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Abstract

In this article, we deal with a class of discrete-time reliability models. The fail-

ures are assumed to be generated by an underlying time inhomogeneous Markov

chain. The multivariate point process of failures is proved to converge to a Poisson-

type process when the failures are rare. As a result, we obtain a Compound Poisson

approximation of the cumulative number of failures. A rate of convergence is pro-

vided.
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1 Introduction

A basic issue in reliability modeling is what happens when the system becomes reliable.
In other words, what becomes the model when the failure parameters tend to be smaller
and smaller? We discuss such an issue for a class of reliability models which are based on
discrete-time Markov chains. Specifically, we consider a failure process which is generated
by the dynamics of a non-homogeneous Markov chain. Clumping of failures is also con-
sidered. Such a failure process may be thought of as a discrete-time multivariate point
process. Then, we investigate its asymptotic distribution when the failure parameters con-
verge to 0. As it can be expected, the asymptotic distribution is of Poisson-type. Under a
condition on the rate of the convergence of the underlying non-homogeneous Markov chain
to stationarity, we provide a rate of convergence for the distance in variation. As a result,
we obtain a Compound Poisson approximation of the cumulative number of failures. The
ergodic and irreducible cases for the limit Markov chain are discussed. The derivation
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of the main results is based on elementary discrete-time stochastic calculus and on basic
convergence results for non-homogeneous Markov chains reported in [HIV76, BDI77]. It
is not intended to deal with the mildest assumptions for deriving Poisson limit theorems.
The assumptions here, are expected to be easily checked and general enough to be of
value in the reliability framework.

The problem of the Poisson approximation of a flow of rare events is a very old topic.
Our purpose is not to review the huge literature on this topic. We limit ourselves to men-
tionning standards methods for deriving such Poisson approximations and only discuss
the closest works to ours. The counting process associated with a discrete-time point pro-
cess is nothing else but a sum of dependent random variables. There is a vast literature
on limit theorems for such processes, especially on the central limit theorem and func-
tional theorems. In a much more general setting, a complete account for such an “limit
theorems approach” is in [JS89]. For a martingale approach of the Poisson approxima-
tion of point processes, some specific references are [Bro82, Bro83, KLS83] (see also the
references therein). The basic tool is the compensator associated with a point process.
An instance of Poisson approximation of a Poisson process driven by a Markov process
is provided by Kabanov, Liptser and Shiryaev [KLS83] (see also [DK93]). Basically, the
idea is to combine a bound on the distance in variation between the respective probability
distributions of the point process and of an appropriate Poisson process, with estimates on
a filtered Markov process. The bound is in terms of compensators. This “KLS approach”
was used in [GL04] for deriving Poisson approximation of a complex continuous-time
univariate point process for which the underlying Markov model was time-homogeneous.
Here, we also use this approach in a discrete-time context. To the best of our knowledge,
the present article and [GL04] are the only papers in which the “KLS approach” is made
hard. The objective of this article is not only to derive Poisson limit theorems, but also
to obtain a convergence rate under conditions that are expected to be easily checked.
Moreover, we try to give as elementary as possible discrete-time oriented proofs, so that
the statements only concern the Poisson approximation of random variables. However,
we mention that our results are easily extended to a functional framework as reported in
Remark 8.

At the present time, we can not discuss Poisson approximation without paying atten-
tion to the well-known Stein-Chen’s method for estimating the closeness of a probability
distribution to the Poisson distribution (e.g. see [BHJ92] for an account on this approach).
Basically, this method consists in using a bound on the deviation between the two prob-
ability distributions with respect to an appropriate distance. In general, the distance in
variation is chosen. Barbour, Brown, Xia among other, have developed the Stein-Chen
method to discuss Poisson process approximation of the distribution of point processes.
In particular, they have combined the martingale method with the Stein-Chen’s method.
We refer to [Xia00] and references therein for an account in this direction. For an effective
computation of the bounds provided by Stein-Chen’s method, we have to know a form
of local dependence or to produce couplings which is known to be a difficult task when
dealing with complex point processes (e.g. see the recent paper [CX04] and references
therein). Here, the computation of the bound involves the solution of an elementary fil-
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tering problem. Thus, the “KLS approach” used here, is different from Stein-Chen’s one,
and is quite effective for our class of sums of dependent random variables. However, note
that our bounds depend on the length of the time interval on which the approximation is
performed (see Remark 7).

The closest results to ours are those by Anisimov [Ani83]. Specifically, he obtained
functional theorems for sums of conditionally independent random variables on a Markov
chain that satisfied an uniform strong mixing condition. But, the method used in the
present article is different from that used in [Ani83]. We also mention that Markov
approximation for related processes have been obtained by Anisimov (e.g. see [Ani02] and
references therein). In particular, limit theorems for a class of continuous-time bivariate
Markov chains that can be represented as switching processes are derived from general
limit theorems on switching processes. The switching processes have been studied by
Anisimov and Korolyuk among others (see [Ani95] and references therein). This kind of
results is relevant to our context, because we deal with a discrete-time counterpart of such
a bivariate Markov process. Relevant references with Poisson approximation in reliability
theory are also reported in [Kov94].

The article is organized as follows. The specific failure model is introduced in Section 2.
In Section 3, we state the Poisson-type approximation of the corresponding multivariate
failure point process. The cumulative number of failures is shown to have asymptotically
a Compound Poisson distribution. Section 4 is devoted to the proof of our main results.
We report some basic facts on the convergence of non-homogeneous Markov chains in
Appendix A.

2 Basic facts on the model

Main notation

• By convention, vectors are row vectors. Column vectors are denoted by means of
the transpose operator (.)T.

• 1 (resp. 0) is a vector with each entry equals to one (resp. 0). Its dimension is
defined by the context.

• For any x, y ∈ R
n, 〈x, y〉 := x yT.

• For any vector x ∈ R
n, ‖x‖1 is its l1-norm, i.e ‖x‖1 :=

∑n
i=1 |x(i)|. The l1-norm

of any n × n-matrix M is defined by ‖M‖1 := maxi

(∑n
j=1 |M(i, j)|

)
. Note that

‖M‖1 = 1 for a stochastic matrix M .
Let us recall that ‖M1M2‖1 ≤ ‖M1‖1‖M2‖1 and |〈x, y〉| ≤ ‖x‖1‖y‖1 for any vectors
x, y and matrices M1, M2.
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2.1 The model

The model of the system is assumed to be a discrete time non-homogeneous Markov chain
X := (Xt)t∈N on the finite state space U = {ei, i = 1, . . . , N}. The different states can
represent the load on the system as it is usually done in performance evaluation, or some
measure of performance level, or the active module of a software system, etc. This Markov
chain is specified by its transition probability matrices P (t) := (P (t; i, j))i,j=1,...,N , t ≥ 0
and the probability distribution of X0. P (t; i, j) is the probability that X jumps to state
ej at time t + 1 given X is in state ei at time t.

Assume now that the system is subject to failures. Let us describe the failure process.
We distinguish two types of failure: the first one is associated with the visits to states, the
second one with the transitions between states. When the model is in state ei, a failure
occurs with probability pi, thus depending on the identity of the state. For the sake of
simplicity, the delay to recover a safe state is neglected. Then, state ej is entered with

constant probability α(i, j) (with
∑N

j=1 α(i, j) = 1). In some applications, it can be useful
to associate failures directly with transitions. Thus, suppose that a failure does not occur
during a visit to state ei at time t (this event has probability 1 − pi). If the next state
to be visited is state ej (that happens with probability P (t; i, j)), a transfer failure may
happen with probability λi,j, thus depending on both the original and the next states.

Then state el is entered with constant probability αi,j(i, l) (with
∑N

l=1 αi,j(i, l) = 1). The
parameters λi,j, pi are assumed to be strictly less than 1 for every i, j = 1, . . . , N .

A basic way for modeling failures which appear in clusters is to suppose that several
failures may appear at each failure event. It is assumed that at most K < +∞ failures may
be observed at a specific failure epoch. For the failures associated with the visits to state
ei, the numbers of simultaneous failures are i.i.d. {1, . . . , K}-valued random variables

with probability distribution (b
(k)
i , k = 1, . . . K). For the transfer failures corresponding

to transitions from state ei to state ej, the associated numbers of simultaneous failures are

i.i.d. {1, . . . , K}-valued random variables with probability distribution (b
(k)
i,j , k = 1, . . . K).

All these random variables are also assumed to be independent of the process of failures
events. In other words, we have an independent marking of the failure events.

Let us define now the process X∗ := (X∗
t )t∈N where X∗

t is the occupied state at the
discrete epoch t. The random variable X∗

t is U -valued. Let Ct be the cumulative number
of failures observed up to time t. It follows from the independence assumptions on failure
processes that the process (C, X∗) := (Ct, X

∗
t )t∈N is a non-homogeneous Markov chain

with state space N × U and initial distribution: for k ≥ 1 and i = 1, . . . , N

P(C0 = 0, X∗
0 = ei) = p0(i), P(C0 = k,X∗

0 = ei) = 0

where p0 is the probability distribution of X0. Moreover, the transition probabilities of
(C, X∗) satisfy: for all t ≥ 0, m ≥ 0, i, j = 1, . . . , N and k = 0, . . . , K

P
(

(Ct+1, X
∗
t+1) = (m + k, ej) | (Ct, X

∗
t ) = (m, ei)

)

= P
(

(Ct+1 − Ct, X
∗
t+1) = (k, ej) | X∗

t = ei

)
= Dk(t; i, j)

(1)
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where the matrices Dk(t) are defined by: for k = 1, . . . , K and i, j = 1, . . . , N

D0(t; i, j) := (1 − pi)P (t; i, j)(1 − λi,j)

Dk(t; i, j) := pi b
(k)
i α(i, j) + (1 − pi)

[ N∑

l=1

P (t; i, l) λi,l b
(k)
i,l αi,l(i, j)

]
.

(2)

The other transition probabilities for (C, X∗) are zero. Then, it follows from (1) that the
process X∗ is also a non-homogeneous Markov chain with transition probability matrices

P ∗(t) =
K∑

k=0

Dk(t). (3)

The nonnegative number D0(t; i, j) represents the probability that X∗ jumps from state
ei to ej at time t + 1 with no failure event. If k ≥ 1, then the entry Dk(t; i, j) is the
probability that X∗ jumps from state ei to state ej at time t + 1 with the occurrence of
k failures.

Example 1 A basic model is when there is no feedback of the failure process on the
execution process. Set α(i, j) := P (t; i, j) and αj,l(i, j) := δjl in the formula (2) for
l, i, j = 1, . . . , N :

D0(t; i, j) = (1 − pi)P (t; i, j)(1 − λi,j)

Dk(t; i, j) =
[

pi b
(k)
i + (1 − pi) λi,j b

(k)
i,j

]
P (t; i, j) k = 1, . . . , K.

Note that, for every t ≥ 0, P ∗(t) = P (t) as it can be expected. This model is a discrete-
time counterpart of the Littlewood’s software reliability model [Lit75]

A special instance of the previous model is obtained by setting λi,j = 0, i, j = 1, . . . , N
in the above definition of matrices Dk(t), k = 0, . . . , K. In such a case, we have

D0(t) =
(
I − diag(pi)

)
P (t) Dk(t) = diag(pib

(k)
i ) P (t).

where diag(ci) is a diagonal matrix with the scalar ci as (i, i)-entry and I is the N × N
identity matrix. When considering no multiple failures, the model may be interpreted as an
elaboration of Cheung’s model [Che80]. We emphasize that Cheung’s model is integrated
in the Cleanroom Reliability Manager [PMM93] whose aim is planning and certification
of component-based software system reliability.

Remark 2 Let us consider a time-independent matrix P in the previous models. These
models are instances of the discrete time counterpart of the Batch Markovian Arrival
Process as defined by Neuts. Indeed, our matrices Dk (k = 0, . . . , K) agree with those of
Lucantoni’s formalism for defining the finite BMAP [LR99]. The transition probability
matrix of the underlying Markov chain is P ∗ =

∑K
k=0 Dk. More generally, if we consider

the bivariate Markov chain (X∗
t , Ct)t∈N with transition probabilities satisfying (1), then

such a process is a discrete-time instance of a Markov process homogeneous in the second
component as defined in [ES69] (or a Markov additive process as studied by Çinlar [Çin72],
Grigelionis [Gri79],. . . ). Note that these processes are also special instances of switching
processes as studied by Anisimov (see [Ani02] and the references therein).
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2.2 The multivariate point process

A basic way to consider the failure process is as follows. Let N(k)t be the number of
k-failures events up to time t (k = 1, . . . , K). Then, the failure process is specified by the
K-variate process N = (N t)t where

N t :=
(
N(1)t, . . . , N(K)t

)
.

Note that the N(k)’s do not have common jumps. Let us introduce the K-variate process
∆N defined by

∆N 0 := 0, ∆N t := N t − N t−1, t ≥ 1.

The random variable ∆N t is {0, fk, k = 1, . . . , K}-valued, where fk is kth vector of the
canonical basis of R

K . We encode 0 as f0, so that fk will stand for a k-failures event
(k = 0, . . . , K). From now on, we suppose without loss of generality, that the state space
of X∗ is U = {ei, i = 1, . . . , N}, where ei is the ith vector of the canonical basis of R

N .
Note that with these conventions,

1{X∗

t =ei} = 〈X∗
t , ei〉, 1{∆Nt=fk} = 〈∆N t, fk〉, and X∗

t 1
T = 1.

We suppose that all processes are defined on the same probability space (Ω,F , P). We
denote by F

X∗

= (FX∗

t )t∈N, F
N = (FN

t )t∈N, F
N,X∗

= (FN,X∗

t )t∈N the internal histories of
processes X∗, N and (N , X∗), respectively. That is, F

X∗

t := σ(X∗
s , 0 ≤ s ≤ t), FN

t :=
σ(N s, 0 ≤ s ≤ t), FN,X∗

t := σ((N s, X
∗
s ), 0 ≤ s ≤ t). These histories are assumed to be

complete, that is any σ-algebra contains all the sets of F of P-probability zero.
It follows from the independence assumptions on the failure and marking processes

that: for k = 0, . . . , K and i, j = 1, . . . , N

P
(

(∆N t+1, X
∗
t+1) = (fk, ej) | F

N,X∗

t

)
= P

(
(∆N t+1, X

∗
t+1) = (fk, ej) | X∗

t

)
(4a)

and
P
(

(∆N t+1, X
∗
t+1) = (fk, ej) | X∗

t = ei

)
= Dk(t; i, j). (4b)

Recall that X∗ is a non-homogeneous Markov chain with transition probability matrices
(P ∗(t))t∈N given in (3).

The F
N-intensity of the univariate counting process N(k) is defined by: for t ≥ 1

λ̂(k)t := P(N(k)t − N(k)t−1 = 1 | F
N

t−1) = P(∆N t = fk | F
N

t−1).

Note that λ̂(k)t is F
N

t−1-measurable for each t ≥ 1, or the process (λ̂(k))t≥1 is F
N-

predictable. In our framework, the F
N-intensity of N(k) has the form: for t ≥ 1

λ̂(k)t = E
[
P(∆N t = fk | F

N,X∗

t−1 ) | F
N

t−1

]

= E[X∗
t−1Dk(t − 1)1T | F

N

t−1] from (4a,4b)

= X̂∗
t−1Dk(t − 1)1T (5)
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where X̂∗
t := E[X∗

t | F
N

t ]. The F
N-intensity λ̂ of the multivariate counting process N is

the F
N-predictable stochastic process defined by: for t ≥ 1,

λ̂t :=
(
λ̂(1)t, . . . , λ̂(K)t

)
,

so that ∆N − λ̂ is a F
N-martingale difference.

3 Poisson-type limit theorems

In this section, we claim that the K-variate counting variable N t converges in total vari-
ation to a vector of K independent Poisson distributed random variables when the failure
parameters tend to zero. This convergence takes place at a specific time scale. Roughly
speaking, we introduce a small parameter ε in the failure parameters and the convergence
takes place at time scale t/ε. A rate of convergence is provided. It is based on an esti-
mation of the total variation distance between the respective distributions of a K-variate
counting variable and a vector of K independent distributed Poisson random variables
reported in [Bro83, KLS83]. As a result, we obtain a Compound Poisson approximation
of the cumulative number of failures.

3.1 The model of perturbation

We multiply each failure parameter by ε: i, j = 1, . . . , N

ε pi, ε λi,j.

Then, we consider the K-variate counting variable

N
(ε)
0 = 0, N

(ε)
t =

(
N (ε)(1)t, . . . , N

(ε)(K)t

)
t ≥ 1, (6)

associated with perturbed failure parameters (see (2)): k = 1, . . . , K and i, j = 1, . . . , N

D
(ε)
0 (t; i, j) = (1 − pi ε)P (t; i, j)(1 − λi,j ε)

D
(ε)
k (t; i, j) = ε

[
pi b

(k)
i α(i, j) + (1 − pi ε)

∑

l

P (t; i, l) λi,l b
(k)
i,l αi,l(i, j)

]
. (7)

The transition probability matrices of the Markov process X∗,ε have the form for t ≥ 0

P ∗,ε(t) = P (t) + εQ(t) + ε2R(t) (8a)

where

Q(t; i, j) = −P (t; i, j)(pi + λi,j) + pi α(i, j) +
∑

l

P (t; i, l)λi,l α
i,j(i, l),

R(t; i, j) = pi P (t; i, j) λi,j − pi[
∑

l

P (t; i, l)λi,l α
i,j(i, l)] i, j = 1, . . . , N.

Q(t)1T = R(t)1T = 0.

(8b)
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As it can be expected, the convergence of N
(ε)
t to a non trivial limit fails at the current

time scale. It is easily seen that the correct time scale is t/ε. Therefore, we investigate
the asymptotic distribution of

N
(ε)
t/ε

as ε tends to 0. For notational simplicity, we write t/ε for ⌊t/ε⌋.
Note that D(ε)(t)’s have the following form from (7): for k = 1, . . . , K, i, j = 1, . . . , N

D
(ε)
k (t) = εBk(t) + ε2Lk(t)

with

{
Bk(t; i, j) = pi b

(k)
i α(i, j) +

∑
l P (t; i, l)b

(k)
i,l λi,l α

i,l(i, j)

Lk(t; i, j) = −pi [
∑

l P (t; i, l) λi,l b
(k)
i,l αi,l(i, j)].

(9)

3.2 The results

Let us recall that the total variation distance between two probability distributions P1

and P2 on N
K is

dTV

(
P1, P2

)
:=

1

2

∑

n∈NK

∣∣P1(n) − P2(n)
∣∣. (10)

Let T be a positive integer. A vector of K independent Poisson distributed random
variables with respective parameter µ(k)T (k = 1, . . . , K) is denoted by Π(µT ), where µT

stands for the vector (µ(1)T , . . . , µ(K)T ). Let us consider the vector µT defined by

µ(k)T := πBk1
T T, (11)

for k = 1, . . . , K, where Bk’s are defined by (14). For the random variables N
(ε)
T/ε and

Π(µT ), dTV

(
N

(ε)
T/ε, Π(µT )

)
will denote the total variation distance between their respective

distributions. We have the following estimate from [Bro83, Th 1] or [KLS83, Th 3.1]

dTV

(
N

(ε)
T/ε, Π(µT )

)
≤

K∑

k=1

E

∣∣∣∣
T/ε∑

t=1

λ̂(ε)(k)t − µ(k)T

∣∣∣∣+
K∑

k=1

E

T/ε∑

t=1

λ̂(ε)(k)t

2
(12)

with (see (5) and (9))

λ̂(ε)(k)t = X̂∗,ε
t−1D

(ε)
k (t − 1)1T and X̂∗,ε

t := E
[
X∗,ε

t | F
N

(ε)

t

]
. (13)

3.2.1 The ergodic case

The main assumption is on the rate of convergence of P (t) in (8a) to some ergodic matrix
P . We recall that P is said to be an (strongly) ergodic stochastic matrix if there exists
an unique stochastic vector π such that, for any stochastic vector p0,

lim
t→+∞

‖p0P
t − π‖1 = 0.

Note that some components of vector π may be zero, so that P has not to be irreducible
and aperiodic.
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(ASe) There exist an ergodic stochastic matrix P with invariant distribution π, and a

real α > 1 such that

lim
t→+∞

tα‖P (t) − P‖1 = 0.

Under (ASe), we deduce from (9) that there exist matrices (Bk)
K
k=1 such that

lim
t→+∞

tα‖Bk(t) − Bk‖1 = 0. (14)

Moreover, matrix P ∗,ε(t) in (8a) converges as t tends to ∞.

Theorem 3 Assume (ASe). Let T be a positive integer. Consider the multivariate count-

ing variable N
(ε)
T defined by (6). Let Π(µT ) be a vector of K independent distributed

Poisson random variables with vector of parameters µT = (µ(1)T , . . . , µ(K)T ) defined in
(11). Then, there is a positive constant κT such that

dTV

(
N

(ε)
T/ε, Π(µT )

)
≤ κT ε. (15)

The above theorem states that N
(ε)
T/ε converges in variation to the random vector Π(µT )

and this convergence takes place at the rate O(ε). We recall that for discrete-valued
random variables, the convergence in total variation is equivalent to the convergence in
distribution [Bil68]. We mention that the convergence to a multivariate Poisson distribu-
tion and a convergence rate may be obtained with α ∈]0, 1] in (ASe) (see Remark 17).

In the univariate case, we have the following Poisson approximation of the counting
variable of failures.

Corollary 4 Assume (ASe) and K = 1. (N
(ε)
t )t∈N is the counting process defined in (6).

Let Π(µT ) a distributed Poisson random variable with parameter µT = πB11
T T , where

matrix B1 is defined by (14). Then, there is a positive constant κT such that

dTV

(
N

(ε)
T/ε, Π(µT )

)
≤ κT ε.

Remark 5 The basic inequality (12) on dTV

(
N

(ε)
T/ε, Π(µT )

)
may be replaced by another

one provided by Serfling in [Ser75]. Although it has been shown that Serfling’s bound
cannot be compared to that of Brown, here, under (ASe) with α > 1, Serfling’s inequality
also leads to the upper bound reported in Corollary 4. However, we do not know if the
bound that we obtain for α ∈]0, 1] (see Remark 17), can be derived from Serfling’s result.
This last comment holds for the irreducible case (ASi) below as well.

Remark 6 Let P be an ergodic matrix and 0 < r < 1 denotes the geometric rate of the
convergence of ‖P t − 1Tπ‖1 to 0. Assume that λ ∈]1, 1/

√
r[. Condition (ASe) may be

weakened in
lim

t→+∞
g(2t)‖P (t) − P‖1 = 0

where g(2t) is any strictly monotone function on N such that g(2t) ≤ λt for t large enough
and

∑
t 1/g(2t) < +∞ (see Remark 23).
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Remark 7 The order of the bound in (15) can not be improved in general. Indeed,
suppose that K = 1. We have from (10)

dTV

(
N

(ε)
T/ε, Π(µT )

)
≥ 1

2
|P(N

(ε)
T/ε = 0) − P

(
Π(µT ) = 0

)
|.

Let us consider the following simple time-homogeneous model

P :=

(
1
2

1
2

1
2

1
2

)
, D

(ε)
0 :=

(
1
2
− ε

2
1
2

1
2
− ε

2
1
2

)
, D

(ε)
1 :=

(
ε
2

0
ε
2

0

)

with (1/2, 1/2) as the probability distribution of X0. P(N
(ε)
T/ε = 0) is

P(N
(ε)
T/ε = 0) = (1/2 1/2)

(
D

(ε)
0

)T/ε
1T =

(
1 − 1

2
ε

)T/ε

.

It follows from the last equality that

P
(
Π(µT ) = 0

)
− P(N

(ε)
T/ε = 0) = exp(−T/2) −

(
1 − ε/2)T/ε

= cT ε + o(ε) with cT > 0.

Then dTV

(
N

(ε)
T/ε, Π(µT )

)
≥ κT ε + o(ε) for ε small enough and some constant κT .

It is known that the estimates of the discrepancy between probability distributions
provided by a martingale approach produce bounds which are T -dependent. Here, κT is
quadratic in T in general. The dependence is linear when we have P ∗,ε(t) = P (t), t ≥ 0.
This happens for the special models in Example 1.

Remark 8 Let us consider the continuous-time multivariate counting process (N
(ε)
⌊t/ε⌋)t∈R+ .

The compensator at time T of this counting process with respect to its internal filtration is
given by

∑⌊T/ε⌋
t=1 λ̂(ε)

t, where λ̂(ε)
t := (λ̂

(ε)
t (k))k=1,...,K is defined from (13). µT defined from

(11) is the compensator at time T of a multivariate Poisson process with parameter vector
(πBk1

T)k=1,...,K . In such a case, the results above are statements on the one-dimensional
distribution of this continuous-time process. Let 0 = t0 < t1 < · · · < tk = T . Then,
using [Bro83, Cor 1] or [KLS83, Th 3.2] we also have that the distance in variation be-

tween the finite dimensional distributions (N
(ε)
⌊t1/ε⌋, . . . ,N

(ε)
⌊T/ε⌋) and (Π(µt1), . . . , Π(µT ))

are bounded from above by the right hand side member of (12). Hence, the results above
also hold when considering the problem of finite-dimensional convergence in variation of
the continuous-time process (N

(ε)
⌊t/ε⌋)t∈R+ . In fact, the convergence also takes place at rate

ε for the Skorokhod topology on the space of the càdlàg functions [Bro83, Cor 1], [KLS83,
Th 4.1].

Before proving Theorem 3, we discuss a Compound approximation of the cumulative
number of failures. This random variable is the following function of the vector N

(ε)
T

f(N
(ε)
T ) :=

K∑

k=1

kN (ε)(k)T .

10



Consider f
(
Π(µT )

)
:=
∑K

k=1 kΠ(µ(k)T ) with µ(k)T ’s defined in (11). Then f
(
Π(µT )

)

has a Compound Poisson distribution CP(µT1T, p), where the vector p is

p :=

(
µ(k)T∑K

k=1 µ(k)T

)

k=1,...,K

=

(
πBk1

T

∑K
k=1 πBk1

T

)

k=1,...,K

. (16)

That is,

f
(
Π(µT )

) d
=

PT∑

j=1

ξj

where the random variable PT := Π(µT )1T has a Poisson distribution with parameter
µT1T and is independent of the {1, . . . , K}-valued random variables ξ1, ξ2, . . .. The ξj’s
are i.i.d. with common distribution specified by vector p. Since we have

dTV

(
f(N

(ε)
T/ε), f(Π(µT ))

)
≤ dTV

(
N

(ε)
T/ε, Π(µT )

)

the following Compound Poisson approximation of f(N
(ε)
T/ε) results from Theorem 3.

Corollary 9 Assume (ASe). Let CP(µT1T, p) be a Compound Poisson distributed ran-
dom variable with µT , p defined by (11) and (16) respectively. N (ε) is the K-variate count-

ing process defined in (6). Let f(N
(ε)
T ) be the cumulative counting process

∑K
k=1 k N (ε)(k).

Then, there is a positive constant κT such that

dTV

(
f(N

(ε)
T/ε), CP(1TµT , p)

)
≤ κT ε.

Remark 10 For the generic model considered in Section 2, the parameters specifying the
Compound distribution in Corollary 9 have the following form from (9), (11) and (16),

µ(k)T =
∑

i

π(i)
(
pi b

(k)
i +

∑

j

P (i, j) λi,j b
(k)
i,j

)
, k = 1, . . . , K

µT1T =
∑

i

π(i)
(
pi +

∑

j

P (i, j)λi,j

)

and p =

(∑
i π(i)

(
pi b

(k)
i +

∑
j P (i, j)λi,j b

(k)
i,j

)
∑

i π(i)
(
pi +

∑
j P (i, j)λi,j

)
)

k=1,...,K

.

Note that α(i, j), αi,l(i, j)’s representing the feedback of failures on the dynamics of X
vanish in the definition of parameters of the asymptotic Compound distribution. This can
be interpreted as follows. The failures tend to be rare and then, the effects of feedback
on the dynamics of X may be neglected. Hence, from the asymptotic point of view, the
models with or without feedback are equivalent.

11



3.2.2 The irreducible case

In this part, the case of an irreducible limit matrix P is discussed. Let us introduce our
assumption on the convergence rate of the sequence (P (t))t∈N to P .

(ASi) There exist an irreducible stochastic matrix P with invariant distribution π, and

a real α > 1 such that

lim
t→+∞

tα‖P (t) − P‖1 = 0.

Then, our main result is as follows.

Theorem 11 Assume (ASi). The notation and definition of Theorem 3 are used. Then,
there is, for any δ ∈]0, 1[, a positive constant κT,δ such that

dTV

(
N

(ε)
T/ε, Π(µT )

)
≤ κT,δ εδ. (17)

In particular, the result states that the convergence in distribution of the random variable
N

(ε)
T/ε to Π(µT ). Analogue of Corollaries 4,9 and Remarks 8,10 may be stated. We omit

the details.

4 Proof of the Poisson approximation

4.1 Ergodic case

For any sequence of matrices (M(t))t∈N and t ≥ n ≥ 0, the forward-product matrix M (n,t)

is defined by

M (n,t) :=

{
M(n) × · · · × M(t − 1) t > n ≥ 0
I t = n.

(18)

The following lemma is essentially based on an estimate of the distance between the
forward-product matrices generated by the sequences of perturbed and non-perturbed
stochastic matrices (P ∗,ε(t))t∈N and (P (t))t∈N. This lemma is related to estimates reported
in [YZB03, Lem 2.1, Rem 2.2], even if the perturbation P ∗,ε(t) of P ∗(t) is not of the form
assumed in this recent article. A related reference is also [Ani88]. A direct proof is
reported below for completeness.

Lemma 12 Let (P (ε)(t))t∈N be the sequence of stochastic matrices defined in (8a-8b).
P ε,(n,t) (resp. P (n,t)) is the forward-product matrix defined by (18) from (P (ε)(t))t∈N (resp.
(P (t))t∈N). Let π be any stochastic vector.

If 0 < ε ≤ 1 then there exists a positive constant κ such that: for t ≥ n ≥ 0,

‖P ε,(n,t) − 1Tπ‖1 ≤ ‖P (n,t) − 1Tπ‖1 + κε

t∑

k=n+1

‖P (k,t) − 1Tπ‖1 (19)

where κ does not depend on ε and t, n. We adopt the convention that
∑t

k=t+1 is null.

12



Proof . Let us show that inequality (19) is valid. Set, for any t ≥ n ≥ 0,

K(n, t) := P ε,(n,t) − P (n,t). (20)

Note that K(n, n) = 0 with our conventions. We have for t > n ≥ 0

K(n, t) = (P ε,(n,t−1) − P (n,t−1))P (t − 1) + P ε,(n,t−1)(P ∗,ε(t − 1) − P (t − 1))

= K(n, t − 1)P (t − 1) + P ε,(n,t−1)(P ∗,ε(t − 1) − P (t − 1)).

Then, solving this difference equation, using the special form of (P ∗,ε(t))t∈N and (Q(l) +
εR(l))1T = 0, we can write

{
K(n, t) = ε

∑t
l=n+1 P ε,(n,l−1)(Q(l − 1) + εR(l − 1))

(
P (l,t) − 1Tπ

)
t > n ≥ 0

K(n, n) = 0.
(21)

Since ‖P ∗,ε(t)‖1 = 1 and ‖Q(l) + εR(l)‖1 is uniformly bounded for ε ≤ 1, we find that,
for t > n,

‖K(n, t)‖1 ≤ ε

t∑

l=n+1

‖Q(l − 1) + εR(l − 1)‖1‖P (l,t) − 1Tπ‖1

≤ εκ

t∑

l=n+1

‖P (l,t) − 1Tπ‖1. (22)

The final step consist in using the triangle inequality

‖P ε,(n,t) − 1Tπ‖1 ≤ ‖P ε,(n,t) − P (n,t)‖1 + ‖P (n,t) − 1Tπ‖1.

Then, inequality (19) follows from inequality (22). �

For any vector a and scalar b ∈ R, the vector (a/b)+ is defined by 0 if b = 0 and a/b

otherwise. The process (X̂∗,ε
t := E[X∗,ε

t | F
N

(ε)

t ])t∈N may be shown to satisfy the following
recursive formula from [Led05, Cor 3.1, Rem 3.2]:

X̂∗,ε
0 = p0 and X̂∗,ε

t = X̂∗,ε
t−1P

∗,ε(t) +
(
∆N

(ε)
t − λ̂(ε)

t

)
Kt−1 t ≥ 1, (23)

where

∆N
(ε)
0 := 0, ∆N

(ε)
t := N

(ε)
t − N

(ε)
t−1, λ̂(ε)

t := (λ̂(ε)(1)t, . . . , λ̂
(ε)(K)t)

Kt−1 :=




( dX∗,ε
t−1D

(ε)
1 (t−1)

bλ(ε)(1)t

)+ − dX∗,ε
t−1D

(ε)
0 (t−1)

1−
PK

k=1
bλ(ε)(k)t

...
( dX∗,ε

t−1D
(ε)
K

(t−1)

bλ(ε)(K)t

)+ − dX∗,ε
t−1D

(ε)
0 (t−1)

1−
PK

k=1
bλ(ε)(k)t




and the stochastic vector p0 corresponds to the probability distribution of X∗
0 .
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Remark 13 Since E[X∗,ε
t+1 | X∗,ε

t ] = X∗,ε
t P ∗,ε(t), the Markov chain X∗,ε has the following

representation: for t ≥ 0
X∗,ε

t+1 = X∗,ε
t P ∗,ε(t) + Vt+1 (24)

where (Vt)t≥1 is a F
X∗,ε

-martingale difference In fact, Formula (23) is the Doob-Meyer

decomposition of the process X̂∗ and can be thought of as the “projection of the decom-
position (24) for X∗,ε onto the internal filtration F

N
(ε)

”. A related reference is [Seg76].

The next lemma gives an estimate of the deviation of the filtered state X̂∗,ε
t from any

stochastic vector π.

Lemma 14 Let π be any stochastic vector and 0 < ε ≤ 1. Then, for t ≥ 0,

E‖X̂∗,ε
t−π‖1 ≤ ‖P (0,t)−1Tπ‖1+κ ε

t∑

l=1

‖P (l,t)−1Tπ‖1+κ ε2

t∑

l=1

t∑

k=l+1

‖P (k,t)−1Tπ‖1 (25)

for some constant κ that does not depend on ε, t. We adopt the convention that
∑t

k=t+1

is null.

Proof . When t = 0, inequality (25) follows from (19) because ‖X̂∗,ε
0 − π‖1 =

‖X̂∗,ε
0(P

(0,0) − 1Tπ)‖1 ≤ ‖X̂∗,ε
0‖1‖P (0,0) − 1Tπ‖1 = ‖P (0,0) − 1Tπ‖1 since ‖X̂∗,ε

0‖1 = 1.
Relation (23) may be rewritten as follows

X̂∗,ε
t = X̂∗,ε

t−1P
∗,ε(t) +

K∑

k=1

〈∆N
(ε)
t − λ̂(ε)

t, fk〉H(k)t−1, t ≥ 1,

with

H(k)t−1 := X̂∗,ε
t−1

((
D

(ε)
k

(t−1)

bλ(ε)(k)t

)+

− D
(ε)
0 (t−1)

1−
P

k
bλ(ε)(k)t

)
.

For any k = 1, . . . , K, H(k)t−1 is F
N

(ε)

t−1 -measurable for all t ≥ 1, i.e. the matrix-valued

random process (H(k)t)t∈N is F
N

(ε)
-predictable. Iterating the previous relation, we obtain

X̂∗,ε
t = X̂∗,ε

0P
ε,(0,t) +

K∑

k=1

t∑

l=1

〈∆N
(ε)
l − λ̂(ε)

l, fk〉Hl−1(k)P ε,(l,t) t ≥ 1

where P ε,(n,t) is the forward-product matrix associated with the sequence (P ∗,ε(t))t∈N.

Because Ht−1(k)1T = 0 for t ≥ 1 and k = 1, . . . , K, and X̂∗,ε
01

T = 1, we find for t ≥ 1

X̂∗,ε
t − π = X̂∗,ε

0(P
ε,(0,t) − 1Tπ) +

K∑

k=1

t∑

l=1

〈∆N
(ε)
l − λ̂(ε)

l, fk〉Hl−1(k)(P ε,(l,t) − 1Tπ) (26)

and

‖X̂∗,ε
t − π‖1 ≤ ‖P ε,(0,t) − 1Tπ‖1 +

K∑

k=1

t∑

l=1

〈∆N
(ε)
l + λ̂(ε)

l, fk〉‖Hl−1(k)(P ε,(l,t) − 1Tπ)‖1.

14



using basic facts for ‖ · ‖1 and ‖X̂∗,ε
0‖1 = 1.

Since (Ht(k)) is a F
N

(ε)
-predictable process and λ̂(ε)(k) = 〈λ̂(ε), fk〉 is the F

N
(ε)

-
intensity of the counting process N (ε)(k), it follows taking the expectation on both side
of the last inequality that, for t ≥ 1,

E‖X̂∗,ε
t − π‖1 ≤ ‖P ε,(0,t) − 1Tπ‖1 + 2

K∑

k=1

t∑

l=1

∥∥Hl−1(P
ε,(l,t) − 1Tπ)

∥∥
1
λ̂(ε)(k)l

≤ ‖P ε,(0,t) − 1Tπ‖1 + 4
K∑

k=1

t∑

l=1

‖P ε,(l,t) − 1Tπ‖1 λ̂(ε)(k)l.

The last inequality holds since ‖Ht−1(k)‖1 ≤ 2 for every t ≥ 1 as the l1-norm of the
difference of two stochastic vectors.

Hereafter, κ stands for a generic positive constant. As it can be seen from the proof
of Theorem 3, λ̂(ε)(k)t ≤ κ ε for every t ≥ 1 (with ε ≤ 1). Then, we obtain for t ≥ 1

E‖X̂∗,ε
t − π‖1 ≤ ‖P ε,(0,t) − 1Tπ‖1 + κ ε

t∑

l=1

‖P ε,(l,t) − 1Tπ‖1.

Finally, we find from Lemma 12-(19) that, for t ≥ 1

E‖X̂∗,ε
t − π‖1 ≤ ‖P (0,t) − 1Tπ‖1 + κε

t∑

l=1

‖P (l,t) − 1Tπ‖1

+κ ε

t∑

l=1

(
‖P (l,t) − 1Tπ‖1 + κε

t∑

k=l+1

‖P (k,t) − 1Tπ‖1

)
.

for some constant κ which does not depend on t, ε. Inequality (25) follows easily. �

Proof of Theorem 3. First, we consider the second term in the right hand side
member of (12). We obtain from (5) that

E

T/ε∑

t=1

(λ̂(ε)(k)t)
2 = E

T/ε∑

t=1

∣∣〈X̂∗,ε
t−1, D

(ε)
k (t − 1)1T〉

∣∣2

≤ E

T/ε∑

t=1

‖X̂∗,ε
t−1‖2

1‖D
(ε)
k (t − 1)1T‖2

1 =

T/ε∑

t=1

‖D(ε)
k (t − 1)1T‖2

1

since ‖X̂∗,ε
t−1‖1 = 1. Now, we know that ‖D(ε)

k (t − 1)1T‖2
1 = cε2 + o(ε2). Then, with

ε ≤ 1,

E

T/ε∑

t=1

(λ̂(ε)(k)t)
2 ≤ κT,1 ε. (27)
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Second, consider the first term in the right hand side member of (12). We can write from
(5),(7),(11)

T/ε∑

t=1

λ̂(ε)(k)t − µ(k)T =

T/ε∑

t=1

X̂∗,ε
t−1D

(ε)
k (t − 1)1T − TπBk1

T

=

T/ε∑

t=1

εX̂∗,ε
t−1Bk(t − 1)1T − TπBk1

T +

T/ε∑

t=1

ε2X̂∗,ε
t−1Lk(t − 1)1T

= ε

T/ε∑

t=1

(X̂∗,ε
t−1 − π)Bk1

T + ε

T/ε∑

t=1

X̂∗,ε
t−1(Bk(t − 1) − Bk)1

T

+ε2

T/ε∑

t=1

X̂∗,ε
t−1Lk(t − 1)1T.

We clearly have from the last term in the equality above,

ε2

∣∣∣∣
T/ε∑

t=1

X̂∗,ε
t−1Lk(t − 1)1T

∣∣∣∣ ≤ ε2

T/ε∑

t=1

∣∣〈X̂∗,ε
t−1, Lk(t − 1)1T〉

∣∣ ≤ ε2

T/ε∑

t=1

‖Lk(t − 1)1T‖1.

Since ‖Lk(t − 1)‖11
T is uniformly bounded in t (see (9)), it follows that

∣∣∣∣
T/ε∑

t=1

λ̂(ε)(k)t − µT (k)

∣∣∣∣ ≤ ε

∣∣∣∣
T/ε∑

t=1

(X̂∗,ε
t−1 − π)Bk1

T

∣∣∣∣+ ε

∣∣∣∣
T/ε∑

t=1

X̂∗,ε
t−1(Bk(t − 1) − Bk)1

T

∣∣∣∣
+κT,2ε.

Next, in a similar way than for the previous estimate, we get

ε

∣∣∣∣
T/ε∑

t=1

X̂∗,ε
t−1(Bk(t − 1) − Bk)1

T

∣∣∣∣ ≤ ε

T/ε∑

t=1

‖(Bk(t − 1) − Bk)1
T‖1

≤ ε N
+∞∑

t=1

‖Bk(t − 1) − Bk‖1.

Under (ASe), this last term is bounded from above by κ3ε for some κ3. Therefore, we
find that

E

∣∣∣∣
T/ε∑

t=1

λ̂(ε)(k)t − µT (k)

∣∣∣∣ ≤ ε ‖Bk1
T‖1

T/ε∑

t=1

E‖X̂∗,ε
t−1 − π‖1 + κ3 ε + κT,2 ε.

The proof will be complete from (27) and the above inequality, if we show that

T/ε∑

t=1

E‖X̂∗,ε
t−1 − π‖1 ≤ κT,4 (28)
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where κT,4 does not depend upon ε. Using Lemma 14, we have from (25)

T/ε∑

t=1

E‖X̂∗,ε
t−1 − π‖1 =

T/ε−1∑

t=0

E‖X̂∗,ε
t − π‖1

≤
T/ε−1∑

t=0

‖P (0,t) − 1Tπ‖1 + κ ε

T/ε−1∑

t=0

t∑

l=1

‖P (l,t) − 1Tπ‖1

+κ ε2

T/ε−1∑

t=0

t∑

l=1

t∑

k=l+1

‖P (k,t) − 1Tπ‖1.

Under (ASe), we have that P (t) converges to the ergodic matrix P with invariant distri-
bution π. The following inequalities are shown to be valid in Appendix A (see (A.3-A.5))

T/ε−1∑

t=0

‖P (0,t) − 1Tπ‖1 ≤ C

T/ε−1∑

t=0

t∑

l=1

‖P (l,t) − 1Tπ‖1 ≤
T

ε
C

T/ε−1∑

t=0

t∑

l=1

t∑

k=l+1

‖P (k,t) − 1Tπ‖1 ≤
(

T

ε

)2

C.

The proof is easily completed. �

4.2 The irreducible case

The structure of the proof of Theorem 11 is similar to that of Theorem 3. Only the
relevant steps are given below.

Lemma 15 Suppose that the conditions of Lemma 12 are satisfied. Then,

∥∥
t∑

k=n

(P ε,(n,k) − 1Tπ)
∥∥

1
≤
∥∥

t∑

k=n

(P (n,k) − 1Tπ)
∥∥

1
+ κε

t∑

l=n+1

∥∥
t∑

k=l

(P (l,k) − 1Tπ)
∥∥

1

where κ does not depend on ε and t, n. The convention for
∑t

k=t+1 is as in Lemma 12.

Proof . Set, for any t ≥ n ≥ 0,

C(n, t) :=
t∑

k=n

(P ε,(n,k) − P (n,k)) =
t∑

k=n

K(k, n)

where K(k, n) is defined by (20). It follows from (21) that, for t ≥ n

C(n, t) = ε

t∑

k=n

k∑

l=n+1

P ε,(n,l−1)(Q(l − 1) + εR(l − 1))
(
P (l,k) − 1Tπ

)

= ε

t∑

l=n+1

P ε,(n,l−1)(Q(l − 1) + εR(l − 1))
t∑

k=l

(
P (l,k) − 1Tπ

)
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Then, we obtain as for (22)

‖C(n, t)‖1 ≤ εκ
t∑

l=n+1

∥∥
t∑

k=l

(P (l,k) − 1Tπ)
∥∥

1
. (29)

The final step consist in using the triangle inequality as in Lemma 12. �

The recursive equation (23) for the filter is valid under no special assumption on the
underlying Markov chain [Led05]. The analogue of Lemma 14 is given below.

Lemma 16 Suppose that the conditions of Lemma 14 are satisfied. Then, for t ≥ 0

E‖
t∑

k=0

(X̂∗,ε
k − π)‖1 ≤ ‖

t∑

k=0

(P (0,k) − 1Tπ)‖1 + κ ε

t∑

l=1

‖
t∑

k=l

(P (l,k) − 1Tπ)‖1

+κ ε2

t∑

l=1

t∑

m=l+1

‖
t∑

n=m

(P (m,n) − 1Tπ)‖1 (30)

for some constant κ which does not depend on ε, t (the convention are as in Lemma 14).

Proof . When t = 0 inequality (30) is nothing else than (25) for t = 0.
We know from (26) that, for t ≥ 1

t∑

m=0

(X̂∗,ε
m − π) =

t∑

m=0

X̂∗,ε
0(P

ε,(0,m) − 1Tπ)

+
K∑

k=1

t∑

m=0

m∑

l=1

〈∆N
(ε)
l − λ̂(ε)

l, fk〉Hl−1(k)(P ε,(l,m) − 1Tπ)

= X̂∗,ε
0

t∑

k=0

(P ε,(0,k) − 1Tπ)

+
K∑

k=1

t∑

l=1

〈∆N
(ε)
l − λ̂(ε)

l, fk〉Hl−1(k)
t∑

m=l

(P ε,(l,m) − 1Tπ)

Then, we obtain using basic facts for ‖ · ‖1 and ‖X̂∗,ε
0‖1 = 1

‖
t∑

m=0

(X̂∗,ε
m − π)‖1 ≤ ‖

t∑

k=0

(P ε,(0,k) − 1Tπ)‖1

+
K∑

k=1

t∑

l=1

〈∆N
(ε)
l + λ̂(ε)

l, fk〉‖Hl−1(k)‖1

∥∥
t∑

m=l

(P ε,(l,m) − 1Tπ)
∥∥

1
.

The proof is easily completed along with the line of the proof of Lemma 14 ( using
Lemma 15 in place of of Lemma 12). �
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Proof of Theorem 11. A close inspection of the proof of Theorem 3, shows that,
under (ASi), the only changes concern the term

ε E

∣∣∣∣
T/ε∑

t=1

(X̂∗,ε
t−1 − π)Bk1

T

∣∣∣∣ = ε E

∣∣∣∣〈
T/ε−1∑

t=0

(X̂∗,ε
t − π), Bk1

T〉
∣∣∣∣

≤ ε‖Bk1
T‖1 E

∥∥
T/ε−1∑

t=0

(X̂∗,ε
t − π)

∥∥
1

It follows from Lemma 16 that

E‖
T/ε−1∑

t=0

(X̂∗,ε
t − π)‖1 ≤ ‖

T/ε−1∑

t=0

(P (0,t) − 1Tπ)‖1 + κ ε

T/ε−1∑

l=1

‖
T/ε−1∑

k=l

(P (l,k) − 1Tπ)‖1

+κ ε2

T/ε−1∑

l=1

T/ε−1∑

m=l+1

‖
T/ε−1∑

n=m

(P (m,n) − 1Tπ)‖1

for some constant κ which does not depend on ε, t. We easily deduce from (A.7)–(A.9)
that there exists, for any δ ∈]0, 1[, a κT,δ such that

E‖
T/ε−1∑

t=0

(X̂∗,ε
t − π)‖1 ≤ κT,δε

−δ. (31)

Multiplying the inequality above by ε gives the final form of (17). �

Remark 17 We emphasize that Lemmas 15,16 are valid under no specific assumption
on P . Then, it is not difficult to see that the convergence in Theorem 3, with α ∈]0, 1] in
(ASe), may be derived from a similar proof than that of Theorem 11. We also obtain a
convergence rate. For α ∈]0, 1], the order is in εα−δ for any δ such that 0 < δ < α and ε
small enough. The details are omitted.

Remark 18 It follows from the proofs of Theorems 3,11 (see (28) and (31)) that the
following functional of the filtered state converges in L1 norm to π

1

T/ε

T/ε∑

t=1

X̂∗,ε
t−1 −→

ε→0
π

with a convergence rate of order ε under (ASe), of εδ for any δ ∈]0, 1[ under (ASi). Under
(ASe) with α ∈]0, 1], a similar statement also holds from Remark 17.

5 Conclusion

In this article, we deal with a reliability model in which the failures are generated by an
underlying non-homogeneous Markov chain. The main contribution of this article is to
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show that a Poison-type approximation exists for the corresponding multivariate failure
point process, when the failures tend to be rare. As a corollary, we obtain a Compound
Poisson approximation for the cumulative number of failures. In this article, we only use
simple stochastic calculus in discrete-time and the assumptions used here, are expected
to be easily checked. It is intended that this approach can lead to similar results for much
more general marking of failure events than the independence case considered here.

A Rate of convergence of non-homogeneous Markov

chains

For a sequence of stochastic matrices (P (t))t∈N and t ≥ n ≥ 0, the forward-product matrix
P (n,t) is

P (n,t) :=

{
P (n) × · · · × P (t − 1) t > n ≥ 0
I t = n.

(A.1)

A non-homogeneous Markov chain with transition matrices (P (t))t∈N and initial dis-
tribution p0, is said to be strongly ergodic if there exists a stochastic vector π such that

∀n ≥ 0, lim
t→+∞

sup
p0

‖p0P
(n,n+t) − π‖1 = 0.

We know from [IM76, Th V.4.1] that (P (t))t∈N is strongly ergodic iff there exists a stochas-
tic vector π such that

∀n ≥ 0, lim
t→+∞

‖P (n,n+t) − 1Tπ‖1 = 0.

If the previous limit is uniform in n, then (P (t))t∈N is said to be uniformly strongly ergodic.
We have the following basic result [HIV76].

Lemma 19 Let P an ergodic matrix with invariant distribution π. If the sequence (P (t))t∈N

converges to P in norm l1 then (P (t))t∈N is uniformly strongly ergodic

lim
t→+∞

sup
n≥0

‖P (n,n+t) − 1Tπ‖1 = 0

Remark 20 In our finite-dimensional context, note that the l1 convergence of matrices
is equivalent to the component-wise convergence.

Remark 21 We mention that there are standard conditions for the (uniform) weak or
strong ergodicity are in terms of spectral properties of each matrix P (t) (e.g. [IM76,
Ios80]). This is the point of view used in [YZB03]. The convergent case is favored here,
from the reliability context.

We are concerned here with rate of convergence. For a strongly ergodic matrix P
according to the definition above, it is well known that the convergence of the forward-
product P (n,n+t) = P t is geometric: there is a constant κ such that for all t ≥ 0,

‖P t − 1Tπ‖1 ≤ κ rt.
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In the non-stationary case, we will use the following form of the main result of [HIV76].

Lemma 22 Let P be an ergodic matrix with invariant distribution π. If the sequence of
stochastic matrices (P (t))t∈N converges in norm l1 to P with

lim
t→+∞

(2t)α‖P (t) − 1Tπ‖1 = 0

for some α > 0, then
lim

t→+∞
tα sup

n≥0
‖P (n,n+t) − 1Tπ‖1 = 0

If α is greater than 1 in the previous lemma, then it is clear that the following series
converge:

sup
n≥0

∑

t≥0

‖P (n,n+t) − 1Tπ‖1 ≤
∑

t≥0

sup
n≥0

‖P (n,n+t) − 1Tπ‖1 ≤ C < ∞ (A.2)

This gives our basic assumption (ASe) on the convergence of P (t) (see page 9). The
following properties are deduced from the previous result and are used in the proof of
Theorem 3 ∑

t≥0

‖P (0,t) − 1Tπ‖1 ≤ C (A.3)

T/ε−1∑

t=0

t∑

n=1

‖P (n,t) − 1Tπ‖1 ≤
T

ε
C (A.4)

T/ε−1∑

t=0

t∑

l=1

t∑

k=l+1

‖P (k,t) − 1Tπ‖1 ≤
(

T

ε

)2

C (A.5)

where C does not depend on ε, T . In the inequalities above, we adopt the convention that∑t
k=t+1 for t ≥ 0 is null.
The first inequality is immediate from (A.2). We find the second inequality from

T/ε−1∑

t=0

t∑

n=1

‖P (n,t) − 1Tπ‖1 =

T/ε−1∑

n=1

T/ε∑

t=n

‖P (n,t) − 1Tπ‖1

≤
T/ε−1∑

n=1

+∞∑

t=n

‖P (n,t) − 1Tπ‖1

≤ T

ε
C from (A.2)

Finally, inequality (A.5) is proved as follows. First, we have for t ≥ 2:

t∑

l=1

t∑

k=l+1

‖P (k,t) − 1Tπ‖1 =
t−1∑

l=1

t∑

k=l+1

‖P (k,t) − 1Tπ‖1

=
t∑

k=2

(k − 1)‖P (k,t) − 1Tπ‖1.
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Second, summing over t we obtain

T/ε−1∑

t=0

t∑

l=1

t∑

k=l+1

‖P (k,t) − 1Tπ‖1 =

T/ε−1∑

t=2

t∑

l=1

t∑

k=l+1

‖P (k,t) − 1Tπ‖1

=

T/ε−1∑

t=2

t∑

k=2

(k − 1)‖P (k,t) − 1Tπ‖1 =

T/ε−1∑

k=2

T/ε−1∑

t=k

(k − 1)‖P (k,t) − 1Tπ‖1

≤
T/ε−1∑

k=2

(k − 1)
+∞∑

t=k

‖P (k,t) − 1Tπ‖1

≤ C

T/ε−1∑

k=2

(k − 1) from (A.2).

Remark 23 Let 0 < r < 1 be the geometric rate of convergence of ‖P t − 1Tπ‖1 to 0.
In Lemma 22, let us replace the function (2t)α by any strictly increasing function g(2t).
Then, the conclusion of the lemma is now [HIV76]

lim
t→+∞

min(g(t), λt) sup
n≥0

‖P (n,n+t) − 1Tπ‖1 = 0

for any λ ∈]1, 1/
√

r[. In such a case, if function g(2t) satisfies g(2t) ≤ λt for t large enough
and

∑
t 1/g(2t) < +∞, then Property (A.2) is still valid and (A.3-A.5) as well. It easily

follows that Theorem 3 holds under the condition above.

Next, we consider the case where the limit matrix P is only assumed to be irreducible.
Let π be the invariant distribution of P . In that case, we consider the Cesaro sums of the
forward product (A.1), that is

C(n, t) :=
1

t

t∑

k=1

P (n,n+k). (A.6)

If the sequence of non-stationary stochastic matrices (P (t))t∈N converges to an irreducible
matrix P , it has been shown in [BDI77] that the Cesaro sums (A.6) converge to 1Tπ
uniformly in n, with an upper bound on the convergence rate which is reported in the
next result.

Lemma 24 Let P be an irreducible matrix with invariant distribution π. If the sequence
of stochastic matrices (P (t))t∈N converges in norm l1 to P with

lim
t→+∞

tα‖P (t) − 1Tπ‖1 = 0

for some α > 1, then there is, for any δ > 0, a D(δ) such that

sup
n≥0

‖C(n, t) − 1Tπ‖1 ≤
D(δ)

t1−δ
t ≥ 1.
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This leads to our basic assumption (ASi) on the convergence of P (t) (see page 12). In
fact, the previous estimate has the following form: for any t ≥ 1

sup
n≥0

∥∥
t∑

k=1

(P (n,n+k) − 1Tπ)
∥∥

1
≤ D(δ)tδ.

In a similar way than for (A.3-A.5), the following properties may be deduced from the
estimate above

∥∥
T/ε−1∑

k=0

(P (0,k) − 1Tπ)
∥∥

1
≤ D(δ)

(
T

ε

)δ

(A.7)

T/ε−1∑

l=1

∥∥
T/ε−1∑

k=l

(P (l,k) − 1Tπ)
∥∥

1
≤ D(δ)

(
T

ε

)1+δ

(A.8)

T/ε−1∑

l=1

T/ε−1∑

m=l+1

∥∥
T/ε−1∑

n=m

(P (m,n) − 1Tπ)
∥∥

1
≤ D(δ)

(
T

ε

)2+δ

(A.9)

where D(δ) does not depend on ε, T . In the inequalities above, we adopt the convention
that

∑t
k=t+1 for t ≥ 0 is null.
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