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A short note on non-convex compressed sensing

 on the theoretical performance guarantees of the decoders ∆ p . These decoders rely on ℓ p minimization with p ∈ (0, 1) to recover estimates of sparse and compressible signals from incomplete and inaccurate measurements. Our guarantees generalize the results of [2] and [16] about decoding by ℓ p minimization with p = 1, to the setting where p ∈ (0, 1) and are obtained under weaker sufficient conditions. We also present novel extensions of our results in [14] that follow from the recent work of . Finally, we show some insightful numerical experiments displaying the trade-off in the choice of p ∈ (0, 1] depending on certain properties of the input signal.

Introduction

Let Σ N S be the set of all S-sparse vectors,

Σ N S := {x ∈ R N : #supp(x) ≤ S},
and define, qualitatively, compressible vectors as vectors that can be "well approximated" in Σ N S . For p > 0, let σ S (x) ℓ p denote the best S-term approximation error of x in ℓ p (quasi-)norm, i.e., σ S (x) ℓ p := min

v∈Σ N S x -v p .
We are interested in recovering x from its possibly noisy "encoding" b = Ax + e,

where A is an M × N matrix with M < N . Equivalently, we seek accurate, stable, and "implementable" decoders ∆ : R M → R N such that ∆(Ax + e) -x scales well with the noise level e , and is small whenever x is compressible.

In general, the problem of constructing decoders with such properties is non-trivial (even if e = 0) as A is overcomplete. However, if A ∈ R M ×N is in general position, it can be shown that there is a decoder ∆ 0 which satisfies ∆ 0 (Ax) = x for all x ∈ Σ N S whenever S < M/2 [START_REF] Donoho | Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ 1 minimization[END_REF]. This ∆ 0 can be explicitly computed via the optimization problem ∆ 0 (b) := arg min y y 0 subject to b = Ay.
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Unfortunately, ( 2) is combinatorial in nature, thus its complexity grows extremely quickly as N becomes much larger than M . Naturally, one then seeks to replace [START_REF] Candès | Signal recovery from incomplete and inaccurate measurements[END_REF] with a more tractable optimization problem.

Decoding by ℓ p minimization

Define the decoders

∆ ǫ p (b) = arg min x x p subject to Ax -b 2 ≤ ǫ, (3) 
and

∆ p (b) = arg min x p subject to Ax = b, (4) 
with 0 < p ≤ 1. [START_REF] Candès | Signal recovery from incomplete and inaccurate measurements[END_REF][START_REF] Candès | Near-optimal signal recovery from random projections: universal encoding strategies?[END_REF][START_REF] Donoho | Compressed sensing[END_REF][START_REF] Donoho | Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ 1 minimization[END_REF][START_REF] Tropp | Recovery of short, complex linear combinations via l 1 minimization[END_REF], that in the noise-free setting ∆ 1 recovers x exactly if x is sufficiently sparse and if A has certain properties. Furthermore, one has error guarantees even when x is not "exactly" sparse and when the encoding is noisy, e.g., [START_REF] Candès | Signal recovery from incomplete and inaccurate measurements[END_REF][START_REF] Donoho | Compressed sensing[END_REF].

In this note we focus on ∆ p and ∆ ǫ p with 0 < p < 1. Early work by Gribonval and co-authors (e.g. [START_REF] Gribonval | A simple test to check the optimality of sparse signal approximations[END_REF][START_REF] Gribonval | Highly sparse representations from dictionaries are unique and independent of the sparseness measure[END_REF]) presents sufficient conditions for having ∆ p (b) = ∆ 1 (b) = x and stability conditions to deal with noisy encoding. However, these conditions are pessimistic in the sense that they generally guarantee recovery of only very sparse vectors. Recently, Chartrand [START_REF] Chartrand | Exact reconstructions of sparse signals via nonconvex minimization[END_REF] showed that in the noise-free setting, a sufficiently sparse signal can be recovered perfectly with ∆ p , where p ∈ (0, 1), under less restrictive requirements than those needed to guarantee perfect recovery with ∆ 1 . Moreover, in [START_REF] Chartrand | Restricted isometry properties and nonconvex compressive sensing[END_REF], Staneva and Chartrand showed that if A is an M × N Gaussian matrix, recovery of x in Σ N S is guaranteed provided M > C 1 (p)S + pC 2 (p)S log(N/K). In other words, the dependence on N of the required number of measurements M (that guarantees perfect recovery for all x ∈ Σ N S ) disappears as p approaches 0, unlike the case with p = 1. These results motivate a more detailed study of the stability and robustness properties of the decoders ∆ p . In the remainder of the note, we summarize our recent results in [START_REF] Saab | Sparse recovery by nonconvex optimization -instance optimality[END_REF] concerning the theoretical properties of ∆ p and ∆ ǫ p . In addition, we present some extensions of our results on the instance optimality in probability of ∆ p when the entries of A are drawn from any sub-Gaussian distribution. Finally, we present numerical results suggesting scenarios where using ∆ p , p ∈ (0, 1), is better than using ∆ 1 .

Main Results

We begin with the relevant notation. Let δ S , the Srestricted isometry constants of A (see, e.g., [START_REF] Candès | Signal recovery from incomplete and inaccurate measurements[END_REF]), be the smallest constants satisfying

(1 -δ S ) c 2 2 ≤ Ac 2 2 ≤ (1 + δ S ) c 2 2
for every c ∈ Σ N S . We say that a matrix satisfies RIP(S, δ) if δ S < δ. It has been shown that if A is an M × N matrix the columns of which are i.i.d. random vectors with any sub-Gaussian distribution, then A satisfies RIP (S, δ) with S ≤ c 1 M/log(N/M ), δ < 1 with probability > 1 -2e -c2M (see, e.g., [START_REF] Baraniuk | A Simple Proof of the Restricted Isometry Property for Random Matrices[END_REF], [START_REF] Candès | Decoding by linear programming[END_REF]). Following the notation of [START_REF] Wojtaszczyk | Stability and instance optimality for gaussian measurements in compressed sensing[END_REF], we say that a decoder ∆ is (q, p) instance optimal if ∆(Ax) -x q ≤ Cσ S (x) ℓ p /S 1/p-1/q (5)

holds for all x ∈ R N . Moreover, a decoder ∆ is said to be (q, p) instance optimal in probability if (5) holds for any x with high probability on the draw of A. Note that the stability results of Candès et al. [START_REF] Candès | Signal recovery from incomplete and inaccurate measurements[END_REF] imply (2,1) instance optimality of the decoder ∆ 1 , while the results of Wojtaszczyk in [START_REF] Wojtaszczyk | Stability and instance optimality for gaussian measurements in compressed sensing[END_REF] show that ∆ 1 is (2,2) instance optimal in probability if the entries of A are drawn from a Gaussian distribution or if its columns are drawn uniformly from the sphere.

Decoding with ∆ p : stability robustness

We consider the scenario where x is arbitrary and σ S (x) ℓ p is its best S-term approximation error measured in ℓ p (qausi)-norm. In particular, we are interested in controlling the error ∆ ǫ p (b) -x p 2 .

Theorem 1 Let p ∈ (0, 1] and let x be arbitrary. Suppose that

δ kS + k 2 p -1 δ (k+1)S < k 2 p -1 -1, (6) 
for some k > 1, kS ∈ Z + . Let b = Ax + e where e 2 ≤ ǫ. Then ∆ ǫ p (b) satisfies ∆ ǫ p (b) -x p 2 ≤ C (1) ǫ p + C (2) σ S (x) p ℓ p S 1-p/2 , (7) 
where C (1) and C (2) are given in [START_REF] Saab | Sparse recovery by nonconvex optimization -instance optimality[END_REF].

Remark 2 This is a straightforward generalization of the results of [START_REF] Candès | Signal recovery from incomplete and inaccurate measurements[END_REF] regarding the performance of ∆ 1 . In fact, by setting p = 1 in the above theorem, we obtain the main theorem of [START_REF] Candès | Signal recovery from incomplete and inaccurate measurements[END_REF], with precisely the same constants.

Remark 3 Using ǫ = 0 in the above theorem, we find that the decoder ∆ p is (2, p) instance optimal. Similarly, assuming x ∈ Σ N S (hence σ S (x) ℓ p = 0), we see that ∆ ǫ p can stably recover sparse signals.

We can also compare S p , the sparsity of vectors that are guaranteed to be recovered with ∆ p and S 1 , the sparsity of vectors that are guaranteed to be recovered with ∆ 1 . This helps illustrate the possible benefits of using ∆ p over using ∆ 1 in recovering sparse signals.

Corollary 4 (relationship between S 1 and S p ) Suppose for some k and S 1 , δ (k+1)S1 < k-1 k+1 . Then ∆ 1 recovers S 1 -sparse vectors and ∆ p recovers S p -sparse vectors with

S p ≥ k + 1 k p/(2-p) + 1 S 1 .

Instance optimality in probability of ∆ p

In [START_REF] Cohen | Compressed sensing and best k-term approximation[END_REF], it was shown that no decoder, ∆ : R M → R N , is (2, 2) instance optimal unless M ∼ N . In this section, we show that ∆ p is (2, 2) instance optimal in probability. Our approach is similar to that of [START_REF] Wojtaszczyk | Stability and instance optimality for gaussian measurements in compressed sensing[END_REF], which we summarize now. Denoting by B K q the unit ball of ℓ q in K dimensions, a matrix A is said to possess the LQ 1 (α) property if and only if

A(B N 1 ) ⊃ αB M 2 .
In [START_REF] Wojtaszczyk | Stability and instance optimality for gaussian measurements in compressed sensing[END_REF], Wojtaszczyk shows that random Gaussian matrices of size M × N , as well as matrices whose columns are drawn uniformly from the sphere posses the LQ 1 (α) property, α = µ log (N/M ) M with high probability. Here µ < 1/ √ 2 is a constant. Noting that such matrices also satisfy RIP ((k + 1)S, δ) with S < c M log(N/M ) with high probability, Wojtaszczyk proves that ∆ 1 , with these matrices, is (2,2) instance optimal in probability. Our proof of the analogous result for ∆ p , p ∈ (0, 1), relies on the non-trivial generalization of the LQ 1 property to an LQ p (α)

property with α = 1/C p µ 2 log (N/M ) M (1/p-1/2)
. Specifically, we say that a matrix A satisfies LQ p (α) if and only if

A(B N p ) ⊃ αB M 2 .
Below, we will use A ω to denote matrices whose entries are drawn from a zero mean, normalized column variance Gaussian distribution and Ãω to denote matrices drawn uniformly from the sphere. The following lemma states that the matrices A ω and Ãω satisfy the LQ p property with high probability.

Lemma 5 Ãω and A ω satisfy the LQ p (α) property with

α = 1/C p µ 2 log (N/M ) M 1/p-1/2
with probability ≥ 1e -cM on the draw of the matrix. Here, C p is a constant that depends only on p, µ < 1/ √ 2 is a constant, and c is a constant that depends on µ. Proving Lemma 5 is non-trivial and requires a result by [START_REF] Gordon | Local structure theory for quasi-normed spaces[END_REF], relating the distances of p-convex bodies to their convex hulls. On the other hand, this lemma provides the machinery needed to prove the following theorem, which extends an analogous result of Wojtaszczyk [START_REF] Wojtaszczyk | Stability and instance optimality for gaussian measurements in compressed sensing[END_REF].

Theorem 6 Let A ω ∈ R M ×N , ω ∈ Ω, be a random matrix with entries drawn independently from a zero-mean, normalized column variance Gaussian distribution, and let (Ω, P ) be the associated probability space. There exists constants c 1 , c 2 , c 3 > 0 such that for all S ≤ c 1 M/ log (N/M ), the following are true.

(i) ∃Ω 1 , with P (Ω 1 ) ≥ 1 -e -c2M , such that ∀x ∈ R N , ∀e ∈ R M and ∀ω ∈ Ω 1 ∆ p (A ω (x)+e)-x 2 ≤ C( e 2 + σ S (x) ℓ p S 1/p-1/2 ), ( 8 
) (ii) ∀x ∈ R N , ∃Ω x , with P (Ω x ) ≥ 1 -e -c3M , such that ∀e ∈ R M and ∀ω ∈ Ω x ∆ p (A ω (x)+e)-x 2 ≤ C ( e 2 + σ S (x) ℓ 2 ) . (9)
The statement also holds for A ω .

Note that the constants above (both denoted by C) rely on the parameters of the particular LQ p and RIP properties that the matrix satisfies, and are omitted for ease of exposition. For the proofs of Lemma 5 and Theorem 6 see [START_REF] Saab | Sparse recovery by nonconvex optimization -instance optimality[END_REF]. Finally, we present the following extension of Theorem 6.

Proposition 7

The conclusions of Theorem 6 also hold when the entries of A are i.i.d., drawn from a sub-Gaussian distribution.

Our proof of the above proposition, which we omit here, relies on the recent work of [START_REF] Devore | Instance-optimality in probability with an ℓ 1minimization decoder[END_REF] where the LQ 1 (α) property was modified, allowing the authors to show the (2,2) instance optimality of ∆ 1 when the entries of the matrix A are drawn from any sub-Guassian distribution.

Numerical Experiments

In this section, we present some numerical experiments to highlight important aspects of sparse recovery using ∆ p , 0 < p ≤ 1. First, we are interested in the sufficient conditions under which decoding with ∆ p can guarantee perfect recovery of signals in Σ N S for different values of p and S. Our goal is to show empirically that with smaller values of p ∈ (0, 1), ∆ p allows recovery of less sparse signals than would have been possible with larger values of p, as Theorem 1 predicts. To that end, we generate a 100 × 300 matrix whose columns are drawn from a Gaussian distribution and estimate its RIP constants δ S via Monte Carlo (MC) simulations. Under the assumption that the estimated constants are the correct ones (while in fact they are only lower bounds), Figure 1(a) shows the regions where (6) guarantees recovery for different (S, p)-pairs. On the other hand, Figure 1(b) shows the empirical recovery rates using the same matrix with fifty different instances of x ∈ Σ N S , and decoding by ∆ p , where we choose the non-zero coefficients of x randomly from the Gaussian distribution. Here, we compute ∆ p (Ax), as a solution to the ℓ p optimization problem of (4) by using a projected gradient algorithm on a smoothed version of x p p , namely i (x 2 i + ǫ 2 ) p/2 , where the solution to each subproblem, starting with a large ǫ is used as an initial estimate for the next subproblem with a smaller ǫ. Note that this approach is similar to the one described in [START_REF] Chartrand | Exact reconstructions of sparse signals via nonconvex minimization[END_REF]. Clearly, the empirical results show that ∆ p is successful in a wider range of scenarios than those predicted by Theorem 1. This can be attributed to the fact that the conditions presented in this paper are only sufficient. Moreover, what is observed in practice is not necessarily a manifestation of uniform recovery. Rather, the practical results could be interpreted as success of ∆ p with high probability on either x or A. In our second set of experiments, we wish to observe the instance optimality of ∆ p , i.e., the linear growth of the ℓ 2 reconstruction error ∆ p (Ax) -x 2 , as a function of σ S (x) ℓ 2 . To that end, we generate scenarios that allude to the conclusions of Theorem 6. We generate a signal composed of x T ∈ Σ 300 S , supported on an index set T , and a signal z T c supported on T c = {1, 2, ..., 300}\T , where all the coefficients are drawn from the Gaussian distribution and x T 2 = z T c 2 = 1. We then set x λ = x T + λz T c with increasing values of λ starting from 0, i.e., x λ be-comes less compressible as λ increases, and T is the "effective support" of x λ . Next, we choose our measurement matrix A ∈ R 100×300 by drawing its columns uniformly from the sphere. For each value of λ we measure the reconstruction error ∆ p (Ax λ ) -x λ 2 , and we repeat the process 50 times while randomizing the index set T but preserving the coefficient values. We report the averaged results for different values of p with S = 5 in Figure 2(a) and S = 35 in Figure 2(b). Note that when S = 5, ∆ 1 provides the best performance, and the performance of ∆ p degrades monotonically as p decreases. On the other hand, when S = 35, ∆ p with p = 0.4 provides the best performance and the performance degrades as p increases.

We investigate this observation further by examining the performance as a function of S ∈ {5, 10, ..., 35}. In Figure 3, we plot the value of an "empirical effective constant" which we calculate as the maximum of ∆ p (Ax λ ) -x λ 2 /λ as λ > 0 varies. This constant acts as a surrogate for C in ( 9) assuming that such a constant exists and that σ S (x) ℓ 2 = λz T c 2 = λ. The behavior gradually changes from favoring p = 1 when S, the size of the effective support of x λ , is small to favoring p = 0.4 as S increases.

A closer look at the explicit value of the constant in Theorem 6 sheds some light on this behavior. Below, we use the notation of [START_REF] Saab | Sparse recovery by nonconvex optimization -instance optimality[END_REF]. The constant C in (9) behaves like (2C (2) ) 1/p /γ p (where C (2) and γ p are explicitly given in [START_REF] Saab | Sparse recovery by nonconvex optimization -instance optimality[END_REF]). Specifically, 1/γ p depends only on the matrix A and increases exponentially as p decreases, while C (2) , the constant in Theorem 1, depends on p, as well as k and δ (k+1)S (where k > 1 is a free parameter). When S is relatively small, the associated RIP constants remain small, which consequently implies that [C (2) ] 1/p remains small provided p is isolated away from 0. In this case, the behavior of C is determined by that of γ p , i.e., C is smallest when p = 1. On the other hand, when S is large, [C (2) ] 1/p grows as p approaches 1 (this is a manifestation of the more restrictive RIP requirements for larger p as stated in [START_REF] Chartrand | Restricted isometry properties and nonconvex compressive sensing[END_REF]). This increase seems to be dominating the behavior of C, thus for larger S we get better effective constants with smaller p. Such a heuristic could be an interpretation of the behavior we observe in Figure 3. For a rigorous quantitative analysis, one needs to identify the s-restricted isometry constants of the matrix A for every s. Such a treatment is beyond the scope of this note. 
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 12 Figure 1: For a Gaussian matrix A ∈ R 100×300 , whose δ S values are estimated via MC simulations, we generate the theoretical (a) and practical (b) phase-diagrams for reconstruction via ℓ p minimization. The lighter shading indicates higher recoverability rates. .
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 3 Figure 3: The empirical effective constant as a function of S for different values of p. Note the gradual change favoring p = 1 when S is small to p = 0.4 as S increases.