
HAL Id: hal-00452091
https://hal.science/hal-00452091

Submitted on 1 Feb 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Opportunistic Software Deployment in Disconnected
Mobile Ad Hoc Networks

Frédéric Guidec, Nicolas Le Sommer, Yves Mahéo

To cite this version:
Frédéric Guidec, Nicolas Le Sommer, Yves Mahéo. Opportunistic Software Deployment in Discon-
nected Mobile Ad Hoc Networks. International Journal of Handheld Computing Research, 2010, 1
(1), pp.24-42. �10.4018/jhcr.2010090902�. �hal-00452091�

https://hal.science/hal-00452091
https://hal.archives-ouvertes.fr


Opportunistic Software
Deployment in Disconnected

Mobile Ad Hoc Networks
Frédéric Guidec, Nicolas Le Sommer and Yves Mahéo
Valoria, Université Européenne de Bretagne, France

ABSTRACT

This paper presents a middleware platform
allowing the dissemination of software com-
ponents on handheld devices forming a dis-
connected MANET. It is based on a model
that exploits peer-to-peer and opportunistic
interactions between neighboring devices to
deploy component-based applications, with-
out relying on any kind of infrastructure net-
work. Each device runs a deployment man-
ager, which strive to fill a local component
repository with software components so as to
be able to satisfy the deployment requests ex-
pressed by the user. To do so the deployment
manager interacts with peer managers located
on neighboring devices, providing its neigh-
bors with copies of software components it
owns locally, while obtaining itself from these
neighbors copies of components it lacks. The
platform also provides communication facili-
ties adapted to disconnected MANETs that no-
tably allow efficient multi-hop exchanges.

Keywords: ubiquitous computing, pervasive
computing, mobile ad hoc networks, software com-
ponent deployment, opportunistic networking.

INTRODUCTION

An approach to handle the complexity of mod-
ern software applications is to define these
applications as assemblies of software com-
ponents. Software components are indepen-
dent, reusable and replaceable units of soft-
ware that are meant to fulfill a well-defined
function in an application [Szyperski, 1998].
An important research topic about software
components aims at defining how component-
based applications can be deployed on a tar-
get platform. Some works about software
deployment have contributed to identify in-
terrelated activities needed for this deploy-
ment. For example in [Carzaniga et al., 1998,
Lestideau et al., 2002] it has been proposed to
distinguish between activities pertaining to the
provision, the delivery, the installation, the
configuration, the execution, the adaptation,
and the removal of software components. In
this paper we mostly focus on two of these ac-
tivities, namely the provision and the delivery
of software components.

The originality of our work lies in the fact

1



that the target platforms we consider for com-
ponent deployment are disconnected mobile
ad hoc networks composed of lightweight mo-
bile devices capable of wireless ad hoc com-
munication (e.g., laptops, netbooks, mobile In-
ternet devices, smartphones). A mobile ad hoc
network (MANET) is a network that can ap-
pear and evolve spontaneously as mobile de-
vices themselves appear, move and disappear
dynamically [Perkins, 2001]. Traditionally,
MANETs are considered connected, allowing
a device to communicate with any other in the
network temporaneously, thanks to routing by
the other devices. However, in many realistic
conditions, for example when devices are dis-
tributed sparsely or irregularly, a MANET can
become disconnected, and get fragmented into
communication islands.

For the users of laptops and handheld de-
vices, the prospect of deploying software
applications on these devices as and when
needed obviously appears as an attractive one,
no matter if these devices communicate in in-
frastructure or in ad hoc mode. Yet, the speci-
ficities of MANETs, and especially those of
disconnected MANETs, lead us to reconsider
the software deployment problem in this par-
ticular context.

In this paper we describe a model for soft-
ware component deployment on disconnected
MANETs, as well as a platform that imple-
ments this model. The paper is organized
as follows. We first motivate our work by
showing how infrastructure-based networks
and disconnected MANETs constitute radi-
cally different environments as far as the prob-
lem of software deployment is concerned. We
then present the main characteristics of a plat-
form we designed, which provides a spe-
cific communication support for disconnected

MANETs and a protocol for software deploy-
ment in such networks. Finally, the results we
obtained by running our middleware platform
on a mobile ad hoc network simulator are pre-
sented before discussing about related works
and concluding the paper.

RATIONALE

In this section we show that deploying soft-
ware components in an ad hoc network raises
issues that usually do not appear in infrastruc-
ture networks. As a reminder, we first describe
how software component provision and deliv-
ery are usually performed in an infrastructure-
based environment. We then show that a dis-
connected MANET presents additional con-
straints that need to be addressed specifically.

Software deployment in
an infrastructure network

In an infrastructure network, some stable hosts
can be in charge of storing components in so-
called component repositories, and of imple-
menting server programs capable of delivering
these components on demand. Other hosts in
the network can then behave as simple clients
with respect to these servers. Whenever the
owner –or the administrator– of one of the
client hosts initiates the deployment of a new
component-based software application on this
device, the problem mostly comes down to lo-
cating at least one of the servers capable of
providing the components required by this ap-
plication, and downloading these components
so they can be installed locally. A component
may actually be provided by several servers,
for example in order to balance the workload

2



Figure 1: Illustration of a disconnected MANET

in the network, or to allow fault tolerance. In
any case, once a client has identified a server
that can provide a component, obtaining this
component simply requires its download from
the server to the client. Note that in such a
context the deployment of a component on a
given host can usually be considered as a “real
time” operation: once a user has ordered the
deployment middleware to locate and down-
load a component, this operation can usually
be performed immediately.

In the remainder of this section, we show
that deploying components in an ad hoc envi-
ronment can in contrast require a more lengthy
process, which requires some middleware ca-
pable of enforcing a deployment strategy in the
background on behalf of the user.

Disconnected mobile ad hoc
networks

A MANET is formed spontaneously by a num-
ber of mobile devices communicating through
radio interfaces (such as Bluetooth or Wi-Fi

interfaces), without relying on any infrastruc-
ture. The devices in such a network are usu-
ally highly mobile and volatile. Device mo-
bility results from the fact that each device is
carried by a user, and users themselves move
quite a lot. Device volatility is the conse-
quence of the fact that, since the devices usu-
ally have a limited power-budget, they are fre-
quently switched on and off by their owners.

A major characteristic of wireless ad hoc
networks is that communication interfaces
have a limited transmission range. Conse-
quently any device can only communicate di-
rectly with neighboring devices. Multi-hop
transmissions can be however obtained by im-
plementing a dynamic routing algorithm on
each device [Zhang, 2006, Pelusi et al., 2006].
Yet, most of the current dynamic routing al-
gorithms cannot operate on many realistic net-
works that show a low density, a high volatil-
ity or a high mobility of nodes. These chal-
lenging networks are often calleddisconnected
MANETs. Indeed, a disconnected MANET
appears as a –possibly continuously changing–

3



collection of so-called “connectivity islands”.
Mobile devices that belong to the same island
can communicate together, using either multi-
hop or single-hop transmissions. However,
no temporaneous transmission is possible be-
tween devices that belong to distinct islands.

Figure 1 depicts an example of a discon-
nected MANET in which some laptops and
handheld devices with Wi-Fi interfaces, sym-
bolized with dots, are scattered in four build-
ings. The users that hold these devices can
move freely inside and between the buildings.
An opportunity for two devices to commu-
nicate (meaning they are within radio range
of each other) is represented by a vertex be-
tween the two corresponding dots. The figure
also shows the communication islands result-
ing from the limited radio range of the devices’
interfaces.

Software deployment in
a disconnected mobile
ad hoc network

In a disconnected MANET, the traditional
client-server deployment scheme is hardly ap-
plicable, for no device is stable and accessible
enough to play the role of a server of compo-
nents, maintaining a component repository and
allowing client devices to access this reposi-
tory whenever needed.

In the remainder of this paper, we present a
model we propose in order to allow for these
constraints. Basically, instead of being able to
access a server whenever needed, each device
must maintain a local component repository. A
fully decentralized and opportunistic interac-
tion model then makes it possible for a device
to cooperate with its neighborhood, by allow-

ing its neighbors to obtain copies of the soft-
ware components available on its local reposi-
tory, while itself benefiting from a similar ser-
vice offered by its neighbors.

Consider the example shown in Figure 2,
and assume that the owner of deviceA wishes
to install on this device an application that re-
quires componentsc1, c2 andc3. In our ex-
ample, A can obtain componentsc1 and c2
from deviceB. But as devicesC andE –that
both own a copy of componentc3– are cur-
rently unreachable,A cannot readily obtain a
copy of componentc3 from any of these de-
vices. YetA could obtain componentc3 from
deviceC if this device was switched on by its
user. It could also obtain this component from
deviceE if A’s user happened to walk towards
E, or if E’s user happened to walk towardA. A
roaming device such asD may even serve as a
benevolent carrier betweenE andA, transport-
ing component c3 –and possibly other compo-
nents as well– between separate islands, and
thus contributing to the dissemination of soft-
ware components and applications all over the
network.

This example shows that when the owner
of a mobile device participating in a discon-
nected MANET requests the deployment of a
component-based application on this device,
there is no guarantee that this request can be
satisfied immediately, as there is no guaran-
tee that the components required for this de-
ployment are accessible in the neighborhood.
Yet, since the structure of an ad hoc network
can change continuously and unpredictably,
the fact that a given component cannot be ob-
tained at a given time does not involve that this
component will remain inaccessible in the fu-
ture. There is thus a need for some deployment
middleware capable of ensuring the collection

4



Figure 2: Illustration of software component deployment ina disconnected MANET

of missing components in the background in
order to satisfy the user’s needs.

DEPLOYMENT PLATFORM

In this section, we present an overview of
CODEWAN (COmponent DEployment in Wire-
less Ad hoc Networks), a platform we de-
signed in order to support the deployment
of component-based software applications on
disconnected MANETs. CODEWAN imple-
ments a cooperative model, whereas neigh-
boring devices interact opportunistically in or-
der to discover and exchange software compo-
nents. Each device implements a local com-
ponent repository, and a deployment manager
is responsible for maintaining this repository
on behalf of the user. Any component stored
in the repository can be used to assemble and
start an application locally. Copies of this
component can also be sent on demand to
neighboring devices.

Architecture of the
CODEWAN platform

As shown in Figure 3, the platform is com-
posed of three layers: an opportunistic com-
munication layer, a component deployment
layer, and an execution layer. The exe-
cution layer is meant to provide a frame-
work for assembling and running component-
based applications. The CODEWAN platform
is not strongly dependent on a specific ex-
ecution framework, or on a particular com-
ponent model. Actually the focus in this
platform is put on the dissemination of soft-
ware components rather than on the assem-
bly and execution of component-based appli-
cations. The only condition is that compo-
nents in the model considered can be trans-
mitted and stored in packages, and that the
execution framework can be adapted so as
to take components from the local repos-
itory maintained by the platform’s deploy-
ment manager. CODEWAN currently in-
terfaces with the JAMUS execution frame-
work [Le Sommer and Guidec, 2002], with
JULIA (a framework that implements the Frac-

5



tal component model [Bruneton et al., 2004]),
with Cubik (a distributed component platform
based on Fractal [Hoareau and Mahéo, 2008]),
and with Felix1 (a service-oriented frame-
work for OSGi bundles). It could also be
easily interfaced with OSGi platforms imple-
menting a secure deployment of bundles such
as Secure-Felix [Parrend and Frénot, 2007] or
J2ME platforms in order to deploy MIDlets on
smartphones [Muchow, 2002].

Opportunistic
communication layer

The communication support in CODEWAN

was designed to disseminate so-calledtrans-
fer documentsin a disconnected MANET.
A transfer document combines a header that
specifies the conditions required for dissemi-
nating the document in the network, and a pay-
load. The header is expressed in XML. It indi-
cates typically the document’s source and des-
tination, the expected propagation scope for
this document, etc. The payload can be com-
posed of application descriptors or software
packages themselves.

The communication layer provides ser-
vices for encapsulating transfer documents in
UDP datagrams. Large documents can be
fragmented and then transported in distinct,
smaller transfer documents that each can fit in
a single UDP datagram. The communication
layer of course supports the re-assembly of
such fragments after they have been received
from the network.

The communication layer supports both uni-
cast and broadcast transmissions. Radio-
based transmissions are of course only pos-

1http://felix.apache.org

sible between direct neighbors (that is, mo-
bile devices that are within radio transmis-
sion range of each other), but in order to
allow each mobile device to interact with a
larger set of neighbors the communication
layer also implements temporaneous multi-
hop forwarding algorithms. Experiments we
conducted previously show that these algo-
rithms significantly improve the efficiency
of information dissemination in disconnected
MANETS [Haillot and Guidec, 2008]. Thus,
a device can either broadcast a message that
will reach all devices in itsk-neighborhood
(that is, all devices that are accessible with up
to k successive transmission hops), or send a
message in unicast mode to any device in this
k-neighborhood. The maximum value fork is
a parameter in the platform configuration.

Remember however that since the ad hoc
network we consider is fragmented in a num-
ber of connectivity islands, there is very lit-
tle chance that a device can ever send a mes-
sage to all other devices in the network us-
ing only temporaneous multi-hop forwarding.
In the best case, a message sent by a device
can only reach hosts that belongs to the island
it itselfs belongs to. Supporting temporane-
ous multi-hop forwarding between mobile de-
vices is therefore not sufficient in the kind of
network we consider. It does not prevent all
mobile devices from storing packages and de-
scriptors in their local repository, so they can
bridge the gap between different islands by
carrying these elements while moving in the
network.

Broadcast message forwarding

Multi-hop broadcasting in a MANET is
known to be a bandwidth-consuming ac-

6



Figure 3: Architecture of the CODEWAN platform

tivity, which can occasionally lead to the
so-called “broadcast storm” problem. In
order to limit the overhead due to mes-
sage broadcasting, we implemented a mech-
anism that is inspired from that used in
the Optimized Link State Routing (OLSR)
protocol for diffusing link-level information
in the network [Clausen and Jacquet, 2003,
Qayyum et al., 2002]. Basically, each node
regularly selects a subset of its direct neigh-
bors as multi-point relays (MPR), and it then
relies exclusively on these MPRs for forward-
ing broadcast messages beyond its own radio
range.The scope of a broadcast can be con-
trolled by specifying how many hops a mes-
sage is allowed to perform while being re-
layed by MPRs. Figure 4-a shows an example,
where hostA broadcasts a message. In this ex-
ample the message is allowed to propagate up
to its 3-hop neighbors, but not further.

The algorithm used by each host to con-
struct its MPR set is not detailed in this
paper for the sake of brevity. Indeed we
use the same algorithm as that described
in [Qayyum et al., 2002]. Basically, each host

must periodically broadcast a control mes-
sage in order to inform its direct (one-hop)
neighbors about its presence in the network,
while informing these neighbors about its
own current vision of its neighborhood. By
receiving such control messages, each host
can identify its one-hop and two-hop neigh-
bors, and use this information to calculate
its MPR set. With the approach described
in [Qayyum et al., 2002], specific control mes-
sages are broadcast periodically, that contain
the information needed for calculating MPR
sets. In our implementation, this informa-
tion is piggy-backed in the announcements the
deployment layer of the CODEWAN platform
must also broadcast periodically. Thus the cal-
culation of MPR sets does not imply sending
any additional message in the network: both
kinds of control information (required by both
layers of the protocol) are broadcast together
in the network.

Unicast message forwarding

In CODEWAN, unicast messages serve as
replies to announcements diffused by compo-

7



Figure 4: Illustration of the two kinds of temporaneous message forwarding supported

nent owners. Unicast messages must thus be
forwarded towards the sender of a broadcast
message. Source-routing is used as a means to
perform this forwarding. Each broadcast mes-
sage that propagates in the network encapsu-
lates a history of the hosts by which it has been
forwarded so far. Thus, whenever the receiver
of a broadcast message decides to reply to this
message, the path for sending this reply to its
source is simply deduced from the path the
former broadcast message has followed before
reaching the receiver. Note that, in order to
be effective, this approach requires that when
a host decides to reply to a broadcast message,
this reply is sent immediately after the broad-
cast message has been received. In such condi-
tions, the path the broadcast message has fol-
lowed downwards to reach the receiver is still
valid in the network, so it can be followed up-
wards to the sender of the broadcast message.

Consider again the example shown in Fig. 4-
a, and assume that hostsB, Q, andO decide
to reply to the message broadcast byA. Fig-
ure 4-b shows how their replies can propagate
upwards along the path the broadcast message

has just followed downwards, each reply con-
taining a specification of the path it must fol-
low before reaching hostA.

Overview of the component
deployment layer

In the remainder of this paper we focus on the
description of the central layer of the platform.
The deployment manager is implemented in
this layer, together with the component repos-
itory this manager is in charge of maintain-
ing. The repository is a place where software
components can be stored locally on a mo-
bile device. Components stored in this reposi-
tory are thus readily available for the execution
framework that constitutes the upper layer of
the platform. The deployment manager takes
orders from the user, and interacts with peer
managers that reside on neighboring devices
in order to fill the local repository with com-
ponents required by the user, while providing
its peers with components they need in order
to satisfy their own users.

8



Figure 5: Screenshot of the graphical interface of the deployment manager (running on an iPaq)

User interface

The deployment manager implements an inter-
face that provides the user with a view of all
the applications it is aware of. Using this in-
terface the user can observe the status of each
application. At any time a given application is
either:� installed locally(meaning that this appli-

cation is either already running in the lo-
cal execution framework, or ready to be
loaded and started in this framework);� installable (meaning that all the compo-
nents required for running this applica-
tion are available in the local repository,
so the application could be installed im-
mediately if the user requested it);� not installable yet(meaning that some of
the components required by this applica-
tion are not present in the local reposi-
tory).

Besides observing the status of each applica-
tion, the user can modify this status, request-
ing for example that an application be started
(which requires that this application be already

installed locally), or that an application be
uninstalled (and all its components removed
from the repository). Additionally the user can
initiate the deployment of an application, thus
instructing the deployment manager to try to
obtain any missing component for this appli-
cation from neighboring devices.

CODEWAN implements a basic interface
that runs in console mode. Additionally, a
number of graphical interfaces have been de-
signed in order to facilitate the interaction be-
tween the user and the deployment manager
running on a mobile device. For example Fig-
ure 5 shows an interface that was designed for
personal digital assistants. Note that, as a gen-
eral rule, the user is only presented a view
of the applications the deployment manager is
aware of. The deployment manager could ac-
tually provide the user with more detailed in-
formation, for example by showing the status
of any basic component that resides in the local
repository. Yet we expect that in most circum-
stances a user should find it more convenient to
consider only the status of full-featured appli-
cations, thus letting the deployment manager
deal with petty details such as component re-
trieval and storage.

9



Software components,
applications and packages

The deployment of component-based applica-
tions implies that components be transmitted
in the network, and stored in local reposi-
tories. Before they can be loaded and exe-
cuted in a runtime framework, software com-
ponents are encapsulated in so-calledsoft-
ware packages, that can be considered as stor-
age and transfer envelopes for these compo-
nents. Besides encapsulating the actual code
of the components, software packages can ad-
ditionally encapsulate some data required by
a software component or application. They
can also encapsulate documents describing the
overall architecture of a component-based ap-
plication (such as CCM component assem-
blies [OMG, 2002], architecture descriptors in
the Fractal model [Bruneton et al., 2004], or
manifests of OSGi bundles).

Package descriptors

Each software package in CODEWAN is as-
sociated a package descriptor that provides
meta-information about the package. Figure 6
shows the descriptor associated with the main
component of a messaging application. This
descriptor provides information about this ap-
plication, such as its name, version number,
provider, etc. It also indicates that in order
to be assembled this application requires com-
ponents that can themselves be found in three
other software packages. This example shows
that when the components encapsulated in a
particular package depend on components that
are encapsulated in other packages, this in-
formation is mentioned explicitly in package
descriptors. Dependencies between packages

can also appear when a package contains only
the description of the architecture of an appli-
cation, while other packages encapsulate com-
ponents that are required for assembling this
application, or data that are needed for running
this application.

Notice that in the example shown in Fig-
ure 6, attributetype indicates that package
“JMessagerImpl” actually describes an appli-
cation, rather than a single collection of com-
ponents. This information is important for the
deployment manager, as it makes it possible to
present the user with a view of all known ap-
plications (through the interface discussed pre-
viously), rather than with a view of all known
software packages.

Software packages

As mentioned above software packages can
encapsulate software components, as well as
plain data or application architecture descrip-
tions. A software package usually encapsu-
lates its own descriptor, but this descriptor can
also be extracted from the package and pro-
cessed separately whenever needed. Figure 7
shows the general structure of a software pack-
age, which in this particular case combines the
package’s descriptor together with a collection
of software components.

The actual format we use for encapsulat-
ing the code of software components in trans-
fer documents is not detailed in Figure 7
for the sake of readability. Indeed, the cur-
rent implementation of the CODEWAN plat-
form allows meta-information (such as appli-
cation and component descriptors) to be for-
matted as XML documents, while the code of
a component is kept in binary form. More-
over, all XML documents are systematically

10



Figure 6: Example of a package descriptor

Figure 7: Example of a software package

11



compressed using the LZ77 algorithm, as de-
fined in [Ziv and Lempel, 1978]. This ap-
proach compensates for the verbosity of XML
structures, since most descriptors in CODE-
WAN can be compressed with an average 12:1
compression ratio.

Communication protocol
between deployment managers

Interaction between the deployment man-
agers running on neighbor devices relies on
a protocol that is inspired from the so-
called Autonomous Gossiping (A/G) algo-
rithm [Datta et al., 2004], which itself fits in
the general model of epidemic routing, as pro-
posed in [Vahdat and Becker, 2000]: transient
contacts between mobile devices are exploited
opportunistically by the deployment managers
to exchange application descriptors and soft-
ware packages according to each manager’s
needs. Indeed, for each application it has been
ordered to install locally, a deployment man-
ager maintains a list of the software packages
it is missing, and must thus obtain from other
devices (some kind of a “shopping list”, actu-
ally).

Periodically, each deployment manager
broadcasts an announcement in order to in-
form its neighbors (if any) about its identity
and about its current “shopping lists” (one list
for each application whose installation is in
progress). This announcement can optionally
include a catalog of descriptor and package
identifiers, as explained below.

By sending an announcement periodically,
a deployment manager informs its neighbors
about its presence and about the software
packages it is interested in. Conversely, by

receiving similar announcements a deploy-
ment manager discovers its neighbors, and
learns about the packages they are looking for.
By matching its neighbors’ “shopping lists”
against the packages it maintains in its local
repository, a deployment manager can identify
packages that might be of interest to them. It
can thus build a catalog containing the iden-
tifiers of these packages, and incorporate this
catalog in its next announcement.

In the current implementation of our proto-
col, the identifiers of the application descrip-
tors available in the local repository are also
systematically included in the catalog. Thus,
each deployment manager systematically pro-
poses to provide its neighbors with the descrip-
tors of applications they may have never heard
about. This approach allows application de-
scriptors to disseminate rapidly in the network
by being passed from deployment manager to
deployment manager, while packages are only
passed selectively to the deployment managers
that need them. As the size of a package can
be relatively large, this behavior is much more
frugal in terms of network load than the one
based only on package transmissions.

Note that a deployment manager that dis-
covers that it owns one or several packages
a neighbor is looking for does not send this
package immediately to this neighbor. Indeed,
when a deployment manager broadcasts an an-
nouncement indicating that it is looking for
a particular package, several of its neighbors
might be able to provide this package. In or-
der to prevent that these neighbors all send the
same package simultaneously, the protocol we
designed is defined in such a way that they can
only offer to provide this package. The actual
transmission of a package or application de-
scriptor is only performed on demand.

12



Thus, upon receiving a catalog each deploy-
ment manager matches the identifiers it con-
tains against its current “shopping lists” in or-
der to identify packages that match at least
one of these lists, that is, packages it is inter-
ested in. Additionally, it also parses the cat-
alog in order to identify application descrip-
tors that are not already available in its repos-
itory. If such elements (i.e. software packages
or application descriptors) are identified, then
a request for these elements is sent to the an-
nouncer, which complies by broadcasting the
required elements. Again, note that a deploy-
ment manager may sometimes discover that
an element it is missing can be provided by
several of its neighbors. In that case this de-
ployment manager is only allowed to request
the desired element from one neighbor. If that
neighbor fails to provide the element, then the
requestor will get another chance of obtaining
this element from another neighbor after the
next round of periodic announcements. Note
also that when a deployment manager is re-
quested to provide an element, this element is
broadcast on the radio channel, rather than be-
ing sent only to the requestor in unicast mode.
Thus, when several neighbors of the sender are
interested in the same element, they can all be
satisfied by a single broadcast, rather than by a
sequence of unicast transmissions.

Finally, when a deployment manager re-
ceives an element it has requested, this ele-
ment is put in the local repository so it can later
be proposed to other deployment managers en-
countered while moving in the network.

Major steps of
an application’s deployment

Learning about new applications

At any time the deployment manager run-
ning on a mobile device maintains in the local
repository a collection of application descrip-
tors. Some of these descriptors correspond to
applications that are not installable yet, mean-
ing that some of the packages required for as-
sembling these applications are not available
locally. The deployment manager can thus
be “aware of” the existence of an application,
even though this application is not installed lo-
cally.

As explained in the former section, a de-
ployment manager learns about new applica-
tions by continuously collecting application
descriptors from neighbor hosts, while provid-
ing its neighbors with the descriptors it already
maintains in its repository. Neighboring de-
ployment managers therefore continuously in-
form each other about the applications they are
aware of.

Initiation of a new application
deployment

In order to initiate the deployment of a new ap-
plication on a mobile device, the user can rely
on the interface of the deployment manager,
and select with this interface an application
that is not installed yet. This scenario how-
ever implies that the local deployment man-
ager must already be “aware” of the existence
of this application.

Alternatively the user who knows about an
application the deployment manager itself has
never heard about can specify explicitly the

13



name of this application, in which case the first
task of the deployment manager will be to look
for this application’s descriptor in the neigh-
borhood.

Identification of missing packages

Once the descriptor of the desired application
is available, the deployment manager can ex-
amine the dependencies described in this de-
scriptor in order to determine what other pack-
ages are needed for assembling this applica-
tion.

Remember that several applications may be
assembled out of the same set of components.
The packages needed to assemble a new appli-
cation may thus be already available locally,
as they may have been collected before in or-
der to assemble and start another application.
In fact, when determining what packages are
needed for assembling an application the de-
ployment manager may actually discover that
all these packages are already present in the lo-
cal repository. In such a case the deployment
of the application can be considered as com-
plete.

In most cases, though, when the user asks
for the deployment of a new application the
deployment manager is likely to discover that
a number of required packages are missing in
the local repository. As mentioned before each
application whose deployment is in progress
is associated a list of missing packages (the
so-called “shopping list). Whenever pack-
ages required to deploy a given application
are identified as missing packages, their iden-
tity is appended to the corresponding “shop-
ping list”. The protocol described in the for-
mer section ensures that packages identified in
a host’s “shopping lists” are collected oppor-

tunistically as this host meets other hosts while
moving in the network.

Processing newly received packages

Whenever the deployment manager receives
an element (package or application descriptor)
it has requested from a neighbor host, this el-
ement is stored in the local repository. Be-
sides, if this element is indeed a software pack-
age, then its name is removed from the local
“shopping lists”. In that case the descriptor
of the package must also be analyzed in or-
der to determine if this package depends on
other packages that are not available locally.
If so, then these packages must also be consid-
ered as requested packages, and their names be
appended to the deployment manager’s “shop-
ping lists”.

Completion of an application’s
deployment

The deployment of an application is com-
plete when the corresponding “shopping list”
is empty, which means that all the packages
required for assembling this application have
been collected and are now available in the
local repository. The application can then be
considered as installable, and be presented as
such to the user through the user interface.

The user can also decide to cancel the de-
ployment of a particular application at any
time. In that case the “shopping list” main-
tained by the deployment manager for this ap-
plication is discarded, and the packages that
have already been collected and stored in the
local repository are marked as unused (unless
they are indeed used by another locally in-
stalled application, and unless their names ap-

14



pear in another local “shopping list”). Since
mobile devices are usually resource-limited,
the capacity of the repository is limited. Un-
used packages can however be maintained by
the deployment manager in the local reposi-
tory as long as there remains enough space to
receive and store other desired packages. Oth-
erwise the deployment manager is entitled to
remove unused packages whenever there is a
need to free storage space in the repository.

EVALUATION

The model we propose for cooperative soft-
ware deployment on mobile devices is inher-
ently a probabilistic one. Indeed, when a user
requests that a given application be deployed
on a mobile device, there is no absolute guar-
antee that the deployment manager on this de-
vice will ever manage to collect the required
packages. It is worth mentioning that this lack
of guarantee is a consequence of the charac-
teristics inherent to disconnected MANETs,
rather than a limitation of the model itself.
However the model can be adapted in order
to account for these constraints. For exam-
ple, in order to increase the chance that the
requests of the user can be satisfied, the de-
ployment manager in the CODEWAN platform
was designed so as to exhibit a persistent be-
havior. Whenever it cannot obtain a number
of packages from its current set of neighbors,
the deployment manager simply persists and
tries to obtain these packages later, after its
neighborhood has changed. Device mobility
and volatility thus become advantages in this
process, as the neighborhood of a device is not
limited to a fixed set of neighbors.

It is obviously interesting to evaluate how

our model for opportunistic software deploy-
ment can perform in realistic conditions. In-
deed, the CODEWAN platform has been fully
implemented in Java, and it can run on any
kind of mobile device featuring a Wi-Fi in-
terface. Small-scale experiments have been
conducted using up to a dozen of mobiles de-
vices (laptops and PDAs). However the scal-
ability of our model for software deployment
can hardly be confirmed using only a few mo-
bile devices. CODEWAN was therefore im-
plemented in such a way that it can also in-
terface with the MADHOC simulator, which
makes it possible to simulate mobile ad hoc
networks involving hundreds of mobile de-
vices [Hogie et al., 2006]. Based on this com-
bination we run a number of simulations in or-
der to observe how software deployment rely-
ing on opportunistic contacts between mobile
devices can perform in medium to large-scale
scenarios. In this section we present some of
the results we obtained.

Simulation parameters

We consider a simulation scenario in which
a population of 120 users move in and be-
tween a set of four buildings, as shown in
Figure 1. These buildings are located within
a 120 m� 90 m area. Each user is as-
sumed to carry a laptop running CODEWAN,
and equipped with an IEEE 802.11 (Wi-Fi) in-
terface.

The mobility of users—and therefore that of
the mobile hosts they are carrying—is simu-
lated using a variant of the random waypoint
model: a user can remain motionless for a
while, afterwards he/she begins to walk to-
wards a set destination, which is selected ran-
domly in any one of the buildings in the simu-

15



lation area.
In the simulation runs whose results are dis-

cussed below, we used the following mobil-
ity parameters: users are assumed to walk at
speeds varying between 0.5 m/s and 2 m/s;
a stay between two consecutive moves can
last between 30 seconds and 3 minutes; and
the amount of intra-building mobility is set to
40 % (against 60 % for inter-building mobil-
ity). Wi-Fi interfaces are assumed to have an
omni-directional transmission range of 20 me-
ters when used indoor, and 60 meters when
used outdoor.

The gossiping protocol that allows neigh-
bor deployment managers to get aware about
each other and exchange descriptors and com-
ponents can be adjusted by setting two param-
eters. The first parameter is the period with
which the CODEWAN platform broadcasts an
announcement. The second parameter is the
maximum number of hops used in temporane-
ous message forwarding, which allows a mo-
bile host to use multi-hop transmissions to
reach other hosts that belong to the same con-
nectivity island as itself. In the scenario whose
results are presented below the period was set
to 15 seconds, and the number of hops was set
to 5 hops.

Software deployment scenario

In this scenario we focus on the deployment
of a single application whose installation re-
quires four software components. At the be-
ginning of the simulation run, only one laptop
owns a copy of the descriptor of this applica-
tion. Besides, two copies of each component
required for assembling this application are al-
ready stored in the local repositories of other
laptops (although each of these laptops only

owns one of these components).
Our first objective is to observe how long it

takes for the descriptor of the application to
disseminate in the whole network. In other
words, we wish to evaluate the time required
for the deployment manager running on each
laptop to learn about a new application. Sec-
ond, once all laptops have learned about the
existence of the application we will assume
that one or several users carrying these lap-
tops decide to install this application locally.
We will then observe how long it takes for
the deployment managers running on these
users’ laptops to collect the required compo-
nents while moving in the network.

Simulation results

Figure 8 shows the time it takes for the de-
scriptor of a new application to disseminate
network-wide. This figure was obtained by
running 200 simulation runs with different
seeds in the mobility algorithm, and differ-
ent placements of the original application’s de-
scriptor. We measured the time required for
this descriptor to reach each mobile host in-
volved in the simulation, and calculated the
average curve based on all measured values
(hence the smooth aspect of the curve in
Fig. 8). It can be observed that information
about a new application can disseminate quite
rapidly in a scenario such as that considered
in this example. Indeed, once the descrip-
tor of a new application appears somewhere
in the network, about 90 % of the deploy-
ment managers running on mobile hosts are in-
formed about this new application in less than
10 minutes, and 100 % deployment managers
are aware of this application after 20 minutes.
Of course these figures would be different with

16



a smaller or greater number of mobile devices
involved in the network, or if these devices
moved slower or faster, as this would have an
impact on the time required for a descriptor
to be carried between two buildings, for ex-
ample. In any case this figure confirms that a
number of laptops carried by users moving in
a campus-like environment can collaborate to
rapidly disseminate new information regarding
a component-based application.

Once a deployment manager has learned
about a new application by receiving its de-
scriptor, information about this application can
be presented to the user, which in turn can or-
der the deployment manager to install this ap-
plication locally. Let us consider again the ap-
plication whose descriptor has just been dis-
seminated in the network, and assume that a
number of users decide that they would like
to use this application on their laptop. Fig-
ure 9 shows the average time it takes for a de-
ployment manager, once it has been ordered
to install the application locally, to collect the
four components that constitute this applica-
tion. Remember that at the beginning of the
simulation we assume that these components
are already stored in some laptops’ local repos-
itories, and that there actually already exists
two copies of each component in the network.
In Fig. 9 it can be observed that when a single
user is interested in the application considered
(meaning the deployment manager running on
its laptop must meet successively at least one
laptop carrying each of the four required com-
ponents), this user has to wait about 3 hours
until the installation is complete and he/she
can start using the application. However, when
four users are interested in the same applica-
tion and decide to install it on their laptop,
the whole installation process takes about 70

minutes for each user. This is because when-
ever a deployment manager obtains a compo-
nent it is missing, it becomes a carrier for this
component and can therefore help in the dis-
semination of this component. Of course the
installation process of the application consid-
ered in this scenario would be even faster if a
larger number of users —and possibly all of
them— decided to install this application on
their laptop. Indeed, with this opportunistic
deployment process relying on peer-to-peer in-
teractions between deployment managers, the
greater the popularity of a software compo-
nent, the easier it is for a deployment manager
to find a copy of this component, and therefore
the faster the installation of applications rely-
ing on this component.

RELATED WORK

A number of protocols have been designed
over the last decade in order to support
communications in disconnected or par-
tially connected MANETs. Good surveys
of works conducted along this line can
notably be found in [Zhang, 2006] and
[Pelusi et al., 2006]. Indeed, most of these
works actually aim at supporting destination-
driven message forwarding, using either
context-based [Leontiadis and Mascolo, 2007,
Musolesi and Mascolo, 2009,
Musolesi, 2004], geographic-
based [Leontiadis and Mascolo, 2007],
probabilistic [Lindgren et al., 2004] or
history-based [Boldrini et al., 2007] heuristics
to improve message delivery while reducing
the network load. They therefore mainly focus
on communication issues, and do not espe-
cially consider the problems inherent to the

17



Figure 8: Average time required for a new application’s descriptor to disseminate network-wide.

Figure 9: Time required for a deployment manager to collect the four components required for
application installation depending on the number of users (and deployment managers) interested
by these components

18



deployment of component-based applications
in disconnected MANETs.

These specific problems have however been
addressed in many projects and following dif-
ferent lines in the past few years. For example
Java Web Start [Sun Microsystems, 2004] sup-
ports the deployment and the update of Java-
based application programs. It relies on a
client-server model: a server (or a collection
of servers in the case of Maven) maintains a
repository where applications can be stored,
and clients can download new applications—
or new versions of applications they have al-
ready downloaded—from this server. We be-
lieve that the client-server model is hardly ap-
plicable for deploying and updating software
in an autonomous ad hoc network, although it
usually performs satisfactorily in an infrastruc-
ture network. The approach we propose thus
aims at achieving software deployment based
on opportunistic peer-to-peer interactions be-
tween mobile devices, as we think that this ap-
proach is better suited to ad hoc networks.

Cooperative (or peer-to-peer) ap-
proaches to software deployment
have been proposed in works related
to SoftwareDock [Hall et al., 1999],
[Gopalan and Znati, 2005] and
OSGi [Frénot and Royon, 2005]. Soft-
wareDock is a framework for distributed
software deployment that uses mobile agents
to support the transfer of software appli-
cations. In [Frénot and Royon, 2005] it is
proposed to organize nodes that participate in
the deployment of software components as a
hashkey-based peer-to-peer network. Both ap-
proaches are primarily meant to be applied in
infrastructure networks, though, as the prime
motivation is to allow load balancing and fault
tolerance among the devices that provide the

components. [Gopalan and Znati, 2005] pro-
poses a novel peer-to-peer based approach for
the deployment of applications and services
in MANETs called POST. In POST, mobile
nodes do not maintain routing information.
Mobile devices are expected to register their
mobility profile (their expected direction and
speed of travel) and the objects they query
and provide in the manager of the zone they
are located in. The environment is organized
in several zones identified respectively by
a hashkey value. Distributed hashtables are
used to store and to retrieve data information.
The hash identifiers are used by the rout-
ing protocol while downloading or deploying
applications in order to limit network flooding.

Closer to our work, SATIN pro-
poses to deploy component-based, self-
organized systems on mobile devices
[ZACHARIADIS ET AL ., 2004]. It sup-
ports the storage and the execution of
components on a device, as well as compo-
nent advertisement, discovery and transfer
between distinct devices. Little is said
in [ZACHARIADIS ET AL ., 2004] about the
patterns of interactions between these devices,
though, or about the role—if any—of the
devices’ owners. The example described in
the paper actually suggests that the SATIN

middleware adopts a greedy behavior, and
that each mobile device tries to collect any
component it can discover in the network.
In contrast the CODEWAN platform is more
“user-oriented”, as the owner of a device (or
the administrator of a collection of devices)
is expected to specify what applications—and
consequently what components—should be
deployed locally. Another major difference
between SATIN and CODEWAN is that SATIN

implements its own component model, while

19



CODEWAN is rather meant to support the
dissemination of any kind of components
(provided they can be stored and transported
in packages) in an ad hoc network.

CONCLUSION AND
FUTURE WORK

In this paper we presented the CODEWAN plat-
form, which is dedicated to the deployment
of component-based software applications on
mobile devices participating in a disconnected
MANET. CODEWAN implements a peer-to-
peer, cooperative model for software deploy-
ment. With this model, each mobile device
maintains a local repository that can accom-
modate a number of software components.
The components stored in this repository are
available for the execution layer of the plat-
form. Neighboring devices exchange copies of
the software components they own based on an
opportunistic interaction scheme. A communi-
cation layer implements the underlying neces-
sary unicast and broadcast primitives that are
the basis of the interactions with neighboring
devices. This implementation provides an effi-
cient multi-hop neighborhood.

The CODEWAN platform was implemented
in Java and is now fully operational. Simula-
tion runs show that the overall performance of
the platform is satisfactory. Our future work
mainly aims at augmenting the platform’s
functionality, regarding namely the adaptive-
ness of the platform and its security.

Indeed, in the current implementation of
the CODEWAN platform, the deployment man-
ager running on a mobile device must be con-
figured manually by the user of this device.

For example, the user is responsible for set-
ting the appropriate periods for broadcast an-
nouncements, or the number of hops defining
the neighborhood. The user must likewise de-
termine how much storage space must be as-
signed to the local repository. Future work will
notably focus on the development of a strategy
manager capable of adjusting the behavior of a
deployment manager transparently and contin-
uously on behalf of the user. For example the
periods for announcing local packages and re-
questing new packages could be adjusted dy-
namically based on the mobility of a device,
on observations of its neighborhood, or on in-
ternal events (such as the local device being
suspended or resumed).

The approach we propose for deploying
software applications on mobile devices relies
on the assumption that the owners of these de-
vices may find it convenient to share software
components with each other using ad hoc com-
munication. This approach obviously raises a
number of legitimate concerns regarding se-
curity, as the owner of a mobile device may
for example be reluctant to run on this device
pieces of software obtained from unidentified
sources. We believe that this problem may be
solved satisfactorily by using digital signatures
so as to ascertain the origin of a software com-
ponent, as well as ciphering in order to limit
the use of a given component to a particular
community of users.

Acknowledgement: This work is supported by
the French Agence Nationale de la Recherche un-
der contract ANR-05-SSIA-0002-01.

20



References

[Boldrini et al., 2007] Boldrini, C., Conti, M.,
Iacopini, I., and Passarella, A. (2007). Hi-
BOp: a History Based Routing Protocol for
Opportunistic Networks. InInternational
Symposium on a World of Wireless, Mo-
bile and Multimedia Networks, pages 1–12.
IEEE CS Press.

[Bruneton et al., 2004] Bruneton, É., Cou-
paye, T., Leclercq, M., Quéma, V., and
Stefani, J.-B. (2004). An Open Compo-
nent Model and Its Support in Java. In
International Symposium on Component-
Based Software Engineering, pages 7–22.
Springer.

[Carzaniga et al., 1998] Carzaniga, A.,
Fuggetta, A., Hall, R. S., Heimbigner,
D., van der Hoek, A., and Wolf, A. L.
(1998). A Characterization Framework
for Software Deployment Technologies.
Technical Report CU-CS-857-98, Dept. of
Computer Science, University of Colorado.

[Clausen and Jacquet, 2003] Clausen, T. and
Jacquet, P. (2003). Optimized Link-State
Routing Protocol (OLSR). IETF, RFC
3626.

[Datta et al., 2004] Datta, A., Quarteroni, S.,
and Aberer, K. (2004). Autonomous Gos-
siping: a Self-Organizing Epidemic Algo-
rithm for Selective Information Dissemina-
tion in Mobile Ad-Hoc Networks. InIn-
ternational Conference on Semantics of a
Networked World, number 3226 in LNCS,
pages 126–143.

[Frénot and Royon, 2005] Frénot, S. and
Royon, Y. (2005). Component Deployment

Using a Peer-To-Peer Overlay. InWorking
Conference on Component Deployment,
volume 3798 of LNCS, pages 32–35.
Springer.

[Gopalan and Znati, 2005] Gopalan, A. and
Znati, T. (2005). POST: A Peer-to-Peer
Overlay Structure for Service and Applica-
tion Deployment in MANETs. InInterna-
tional Conference on Mobile Ad-hoc and
Sensor Networks, volume 3794 ofLNCS,
pages 1006–1015. Springer.

[Haillot and Guidec, 2008] Haillot, J. and
Guidec, F. (2008). A Protocol for Content-
Based Communication in Disconnected
Mobile Ad Hoc Networks. InInternational
Conference on Advanced Information Net-
working and Applications, pages 188–195.
IEEE CS Press.

[Hall et al., 1999] Hall, R. S., Heimbigner,
D., and Wolf, A. L. (1999). A cooperative
approach to support software deployment
using the software dock. InInternational
Conference on Software Engineering, pages
174–183.

[Hoareau and Mahéo, 2008] Hoareau, D. and
Mahéo, Y. (2008). Middleware Support
for Ubiquitous Software Components.Per-
sonal and Ubiquitous Computing (PUC),
12(2):167–178.

[Hogie et al., 2006] Hogie, L., Guinand, F.,
Danoy, G., Bouvry, P., and Alba, E. (2006).
Simulating Realistic Mobility Models for
Large Heterogeneous MANETs. InInter-
national Symposium on Modeling, Analysis
and Simulation of Wireless and Mobile Sys-
tems, pages 2–6. ACM Press.

21



[Le Sommer and Guidec, 2002] Le Sommer,
N. and Guidec, F. (2002). JAMUS: Java
Accommodation of Mobile Untrusted Soft-
ware. In Nord EurOpen/Usenix Confer-
ence, pages 38–48. Multiprint.

[Leontiadis and Mascolo, 2007] Leontiadis,
I. and Mascolo, C. (2007). GeOpps:
Geographical Opportunistic Routing for
Vehicular Networks. InWorkshop on Auto-
nomic and Opportunistic Communications,
pages 1–6. IEEE CS Press.

[Lestideau et al., 2002] Lestideau, V.,
Belkhatir, N., and Cunin, P.-Y. (2002).
Towards automated software component
configuration and deployment. InPro-
cess Support for Distributed Team-based
Software Development Workshop.

[Lindgren et al., 2004] Lindgren, A., Doria,
A., and Schelen, O. (2004). Probabilistic
Routing in Intermittently Connected Net-
works. In International Workshop on Ser-
vice Assurance with Partial and Intermit-
tent Resources, volume 3126 ofLNCS,
pages 239–254. Springer.

[Muchow, 2002] Muchow, J. (2002). Core
J2ME Technology. Prentice Hall.

[Musolesi, 2004] Musolesi, M. (2004). De-
signing a Context-Aware Middleware for
Asynchronous Communication in Mobile
Ad Hoc Environments. InMiddleware Doc-
toral Symposium, pages 304–308. ACM
Press.

[Musolesi and Mascolo, 2009] Musolesi, M.
and Mascolo, C. (2009). CAR: Context-
Aware Adaptive Routing for Delay Toler-

ant Mobile Networks. IEEE Transactions
on Mobile Computing, 8(2):246–260.

[OMG, 2002] OMG (2002). Corba compo-
nents, version 3.0.

[Parrend and Frénot, 2007] Parrend, P. and
Frénot, S. (2007). Supporting the Secure
Deployment of OSGi Bundles. InWork-
shop on Adaptive and DependAble Mission-
and bUsiness-critical mobile Systems.

[Pelusi et al., 2006] Pelusi, L., Passarella, A.,
and Conti, M. (2006). Opportunistic Net-
working: Data Forwarding in Disconnected
Mobile Ad Hoc Networks. IEEE Commu-
nications Magazine, 4(11):134–141.

[Perkins, 2001] Perkins, C. (2001).Ad Hoc
Networking. Addison-Wesley.

[Qayyum et al., 2002] Qayyum, A., Viennot,
L., and Laouiti, A. (2002). Multipoint Re-
laying for Flooding Broadcast Messages in
Mobile Wireless Networks. In35th Annual
Hawaii International Conference on System
Sciences, page 298. IEEE CS Press.

[Sun Microsystems, 2004] Sun Microsystems
(2004). Java Web Start 1.5.0 Documenta-
tion.

[Szyperski, 1998] Szyperski, C. (1998).Com-
ponent Software: Beyond Object-Oriented
Programming. Addison-Wesley.

[Vahdat and Becker, 2000] Vahdat, A. and
Becker, D. (2000). Epidemic Routing
for Partially-Connected Ad Hoc Networks.
Technical Report CS-2000-06, UCSD.

[Zachariadis et al., 2004] Zachariadis, S.,
Mascolo, C., and Emmerich, W. (2004).

22



SATIN : A Component Model for Mo-
bile Self Organisation. InInternational
conference on Distributed Objetcs and
Applications, volume 3291 ofLNCS, pages
1303–1321. Springer.

[Zhang, 2006] Zhang, Z. (2006). Routing in
Intermittently Connected Mobile Ad Hoc
Networks and Delay Tolerant Networks:
Overview and Challenges.IEEE Communi-
cations Surveys and Tutorials, 8(1):24–37.

[Ziv and Lempel, 1978] Ziv, J. and Lempel,
A. (1978). Compression of individ-
ual sequences via variable-rate coding.
IEEE Transactions on Information Theory,
24(5):530–536.

23


