximation[END_REF], are faster in practice, but BP provides significantly better recovery guarantees [START_REF] David | For most large underdetermined systems of linear equations the minimal l 1 solution is also the sparsest solution[END_REF][START_REF] Rauhut | On the impossibility of uniform sparse reconstruction using greedy methods[END_REF]. The BP principle as well as greedy approaches have been extended to the multichannel setup where the signal consists of several channels [START_REF] Tropp | Algorithms for simultaneous sparse approximation: part I: Greedy pursuit[END_REF][START_REF] Tropp | Algorithms for simultaneous sparse approximation: part II: Convex relaxation[END_REF][START_REF] Fornasier | Recovery algorithms for vector valued data with joint sparsity constraints[END_REF][START_REF] Cotter | Sparse solutions to linear inverse problems with multiple measurement vectors[END_REF][START_REF] Chen | Theoretical results on sparse representations of multiple-measurement vectors[END_REF][START_REF] Mishali | Reduce and boost: Recovering arbitrary sets of jointly sparse vectors[END_REF][START_REF] Eldar | Block-sparsity: Coherence and efficient recovery[END_REF][START_REF] Eldar | Robust recovery of signals from a union of subspaces[END_REF][START_REF] Gribonval | Atoms of all channels, unite! Average case analysis of multi-channel sparse recovery using greedy algorithms[END_REF]. Here one assumes that each channel is sparse and in addition that the channels have a small common support set. In this situation the signals are called jointly sparse. A variety of theoretical recovery results have been established already in this setting. In [START_REF] Chen | Theoretical results on sparse representations of multiple-measurement vectors[END_REF] a recovery result was derived for a mixed ℓ p /ℓ 1 program (multichannel BP) in which the objective is to minimize the sum of the ℓ p -norms of the rows of the estimated matrix whose columns are the unknown vectors.

Recovery results for the more general problem of blocksparsity were developed in [START_REF] Eldar | Robust recovery of signals from a union of subspaces[END_REF] based on the restricted isometry property (RIP), and in [START_REF] Eldar | Block-sparsity: Coherence and efficient recovery[END_REF] based on mutual coherence. In practice, multichannel reconstruction techniques perform much better than recovering each channel individually. However, the theoretical equivalence results predict no performance gain. The reason is that these recovery results apply to all possible input signals, and are therefore worst-case measurements. Clearly, if we input the same signal to each channel, then no additional information on the joint support is provided from multiple measurements. Therefore, in this worst-case scenario there is no advantage for multiple channels.

In order to capture more closely the true underlying behavior of existing algorithms and observe a performance gain when using several channels, we consider an average analysis. In this setting, the inputs are considered to be random variables so that the case of identical inputs in all channels has zero probability. The idea is to develop conditions on the measurement matrix A such that the inputs can be recovered with high probability given a certain input distribution. Most existing recovery results focus on worst-case analysis. Recently, there have been several papers that consider random ensembles. In [START_REF] Teschke | Multi-frame representations in linear inverse problems with mixed multi-constraints[END_REF] random sub-dictionaries of A are considered and analyzed. This allows to obtain results for BP with a single input channel. In [START_REF] Schnass | Average performance analysis for thresholding[END_REF], average-case performance of single channel thresholding was studied. These ideas were then extended to two multichannel recovery algorithms: thresholding and simultaneous OMP (SOMP) [START_REF] Gribonval | Atoms of all channels, unite! Average case analysis of multi-channel sparse recovery using greedy algorithms[END_REF][START_REF] Gribonval | Average case analysis of multichannel thresholding[END_REF]. Under a mild condition on the sparsity and on the matrix A, it was shown that the probability of reconstruction failure decays exponentially with the number of channels. In the present paper we contribute to this line of research by adding an average-case analysis of multichannel BP, that is mixed ℓ 2 /ℓ 1 -minimization [START_REF] Tropp | Algorithms for simultaneous sparse approximation: part II: Convex relaxation[END_REF][START_REF] Fornasier | Recovery algorithms for vector valued data with joint sparsity constraints[END_REF][START_REF] Eldar | Robust recovery of signals from a union of subspaces[END_REF][START_REF] Eldar | Block-sparsity: Coherence and efficient recovery[END_REF]. We denote by A S the submatrix of A consisting of the columns indexed by S ⊂ 1, . . . , N , while X S is the submatrix of X consisting of the rows of X indexed by S. The ℓth column of A is denoted by a ℓ or A ℓ . The ℓ p -norm is denoted by • p while • F is the Frobenius norm.

Multichannel ℓ 1 -minimization

We consider multichannel signal recovery where our goal is to recover a jointly-sparse matrix X ∈ C N ×L from n linear measurements per channel. Here N denotes the signal length and L the number of channels, i.e., the number of signals. We assume that X is jointly k-sparse, meaning that there are at most k rows in the matrix X that are not identically zero. More formally, we define the support of the matrix X as supp X = L ℓ=1 supp X ℓ , where the support of the ℓth column is supp X ℓ = {j, X jℓ = 0}. Our assumption is that X 0 = k where X 0 is equal to the size of the support. The measurements are given by

Y = AX, Y ∈ C n×L , (1) 
where A ∈ C n×N is a given measurement matrix. Each measurement vector Y ℓ corresponds to a measurement of the corresponding signal X ℓ . The natural approach to determine X given Y is to solve the problem

min X X 0 such that AX = Y. (2) 
However, ( 2) is NP hard in general [START_REF] Davis | Adaptive greedy approximations[END_REF]. Therefore, we consider instead the convex relaxation [START_REF] Tropp | Algorithms for simultaneous sparse approximation: part II: Convex relaxation[END_REF][START_REF] Fornasier | Recovery algorithms for vector valued data with joint sparsity constraints[END_REF][START_REF] Eldar | Robust recovery of signals from a union of subspaces[END_REF] defined by

min X 2,1 = N j=1 X j 2 , subject to AX = Y, (3) 
which promotes joint sparsity, as argued for instance in [START_REF] Fornasier | Recovery algorithms for vector valued data with joint sparsity constraints[END_REF]. In the single channel case L = 1 this is the usual BP principle.

Worst Case Recovery Results

Recovery results for the program (3) were considered in [START_REF] Chen | Theoretical results on sparse representations of multiple-measurement vectors[END_REF][START_REF] Eldar | Robust recovery of signals from a union of subspaces[END_REF][START_REF] Eldar | Block-sparsity: Coherence and efficient recovery[END_REF]. In particular, the lemma below is derived in [START_REF] Chen | Theoretical results on sparse representations of multiple-measurement vectors[END_REF] and follows also from [START_REF] Eldar | Block-sparsity: Coherence and efficient recovery[END_REF].

Proposition 3..1 Let S ⊂ 1, . . . , N and suppose that

A † S a ℓ 1 < 1 for all ℓ / ∈ S, (4) 
with

A † S = (A * S A S ) -1 A * S denoting the pseudo-inverse of A S . Then (3) recovers all X ∈ C N ×L with supp X = S from Y = AX.
Assuming the columns of A are normalized, a ℓ 2 = 1, we can guarantee that (4) holds as long as the coherence µ of A is small enough, where [START_REF] Donoho | Uncertainty principles and ideal atomic decomposition[END_REF] 

µ = max j =ℓ | a j , a ℓ |. (5) 
The following result follows from Proposition 3..1 or from [START_REF] Eldar | Block-sparsity: Coherence and efficient recovery[END_REF] by noting that the block coherence in this setting is equal to µ/d.

Proposition 3..2 Assume that (2k -1)µ < 1. ( 6 
)
Then (3) recovers all X with X 0 ≤ k from Y = AX.
Note that in both of the cited results the conditions do not depend on the number of channels. Indeed, under the same conditions as in Propositions 3..1 and 3..2, it is shown in [START_REF] Tropp | Greed is good: Algorithmic results for sparse approximation[END_REF] that BP will recover a single k-sparse vector. Therefore, if (4) holds, then instead of solving (3) we may as well use BP on each of the columns of Y . The coherence is lower bounded by µ ≥ N -n n(N -1) [START_REF] Strohmer | Grassmannian frames with applications to coding and communication[END_REF]. The lower bound behaves like 1/

√ n for large N , which limits the Proposition 3..2 to maximal sparsities k = O( √ n). To improve on this we can generalize existing recovery results [START_REF] Candès | Stable signal recovery from incomplete and inaccurate measurements[END_REF][START_REF] Candès | The restricted isometry property and its implications for compressed sensing[END_REF] based on RIP to the multichannel setup. The next proposition follows from [START_REF] Eldar | Robust recovery of signals from a union of subspaces[END_REF]:

Proposition 3..3 Assume X ∈ C n×N with δ 2k < √ 2 -1, where δ 2k is the smallest constant δ such that (1 -δ) x 2 2 ≤ Ax 2 2 ≤ (1 + δ) x 2 2 ,
for all vectors x that are 2k-sparse. Let X ∈ C N ×L , Y = AX, and let X be the minimizer of (3). Then

X -X F ≤ Ck -1/2 X -X(k) 1,2
where C is a constant, X F = Tr(X * X) is the Frobenius norm of X, X 1,2 = N j=1 X j 2 , and X(k) denotes the best k-term approximation of X, i.e., supp X(k) consists of the indices corresponding to the k largest row norms X ℓ 2 . In particular, recovery is exact if

| supp X| ≤ k.
It is well known that Gaussian and Bernoulli random matrices A ∈ R n×N satisfy δ 2k ≤ √ 2 -1 with high probability as long as [START_REF] Baraniuk | A simple proof of the restricted isometry property for random matrices[END_REF][START_REF] Candès | Near optimal signal recovery from random projections: universal encoding strategies?[END_REF] n ≥ Ck log(N/k).

Therefore, Proposition 3..3 allows for a smaller number of measurements. However, there is still no dependency on the number of channels. Indeed, under the same RIP condition BP will recover a single k-sparse vector and therefore, as before, BP may as well be applied to each of the columns of Y individually.

Average Case Analysis

Intuitively, we would expect multichannel sparse recovery to perform better than single channel recovery. However, in the worst case setting this is not true as already suggested by the results cited above. The reason is very simple. If each channel carries the same signal, X ℓ = x for ℓ = 1, . . . , L, then also the components of Y = AX are all the same and we do not have more information on the support of X than provided by a single component Y ℓ . This can indeed be proven rigorously.

Proposition 4..1 Suppose there exists a k-sparse vector x ∈ R N that ℓ 1 -minimization is not able to recover from y = Ax. Then there exists a k-sparse multichannel signal X ∈ R N ×L for which mixed ℓ 2 /ℓ 1 -minimization fails on Y = AX.

For the simple proof we refer to the journal version [START_REF] Eldar | Average case analysis for multichannel sparse recovery using convex relaxation[END_REF].

Realizing that (3) is not more powerful than usual BP in the worst case, we seek an average-case analysis. This means that we impose a probability model on the k-sparse X. In particular, as in [START_REF] Gribonval | Atoms of all channels, unite! Average case analysis of multi-channel sparse recovery using greedy algorithms[END_REF], we will assume that on the ksparse support set S the coefficients of X are independent and follow a normal distribution,

X S = ΣΦ (8) 
where Σ = diag(σ j , j ∈ S) ∈ R k×k is an arbitrary diagonal matrix with non-zero diagonal elements σ j , while Φ ∈ R k×L is a Gaussian random matrix, i.e., all entries are independent standard normal random variables. Note that taking Σ to be the identity matrix results in a standard Gaussian random matrix, while taking arbitrary non-zero σ j 's on the diagonal of Σ allows for different variances.

The following recovery condition is instrumental in proving average case recovery results for multichannel BP. It generalizes results of [START_REF] Tropp | Recovery of short, complex linear combinations via l 1 minimization[END_REF][START_REF] Fuchs | On sparse representations in arbitrary redundant bases[END_REF] for the monochannel case.

In order to introduce we need to introduce the sign sgn(X) of a signal matrix,

sgn(X) ℓj = X ℓj X ℓ 2 , X ℓ 2 = 0; 0, X ℓ 2 = 0.
Proposition 4..2 Let X ∈ C N ×L with supp X = S and assume A S to be non-singular. If

sgn(X S ) * A † S a ℓ 2 < 1 for all ℓ / ∈ S (9) 
then X is the unique minimizer of (3).

Combining the above proposition with a concentration inequality for sums of independent random variables that are uniformly distributed on the sphere [START_REF] König | Best Khintchine type inequalities for sums of independent, rotationally invariant random vectors[END_REF], we arrive at the following average case recovery result for multichannel BP.

Theorem 4..3 Let S ⊂ {1, . . . , N } be a set of cardinality k and let X ∈ R N ×L with supp X ⊂ {1, . . . , N } such that the coefficients on S are given by (8) with some diagonal matrix Σ ∈ R k×k . If

A † S a ℓ 2 ≤ α < 1 for all ℓ / ∈ S, (10) 
then with probability at least

1 -N exp - L 2 (α -2 -log(α -2 ) -1) (11) 
(3) recovers X from Y = AX.

The proof of the theorem will appear in the journal version [START_REF] Eldar | Average case analysis for multichannel sparse recovery using convex relaxation[END_REF]. For α < 1 we are guaranteed that the exponent has a negative argument, and therefore the error decays exponentially in L. We note that for the monochannel case L = 1, Theorem 4..3 is contained implicitly in [START_REF] Tropp | On the conditioning of random subdictionaries[END_REF]Theorem 13]. The appearance of the 2-norm in (10) instead of the 1-norm as in (4) makes the condition of the theorem weaker than worst-case estimates.

Let us finally state conditions on the matrix A and the sparsity level k ensuring that A † S a ℓ 2 is small, which is needed in order to apply Theorem 4..3.

Proposition 4..4 Suppose

A has restricted isometry con- stant δ k+1 ≤ δ < 1/2. If S ⊂ {1, . . . , N } has cardinality k then A † S a ℓ 2 ≤ δ 1 -δ < 1 for all ℓ / ∈ S.
Note that in contrast to the worst case result in Proposition 3..3 where a condition on δ 2k is needed, we only require that δ k+1 is small, which is clearly weaker. For random matrices A we have the following bound on A † S a ℓ 2 . Proposition 4..5 Let S ⊂ {1, . . . , N } be a set of cardinality k and suppose that A ∈ R n×N is drawn at random according to a Gaussian or Bernoulli distribution. Then The constant C is no larger than 162/7 ≈ 23.1.

Note that the log-factor in ( 12) enters only as an additive term, while in (7) it appears as multiplicative factor.

Conclusion

Our main result is that under mild conditions on the sparsity and measurement matrix, the probability of failure of multichannel BP (3) decays exponentially with the number of channels. To develop this result we assumed a probability model on the non-zero coefficients of a jointly sparse signal. This shows that multichannel BP outperforms single channel BP applied to each channel individually, on average. Proofs of our theorems, together with improved results for simple thresholding and numerical experiments will appear in [START_REF] Eldar | Average case analysis for multichannel sparse recovery using convex relaxation[END_REF].

A † S a ℓ 2 ≤

 2 δ for all ℓ / ∈ S with probability at least 1 -ǫ provided that n ≥ Cδ -2 [(k + 1) ln(1 + 12/δ) + ln(2N/ǫ)].[START_REF] Eldar | Block-sparsity: Coherence and efficient recovery[END_REF] 
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