Walid Al-Kawarit 
email: walid.al-kawarit@unicaen.fr
  
Franc ¸ois Couchot 
email: francois.couchot@unicaen.fr
  
  
  
COMPARISON OF SOME PURITIES, FLATNESSES AND INJECTIVITIES

Keywords: 2000 Mathematics Subject Classification. Primary 16D40, 16D50, 16D80. Key words and phrases. (n, m)-pure submodule, (n, m)-flat module, (n, m)-injective module, (n, m)-coherent ring

In this paper, we compare (n, m)-purities for different pairs of positive integers (n, m). When R is a commutative ring, these purities are not equivalent if R doesn't satisfy the following property: there exists a positive integer p such that, for each maximal ideal P , every finitely generated ideal of R P is p-generated. When this property holds, then the (n, m)-purity and the (n, m ′ )-purity are equivalent if m and m ′ are integers ≥ np. These results are obtained by a generalization of Warfield's methods. There are also some interesting results when R is a semiperfect strongly π-regular ring. We also compare (n, m)-flatnesses and (n, m)-injectivities for different pairs of positive integers (n, m). In particular, if R is right perfect and right self (ℵ 0 , 1)-injective, then each (1, 1)-flat right R-module is projective. In several cases, for each positive integer p, all (n, p)-flatnesses are equivalent. But there are some examples where the (1, p)-flatness is not equivalent to the (1, p + 1)-flatness.

All rings in this paper are associative with unity, and all modules are unital. Let n and m be two positive integers. A right R-module M is said to be (n, m)presented if it is the factor module of a free right module of rank n modulo a m-generated submodule. A short exact sequence (Σ) of left R-modules is called (n, m)-pure if it remains exact when tensoring it with any (n, m)-presented right module. We say that (Σ) is (ℵ 0 , m)-pure exact (respectively (n, ℵ 0 )-pure exact if, for each positive integer n (respectively m) (Σ) is (n, m)-pure exact. Let us observe that the (1, 1)-pure exact sequences are exactly the RD-exact sequences (see [START_REF] Warfield | Purity and algebraic compactness for modules[END_REF]) and the (ℵ 0 , ℵ 0 )-exact sequences are the pure-exact sequences in the Cohn's sense. Similar results as in the classical theories of purity hold, with similar proofs. In particular, a left R-module is (n, m)-pure-projective if and only if it is a summand of a direct sum of (m, n)-presented left modules, and each left R-module has a (n, m)-pure-injective hull which is unique up to an isomorphism.

In this paper, we compare (n, m)-purities for different pairs of positive integers (n, m). When R is commutative, we shall see that some of these purities are equivalent only if R satisfies the following property: there exists a positive integer p such that, for each maximal ideal P , every finitely generated ideal of R P is pgenerated. When this property holds, then (n, m)-purity and (n, m ′ )-purity are equivalent if m and m ′ are integers ≥ np. These results are obtained by using the following: if R is a local commutative ring for which there exists a (p + 1)-generated ideal, where p is a positive integer, then, for each positive integer n, for each integer m, n(p -1) + 1 ≤ m ≤ np + 1, there exists a (n, m)-presented R-module whose endomorphism ring is local. It is a generalization of the Warfield's construction of indecomposable finitely presented modules when R is not a valuation ring.

When R is semiperfect and strongly π-regular, we show that there exists an integer m > 0 such that, for any integer n > 0, each (n, m)-pure exact sequence of right modules is (n, ℵ 0 )-pure exact if and only if there exists an integer p > 0 such that every finitely generated left ideal is p-generated.

As in [START_REF] Zhang | On (m, n)-injective modules and (m, n)-coherent rings[END_REF] we define (n, m)-flat modules and (n, m)-injective modules. We also compare (n, m)-flatnesses and (n, m)-injectivities for different pairs of positive integers (n, m). In particular, if R is a right perfect ring which is right self (ℵ 0 , 1)injective, then each (1, 1)-flat right R-module is projective. For many classes of rings, for each positive integer p, we show that the (1, p)-flatness implies the (ℵ 0 , p)flatness, but we have no general result. If R is a local commutative ring with a non finitely generated maximal ideal P satisfying P 2 = 0, then for each positive integer p, there exists an R-module which is (ℵ 0 , p)-flat (resp, (ℵ 0 , p)-injective) and which is not (1, p + 1)-flat (resp, (1, p + 1)-injective).

As in [START_REF] Zhang | On (m, n)-injective modules and (m, n)-coherent rings[END_REF] we define left (n, m)-coherent rings. When R is a commutative locally perfect ring which is (1, 1)-coherent and self (1, 1)-injective, we show that R is an IF-ring, each (1, 1)-flat R-module is flat and each (1, 1)-injective R-module is FPinjective. For other classes of rings, for each positive integer p, we show that the left (1, p)-coherence implies the left (ℵ 0 , p)-coherence, but we have no general result. If R = V [[X]], the power series ring over a valuation domain V whose order group is not isomorphic to R, then R is a (ℵ 0 , 1)-coherent ring which is not (1, 2)-coherent.

(n, m)-pure exact sequences

By using a standard technique, (see for instance [4, Chapter I, Section 8]), we can prove the following theorem, and similar results hold if we replace n or m with ℵ 0 . Theorem 1.1. Assume that R is an algebra over a commutative ring S and E is an injective S-cogenerator. Then, for each exact sequence (Σ) of left R-modules 0 → A → B → C → 0, the following conditions are equivalent:

(1) (Σ) is (n, m)-pure;

(2) for each (m, n)-presented left module G the sequence Hom R (G, (Σ)) is exact;

(3) every system of n equations over

A m j=1 r i,j x j = a i ∈ A (i = 1, . . . , n)
with coefficients r i,j ∈ R and unknowns x 1 , . . . , x m has a solution in A whenever it is solvable in B;

(4) the exact sequence of right R-modules Hom S ((Σ), E) is (m, n)-pure. Propositions 1.2 and 1.3 can be deduced from [13, Theorem 1]. A left R-module G is called (n, m)-pure-projective if for each (n, m)-pure exact sequence 0 → A → B → C → 0 the sequence 0 → Hom R (G, A) → Hom R (G, B) → Hom R (G, C) → 0
is exact. Similar definitions can be given by replacing n or m by ℵ 0 . From Theorem 1.1 and by using standard technique (see for instance [4, Chapter VI, Section 12]) we get the following proposition in which n or m can be replaced by ℵ 0 : Proposition 1.2. Let G be a left R-module. Then the following assertions hold:

(1) there exists a (n, m)-pure exact sequence of left modules

0 → K → F → G → 0
where F is a direct sum of (m, n)-presented left modules;

(2) G is (n, m)-pure projective if and only if it is a summand of a direct sum of (m, n)-presented left modules.

A left R-module G is called (n, m)-pure-injective if for each (n, m)-pure exact sequence 0 → A → B → C → 0 the sequence 0 → Hom R (C, G) → Hom R (B, G) → Hom R (A, G) → 0 is exact. If M is a left module we put M ♯ = Hom Z (M, Q/Z). Thus M ♯ is a right module. It is the character module of M .
If A is a submodule of a left R-module B, we say that B is a (n, m)-pure essential extension of A if A is a (n, m)-pure submodule of B and for each nonzero submodule K of B such that A ∩ K = 0, (A + K)/K is not a (n, m)-pure submodule of B/K. If, in addition, B is (n, m)-pure injective, we say that B is a (n, m)-pure injective hull of A. In these above definitions and in the following proposition n or m can be replaced by ℵ 0 .

Proposition 1.3. The following assertions hold:

(1) each left R-module is a (n, m)-pure submodule of a (n, m)-pure injective left module;

(2) each left R-module has a (n, m)-pure injective hull which is unique up to an isomorphism.

Proof. [START_REF] Anderson | Coherence of power series rings over pseudo-Bezout domains[END_REF]. Let M be a left R-module. By Proposition 1.2 there exists a (m, n)pure exact sequence of right R-modules 0 → K → F → M ♯ → 0 where F is a direct sum of (n, m)-presented right modules. From Theorem 1.1 it follows that (M ♯ ) ♯ is a (n, m)-pure submodule of F ♯ . By [3, Corollary 1.30] M is isomorphic to a pure submodule of (M ♯ ) ♯ . So, M is isomorphic to a (n, m)-pure submodule of F ♯ . By using the canonical isomorphism (F ⊗ R -) ♯ ∼ = Hom R (-, F ♯ ) we get that F ♯ is (n, m)-pure injective since F is a direct sum of (n, m)-presented modules.

(2). Since (1) holds and every direct limit of (n, m)-pure exact sequences is (n, m)-pure exact too, we can adapt the method of Warfield's proof of existence of pure-injective hull to show (2)(see [START_REF] Warfield | Purity and algebraic compactness for modules[END_REF]Proposition 6]). We can also use [START_REF] Stenström | Pure submodules[END_REF]Proposition 4.5].

Proposition 1.4. Let R be a commutative ring and let (Σ) be a short exact sequence of R-modules. Then (Σ) is (n, m)-pure if and only if, for each maximal ideal P (Σ) P is (n, m)-pure.

Proof. Assume that (Σ) is (n, m)-pure and let M be a (n, m)-presented R P -module where P is a maximal ideal. There exists a (n, m)-presented R-module M ′ such that M ∼ = M ′ P and M ⊗ RP (Σ) P ∼ = (M ′ ⊗ R (Σ)) P . We deduce that (Σ) P is (n, m)-pure. Conversely, suppose that (Σ) is the sequence 0 → A → B → C → 0. Let M be a (n, m)-presented R-module. Then, for each maximal ideal P , (Σ) P is (n, m)-pure over R since M ⊗ R (Σ) P ∼ = M P ⊗ RP (Σ) P . On the other hand, since M ⊗ R ( P ∈Max R (Σ) P ) ∼ = ( P ∈Max R M ⊗ R (Σ) P ), P ∈Max R A P is a (n, m)-pure submodule of P ∈Max R B P . By [2, Lemme 1.3] A is isomorphic to a pure submodule of P ∈Max R A P . We successively deduce that A is a (n, m)-pure submodule of P ∈Max R B P and B.

Comparison of purities over a semiperfect ring

In this section we shall compare (n, m)-purities for different pairs of integers (n, m). In [START_REF] Puninski | Rings described by various purities[END_REF] some various purities are also compared. In particular some necessary and sufficient conditions on a ring R are given for the (1, 1)-purity to be equivalent to the (ℵ 0 , ℵ 0 )-purity.

The following lemma is due to Lawrence Levy, see [START_REF] Wiegand | Finitely generated modules over Bezout rings[END_REF]Lemma 1.3]. If M be a finitely generated left (or right) R-module, we denote by gen M its minimal number of generators.

Lemma 2.1. Let R be a ring. Assume there exists a positive integer p such that gen A ≤ p for each finitely generated left ideal A of R. Then gen N ≤ p × gen M , if N is a finitely generated submodule of a finitely generated left R-module M .

From this lemma and Theorem 1.1 we deduce the following: Proposition 2.2. Let R be a ring. Assume there exists a positive integer p such that gen A ≤ p for each finitely generated left ideal A of R. Then, for each positive integer n:

(1) each (n, np)-pure exact sequence of right modules is (n, ℵ 0 )-pure exact;

(2) each (np, n)-pure exact sequence of left modules is (ℵ 0 , n)-pure exact.

Corollary 2.3. Let R be a left Artinian ring. Then there exists a positive integer p such that, for each positive integer n:

(1) each (n, np)-pure exact sequence of right modules is (n, ℵ 0 )-pure exact;

(2) each (np, n)-pure exact sequence of left modules is (ℵ 0 , n)-pure exact.

Proof. Each finitely generated left R-module M has a finite length denoted by length M , and gen M ≤ length M . So, for each left ideal A we have gen A ≤ length R. We choose p = sup{gen A | A left ideal of R} and we apply the previous proposition.

Let R be a ring and J its Jacobson radical. Recall that R is semiperfect if R/J is semisimple and idempotents lift modulo J.

Theorem 2.4. Let R be semiperfect ring. Assume that each indecomposable finitely presented cyclic left R-module has a local endomorphism ring. The following conditions are equivalent:

(1) there exists an integer p > 0 such that, for each integer n > 0, each (n, np)pure exact sequence of right modules is (n, ℵ 0 )-pure exact; (2) there exists an integer p > 0 such that, for each integer n > 0, each (np, n)pure exact sequence of left modules is (ℵ 0 , n)-pure exact; (3) there exists an integer q > 0 such that each (1, q)-pure exact sequence of right modules is (1, ℵ 0 )-pure exact; (4) there exists an integer q > 0 such that each (q, 1)-pure exact sequence of left modules is (ℵ 0 , 1)-pure exact; (5) there exists an integer q > 0 such that each indecomposable finitely presented cyclic left module is q-related;

(6) there exists an integer p > 0 such that gen A ≤ p for each finitely generated left ideal A of R. Moreover, if each indecomposable finitely presented left R-module has a local endomorphism ring, these conditions are equivalent to the following: [START_REF] Puninski | Rings described by various purities[END_REF] there exist two positive integers n, m such that each (n, m)-pure exact sequence of right modules is (n, ℵ 0 )-pure exact; (8) there exist two positive integers n, m such that each (m, n)-pure exact sequence of left modules is (ℵ 0 , n)-pure exact;

Proof. By Proposition 2.2 ( 6) ⇒ (1). By Theorem 1.1 (1) ⇔ (2), ( 3) ⇔ ( 4) and ( 7) ⇔ (8). It is obvious that (2) ⇒ (4) and ( 2) ⇒ (7). ( 4) ⇒ (5). Let C be an indecomposable finitely presented cyclic left module. Then C is (q, 1)-pure-projective. So, C is a direct summand of a finite direct sum of (1, q)-presented left modules. Since R is semiperfect, we may assume that these (1, q)-presented left modules are indecomposable. So, by Krull-Schmidt theorem C is (1, q)-presented.

(5) ⇒ (6). Let A be a finitely generated left ideal. Then R/A = ⊕ t i=1 R/A i where, for each i = 1, . . . , t, A i is a left ideal and R/A i is indecomposable. We have the following commutative diagram with exact horizontal sequences:

0 → ⊕ t i=1 A i → R t → ⊕ t i=1 R/A i → 0 ↓ ↓ ↓ 0 → A → R → R/A → 0
Since the right vertical map is an isomorphism, we deduce from the snake lemma that the other two vertical homomorphisms have isomorphic cokernels. It follows that gen A ≤ tq + 1 because gen A i ≤ q by (5). On the other hand, let P be a projective cover of R/A. Then P is isomorphic to a direct summand of R. We know that the left module R is a finite direct sum of indecomposable projective modules. Let s the number of these indecomposable summands. It is easy to show that t ≤ s. So, if p = sq + 1, then gen A ≤ p. (8) ⇒ (5). Let C be an indecomposable finitely presented cyclic left module. Then C is (m, n)-pure-projective. So, C is a direct summand of a finite direct sum of (n, m)-presented left modules. Since R is semiperfect, we may assume that these (n, m)-presented left modules are indecomposable. So, by the Krull-Schmidt theorem C is (1, m)-presented.

A ring R is said to be strongly π-regular if, for each r ∈ R, there exist s ∈ R and an integer q ≥ 1 such that r q = r q+1 s. By [START_REF] Facchini | Module theory. Endomorphism rings and direct sum decompositions in some classes of modules[END_REF]Theorem 3.16] each strongly π-regular R satisfies the following condition: for each r ∈ R, there exist s ∈ R and an integer q ≥ 1 such that r q = sr q+1 . Recall that a left R-module M is said to be Fitting if for each endomorphism f of M there exists a positive integer t such that M = ker f t ⊕ f t (M ). Lemma 2.5. Let R be a strongly π-regular semiperfect ring. Then:

(1) each finitely presented cyclic left (or right) R-module is Fitting;

(2) each indecomposable finitely presented cyclic left (or right) R-module has a local endomorphism ring.

Proof. In [3, Lemma 3.21] it is proven that every finitely presented R-module is a Fitting module if R is a semiperfect ring with M n (R) strongly π-regular for all n.

We do a similar proof to show (1).

(2). By [3, Lemma 2.21] each indecomposable Fitting module has a local endomorphism ring.

Corollary 2.6. Let R be a strongly π-regular semiperfect ring. The following conditions are equivalent:

(1) there exists an integer p > 0 such that, for each integer n > 0, each (n, np)pure exact sequence of right modules is (n, ℵ 0 )-pure exact; (2) there exists an integer p > 0 such that, for each integer n > 0, each (np, n)pure exact sequence of left modules is (ℵ 0 , n)-pure exact;

(3) there exists an integer q > 0 such that each (1, q)-pure exact sequence of right modules is (1, ℵ 0 )-pure exact; (4) there exists an integer q > 0 such that each (q, 1)-pure exact sequence of left modules is (ℵ 0 , 1)-pure exact; (5) there exists an integer q > 0 such that each indecomposable finitely presented cyclic left module is q-related; (6) there exists an integer p > 0 such that gen A ≤ p for each finitely generated left ideal A of R.

Moreover, if M n (R) is strongly π-regular for all n > 0, these conditions are equivalent to the following: Recall that a ring R is right perfect if each flat right R-module is projective.

Corollary 2.7. Let R be a right perfect ring. The following conditions are equivalent:

(1) there exists an integer p > 0 such that, for each integer n > 0, each (n, np)pure exact sequence of right modules is (n, ℵ 0 )-pure exact; (2) there exists an integer p > 0 such that, for each integer n > 0, each (np, n)pure exact sequence of left modules is (ℵ 0 , n)-pure exact; (3) there exists an integer q > 0 such that each (1, q)-pure exact sequence of right modules is (1, ℵ 0 )-pure exact; (4) there exist two positive integers n, m such that each (n, m)-pure exact sequence of right modules is (n, ℵ 0 )-pure exact; (5) there exist two positive integers n, m such that each (m, n)-pure exact sequence of left modules is (ℵ 0 , n)-pure exact; (6) there exists an integer p > 0 such that gen A ≤ p for each finitely generated left ideal A of R.

Proof. For all n > 0, M n (R) is right perfect. Since each right perfect ring satisfies the descending chain condition on finitely generated left ideals, then M n (R) is strongly π-regular for all n > 0. We apply Corollary 2.6.

Comparison of purities over a commutative ring

In the sequel of this section R is a commutative local ring, except in Theorem 3.5. We denote respectively by P and k its maximal ideal and its residue field Let M be a finitely presented R-module. Recall that gen M = dim k M/P M . Let F 0 be a free R-module whose rank is gen M and let φ : F 0 → M be an epimorphism. Then ker φ ⊆ P F 0 . We put rel M = gen ker φ. Let F 1 be a free R-module whose rank is rel M and let f : F 1 → F 0 be a homomorphism such that im f = ker φ. Then ker f ⊆ P F 1 . For any R-module N , we put 

N * = Hom R (N, R). Let f * : F * 0 → F * 1 be
(4) if M = M 1 ⊕ M 2 then gen M = gen M 1 + gen M 2 and rel M = rel M 1 + rel M 2 . (5) End R (D(M )) is local if and only if so is End R (M ).
Lemma 3.2. Let M be a finitely generated R-module, s an endomorphism of M and s the endomorphism of M/P M induced by s. Then s is an isomorphism if and only if so is s.

Proof. If s is an isomorphism it is obvious that so is s. Conversely, coker s = 0 by Nakayama lemma. So, s is surjective. By using a Vasconcelos's result (see [4, Theorem V.2.3]) s is bijective. Proposition 3.3. Assume that there exists an ideal A with gen A = p + 1 where p is a positive integer. Then, for each positive integers n and m with (n -1)p + 1 ≤ m ≤ np+ 1, there exists a finitely presented R-module W p,n,m whose endomorphism ring is local and such that gen W p,n,m = n and rel W p,n,m = m.

Proof. Suppose that A is generated by a 1 , . . . , a p , a p+1 . Let F be a free module of rank n with basis e 1 , . . . , e n and let K be the submodule of F generated by x 1 , . . . , x m where these elements are defined in the following way: if j = pq + r where 1 ≤ r ≤ p, x j = a r e q+1 if r = 1 or q = 0, and x j = a p+1 e q + a 1 e q+1 else; when m = pn + 1, x m = a p+1 e n . We put W p,n,m = F/K. We can say that W p,n,m is named by the following n × m matrix, where r = m -p(n -1): Since {e 1 , . . . , e n } is a basis and gen A = p+1 we deduce that c j ∈ P, ∀j, 1 ≤ j ≤ m. So, rel W p,n,m = m. Let s ∈ End R (W p,n,m ). Then s is induced by an endomorphism s of F which satisfies s(K) ⊆ K. For each j, 1 ≤ j ≤ n, there exists a family (α i,j ) of elements of R such that: [START_REF] Anderson | Coherence of power series rings over pseudo-Bezout domains[END_REF] s(e j ) =

      
n i=1 α i,j e i Since s(K) ⊆ K, ∀j, 1 ≤ j ≤ m, ∃ a family (β i,j ) of elements of R such that: (2) s(x j ) = m i=1 β i,j x i
From ( 1), ( 2) and the equality x 1 = a 1 e 1 if follows that:

n q=1 α q,1 a 1 e q = n-2 q=0 p+1 i=1 β pq+i,1 a i e q+1 + r i=1 β p(n-1)+i,1 a i e n .
Then, we get:

∀q, 1 ≤ q ≤ n -1, α q,1 a 1 = p+1 i=1 β p(q-1)+i,1 a i and α n,1 a 1 = r i=1 β p(n-1)+i,1 a i .
We deduce that: ∀q, 2 ≤ q ≤ n, β p(q-2)+p+1,1 ∈ P and β p(q-1)+1,1 ≡ α q,1 [P ]. So,

(3) ∀q, 2 ≤ q ≤ n, α q,1 ∈ P. Now, let j = pℓ + 1 where 1 ≤ ℓ ≤ (n -1). In this case, x j = a p+1 e ℓ + a 1 e ℓ+1 . From ( 1) and ( 2) it follows that: n q=1 (α q,ℓ a p+1 + α q,ℓ+1 a 1 )e q = n-2 q=0 p+1 i=1 β pq+i,j a i e q+1 + r i=1 β p(n-1)+i,j a i e n .

Then, we get:

∀q, 1 ≤ q ≤ n -1, α q,ℓ a p+1 + α q,ℓ+1 a 1 = p+1 i=1 β p(q-1)+i,j a i and α n,ℓ a p+1 + α n,ℓ+1 a 1 = r i=1 β p(n-1)+i,j a i .
We deduce that ∀q, ℓ, 1 ≤ q, ℓ ≤ (n -1), α q,ℓ ≡ β p(q-1)+p+1,j [P ] and α q+1,ℓ+1 ≡ β pq+1,j [P ],

whence α q,ℓ ≡ α q+1,ℓ+1 [P ]. Consequently, ∀q, 1 ≤ q ≤ n, α q,q ≡ α 1,1 [P ] and ∀t, 1 ≤ t ≤ (n -1), ∀q, 1 ≤ q ≤ (n -t), α q+t,q ≡ α 1+t,1 ≡ 0 [P ] by [START_REF] Facchini | Module theory. Endomorphism rings and direct sum decompositions in some classes of modules[END_REF] Theorem 3.5. Let R be a commutative ring. The following assertions hold:

(1) Assume that, for any integer p > 0, there exists a maximal ideal P and a finitely generated ideal A of R P such that gen RP A ≥ p + 1. Then, if (n, m) and (r, s) are two different pairs of integers, the (n, m)-purity and the (r, s)-purity are not equivalent.

(2) Assume that, there exists an integer p > 0 such that, for each maximal ideal P , for any finitely generated ideal A of R P , gen RP A ≤ p. Then: (a) for each integer n > 0 the (ℵ 0 , n)-purity (respectively (n, ℵ 0 )-purity) is equivalent to the (np, n)-purity (respectively (n, np)-purity); (b) if p > 1, then, for each integer n > 0, for each integer m, 1 ≤ m ≤ n(p-1), the (n, m)-purity (respectively (m, n)-purity) is not equivalent to the (n, m + 1)-purity (respectively (m + 1, n)-purity).

Proof. By Proposition 1.4 we may assume that R is local with maximal P . By Theorem 1.1 the (n, m)-purity and the (r, s)-purity are equivalent if and only if so are the (m, n)-purity and the (s, r)-purity.

(1). Suppose that r > n and let t = min(m, s). Let q be the greatest divisor of (r -1) which is ≤ t and p = (r -1)/q. Let A be a finitely generated ideal such that gen A > p. By way of contradiction, suppose that W p,q,r is (n, m)pure-projective. By Proposition 1.2 W p,q,r is a summand of ⊕ i∈I F i where I is a finite set and ∀i ∈ I, F i is a (m, n)-presented R-module. Since its endomorphism ring is local, W p,q,r is an exchange module (see [START_REF] Facchini | Module theory. Endomorphism rings and direct sum decompositions in some classes of modules[END_REF]Theorem 2.8]). So, we have

W p,q,r ⊕ (⊕ i∈I G i ) ∼ = (⊕ i∈I H i ) ⊕ (⊕ i∈I G i ) where ∀i ∈ I, G i and H i are submodules of F i and F i = G i ⊕ H i . Let G = ⊕ i∈I G i .
Then G is finitely generated. By [4, Proposition V.7.1] End R (G) is semilocal. By using Evans's theorem ([3, Corollary 4.6]) we deduce that W p,q,r ∼ = (⊕ i∈I H i ). Since W p,q,r is indecomposable, we get that it is (m, n)-presented. This contradicts that rel W p,q,r = r > n.

(2)(a) is an immediate consequence of Proposition 2.2.

(2)(b). There exist two integers q, t such that m + 1 = (q -1)(p -1) + t with n ≥ q ≥ 1 and 1 ≤ t ≤ p. As in [START_REF] Anderson | Coherence of power series rings over pseudo-Bezout domains[END_REF] we prove that W p-1,q,m+1 is not (m, n)-pureprojective.

Remark 3.6. In the previous theorem, when there exists an integer p > 1 such that, for any finitely generated ideal A gen A ≤ p, we don't know if the (n, m)-purity and the (n, m + 1)-purity are equivalent when n(p -1) + 1 ≤ m ≤ np -1. If R is a local ring with maximal P with residue field k such that P 2 = 0 and dim k P = p it is easy to show that each finitely presented R-module F with gen F = n and rel F = np is semisimple. So, the (np, n)-purity is equivalent to the (np -1, n)-purity.

(n, m)-flat modules and (n, m)-injective modules

Let M be a right R-module. We say that M is (n, m)-flat if for any m-generated submodule K of a n-generated free left R-module F , the natural map:

M ⊗ R K → M ⊗ R F is a monomorphism. We say that M is (ℵ 0 , m)-flat (respectively (n, ℵ 0 )- flat) if M is (n, m)-flat for each integer n > 0 (respectively m > 0). We say that M is (n, m)-injective if for any m-generated submodule K of a n-generated free right R-module F , the natural map: Hom R (F, M ) → Hom R (K, M ) is an epimorphism. H = G ∩ R n .
We have the following commutative diagram with exact horizontal sequences:

M ⊗ R H → M ⊗ R G 1M ⊗π ----→ M ⊗ R G ′ → 0 ↓ ↓ ↓ 0 → M ⊗ R R n → M ⊗ R R n+1 1M ⊗π ----→ M ⊗ R R → 0 Let u : G → R n+1 , u ′ : G ′ → R, w : R n → R n+1 be the inclusion maps and let v = u| H . Then (1 M ⊗ u ′ ) is injective. Let H ′ be a p-generated submodule of H. By the induction hypothesis M is (n, p)-flat. So, (1 M ⊗ (v| H ′ )) is injective. It follows that (1 M ⊗ v) is injective too. We conclude that (1 M ⊗ u) is injective and M is (ℵ 0 , p)-flat.
Corollary 4.6. Let p be a positive integer and let R be a ring such that each left ideal is (1, p)-flat. Then, for each positive integer q ≤ p, a right R-module M is (1, q)-flat if and only if it is (ℵ 0 , q)-flat.

Proof. Let the notations be as in the previous theorem. Since G ′ is a flat left Rmodule by Lemma 4.4, H is a pure submodule of G. Let {g 1 , . . . , g q } be a spanning set of G and let h 1 , . . . , h t ∈ H. For each k, 1 ≤ k ≤ t there exist a k,1 , . . . , a k,q ∈ R such that h k = q i=1 a k,i g i . It follows that there exist g ′ 1 , . . . , g ′ q ∈ H such that ∀k,

1 ≤ k ≤ t, h k = q i=1 a k,i g ′ i .
So, each finitely generated submodule of H is contained in a q-generated submodule. We conclude by applying Theorem 4.5.

Corollary 4.7. Let R be a commutative local ring with maximal P . Assume that P 2 = 0. Let q a positive integer. Then:

(1) each (1, q)-flat module is (ℵ 0 , q)-flat;

(2) each (1, q)-injective module is (ℵ 0 , q)-injective.

Proof. Let the notations be as in the previous theorem. We may assume that G ⊆ P R n+1 . Then G is a semisimple module and H is a direct summand of G. So, (1) is a consequence of Theorem 4.5.

(2). Let M be a (1, q)-injective module. We shall prove by induction on n that M is (n, q)-injective. We have the following commutative diagram:

0 → Hom R (R, M ) → Hom R (R n+1 , M ) → Hom R (R n , M ) → 0 ↓ ↓ ↓ 0 → Hom R (G ′ , M ) → Hom R (G, M ) → Hom R (H, M ) → 0
where the horizontal sequences are exact. By the induction hypothesis the left and the right vertical maps are surjective. It follows that the middle vertical map is surjective too.

By [START_REF] Shamsuddin | n-injective and n-flat modules[END_REF]Example 5.2] or [6, Theorem 2.3], for each integer n > 0, there exists a ring R for which each finitely generated left ideal is (1, n)-flat (hence (ℵ 0 , n)-flat by Corollary 4.6) but there is a finitely generated left ideal which is not (1, n + 1)-flat. The following proposition gives other examples in the commutative case. Proposition 4.8. Let R be a commutative local ring with maximal ideal P and residue field k. Assume that P 2 = 0 and dim k P > 1. Then, for each positive integer p < dim k P , there exists:

(1) a (p + 1, 1)-presented R-module which is (ℵ 0 , p)-flat but not (1, p + 1)-flat;

(2) a (ℵ 0 , p)-injective R-module which is not (1, p + 1)-injective.

Proof. [START_REF] Anderson | Coherence of power series rings over pseudo-Bezout domains[END_REF]. Let F be a free R-module of rank (p + 1) with basis {e 1 , . . . , e p , e p+1 }, let (a 1 , . . . , a p , a p+1 ) be a family of linearly independent elements of P , let K be the submodule of F generated by p+1 i=1 a i e i and let M = F/K. Then M ∼ = D(W p,1,p+1 ) (see the proof of Proposition 3.3). First, we show that K is a (1, p)-pure submodule of F . We consider the following equation:

(4) p j=1 r j x j = s( p+1 i=1 a i e i )
where r 1 , . . . , r p , s ∈ R and with unknowns x 1 , . . . , x p . Assume that this equation has a solution in F . Suppose there exists ℓ, 1 ≤ ℓ ≤ p, such that r ℓ is a unit. For each j, 1 ≤ j ≤ p, we put x ′ j = δ j,ℓ r -1 ℓ s( p+1 i=1 a i e i ). It is easy to check that (x ′ 1 , . . . , x ′ p ) is a solution of (4) in K. Now we assume that r j ∈ P, ∀j, 1 ≤ j ≤ p. Suppose that (x 1 , . . . , x p ) is a solution of (4) in F . For each j, 1 ≤ j ≤ p, x j = p+1 i=1 c j,i e i , where c j,i ∈ R. We get the following equality:

(5)

p+1 i=1   p j=1 r j c j,i   e i = p+1 i=1 sa i e i
We deduce that:

(6) ∀i, 1 ≤ i ≤ p + 1, p j=1 r j c j,i = sa i So, if s is a unit, ∀i, 1 ≤ i ≤ p + 1, a i ∈ p j=1 Rr j . It follows that dim k p+1 i=1
Ra i ≤ p that is false. So, s ∈ P . In this case (4) has the nil solution. Hence M is (ℵ 0 , p)-flat by Proposition 4.1(2) and Corollary 4.7. By way of contradiction suppose that M is (1, p + 1)-flat. It follows that K is a (1, p + 1)-pure submodule of F by Proposition 4.1. Since M is (1, p + 1)-pureprojective we deduce that M is free. This is false.

(2). Let E be an injective R-cogenerator. Then Hom R (M, E) is (ℵ 0 , p)-injective but not (1, p + 1)-injective by Proposition 4.1(4).

In a similar way we show the following proposition. Proposition 4.9. Let R be a commutative local ring with maximal ideal P . Assume that P 2 = 0. Let M be a (m, 1)-presented R-module with m > 1, let {x 1 , . . . , x m } be a spanning set of M and let m j=1 a j x j = 0 be the relation of M , where a 1 , . . . , a m ∈ P

. If p = gen ( m j=1 Ra j ) -1 > 0, then: (1) M is (ℵ 0 , p)-flat but not (1, m)-flat; (2) Hom R (M, E) is (ℵ 0 , p)-injective but not (1, m)-injective, where E is an injective R-cogenerator.
When R is an arithmetical commutative ring, i.e. its lattice of ideals is distributive, each (1, 1)-flat module is flat and by [4, Theorem VI.9.10] the converse holds if R is a commutative domain (it is also true if each principal ideal is flat). However we shall see that there exist non-arithmetical commutative rings for which each (1, 1)-flat module is flat. Recall that a left (or right) R-module M is torsionless if the natural map M → (M * ) * is injective. Proposition 4.10. For each ring R the following conditions are equivalent:

(1) R is right self (ℵ 0 , 1)-injective;

(2) each finitely presented cyclic left R-module is torsionless;

(3) each finitely generated left ideal A satisfies A = l -ann(r -ann(A)).

Proof. We prove (1) ⇔ (2) as [5, Theorem 2.3] and (2) ⇔ (3) is easy.

Theorem 4.11. Let R be a right perfect ring which is right self (ℵ 0 , 1)-injective.

Then each (1, 1)-flat right module is projective.

Proof. Let M be a (1, 1)-flat right R-module. It is enough to show that M is flat. Let A be a finitely generated left ideal of R. Assume that {a 1 , . . . , a n } is a minimal system of generators of A with n > 1. Let z ∈ M ⊗ R A such that its image in M is 0. We have z = n i=1 y i ⊗ a i , where y 1 , . . . , y n ∈ M , and n i=1 y i a i = 0. For each i, 1 ≤ i ≤ n, we set A i = n ( j=1 j =i ) Ra j . Then, ∀i, 1 ≤ i ≤ n, A i ⊂ A. For each finitely generated left ideal B we have B = l -ann(r -ann(B)). It follows that, ∀i, 1 ≤ i ≤ n, r -ann(A) ⊂ r -ann(A i ). Let b i ∈ r -ann(A i )) \ r -ann(A). Then y i a i b i = 0. From the (1, 1)-flatness of M we deduce that y i = mi k=1 y ′ i,k c i,k , where y ′ i,1 , . . . , y ′ i,mi ∈ M and c i,1 , . . . , c i,mi ∈ R with c i,k a i b i = 0, ∀k, 1 ≤ k ≤ m i . It follows that z = n i=1 ( mi k=1 y ′ i,k ⊗ c i,k a i ). Let A (1] be the left ideal generated by {c i,k a i | 1 ≤ i ≤ n, 1 ≤ k ≤ m i }. Then A (1) ⊂ A; else, ∀i, 1 ≤ i ≤ n, a i = n j=1 ( mj k=1 d i,j,k c j,k a j ) with d i,j,k ∈ R; we get that a i b i = n j=1 ( mj k=1 d i,j,k c j,k a j b i ); but a j b i = 0 if j = i and c i,k a i b i = 0; so, there is a contradiction because the second member of the previous equality is 0 while a i b i = 0 . Let {a 

n1 } be a minimal system of generators of A (1) . So, z = n1 i=1 y

(1) i ⊗a [START_REF] Anderson | Coherence of power series rings over pseudo-Bezout domains[END_REF] i where y 

n1 ∈ M , and z is the image of z (1) ∈ M ⊗ R A (1) defined by z (1) = n1 i=1 y

(1) i ⊗ a

(1)

i . If n 1 ≤ 1 we conclude that z (1) = 0 since M is (1, 1)-flat, and z = 0. If n 1 > 1, in the same way we get that z (1) is the image of an element z (2) ∈ M ⊗ R A (2) where A (2) is a left ideal such that A (2) ⊂ A (1) . If gen A (2) > 1 we repeat this process, possibly several times, until we get a left ideal A (l) with gen A (l) ≤ 1; this is possible because R satisfies the descending chain condition on finitely generated left ideals since it is right perfect (see [START_REF] Renault | Algèbre non commutative. Collection "Varia Mathematica[END_REF]Théorème 5 p.130]). The (1, 1)-flatness of M implies that z (l) = 0 and z = 0. So, M is projective.

Let P be a ring property. We say that a commutative ring R is locally P if R P satisfies P for each maximal ideal P .

The following corollary is a consequence of Theorem 4.11 and Proposition 4.3.

Corollary 4.12. Let R be a commutative ring which is locally perfect and locally self (ℵ 0 , 1)-injective. Then each (1, 1)-flat R-module is flat.

(n, m)-coherent rings

We say that a ring R is left (n, m)-coherent if each m-generated submodule of a n-generated free left R-module is finitely presented. We say that R is left (ℵ 0 , m)coherent (respectively (n, ℵ 0 )-coherent) if for each integer n > 0 (respectively m > 0) R is left (n, m)-coherent. The following theorem can be proven with standard

( 7 )

 7 there exist two positive integers n, m such that each (n, m)-pure exact sequence of right modules is (n, ℵ 0 )-pure exact; (8) there exist two positive integers n, m such that each (m, n)-pure exact sequence of left modules is (ℵ 0 , n)-pure exact; Proof. By Lemma 2.5 each indecomposable finitely presented cyclic left R-module has a local endomorphism ring. If M n (R) is strongly π-regular for all n, then by [3, Lemmas 3.21 and 2.21] each indecomposable finitely presented left R-module has a local endomorphism ring. So, we apply Theorem 2.4.

Proposition 3 . 1 .

 31 the homomorphism deduced from f . We set D(M ) = coker f * the Auslander and Bridger's dual of M . The following proposition is version in commutative case of [14, Theorem 2.4]: Assume that M has no projective summand. Then: (1) ker f * ⊆ P F * 0 and im f * ⊆ P F * 1 ; (2) M ∼ = D(D(M )) and D(M ) has no projective summand; (3) gen D(M ) = rel M and rel D(M ) = gen M ;

a 1 .a 1 a 2 .c

 12 . a p a p+1 0 . . . . . . . . . . . . . . . . . . . . 0 .. 0 a 1 a 2 . . . a p+1 0 .. . . . . . . 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 . . . 0 a 1 .. a p a p+1 0 .. 0 . . . . . . . . . . 0 Since K ⊆ P F , gen W p,n,m = n. Now we consider the following relation: m j=0 c j x j = 0. From the definition of the x j we get the following equality: pq+i a i e q+1 + r i=1 c p(n-1)+i a i e n = 0.

  . Let s be the endomorphism of W p,n,m /P W p,n,m induced by s. If α 1,1 is a unit then s is an isomorphism, else 1 Wp,n,m -s is an isomorphism. By Lemma 3.2 we conclude that either s or (1 Wp,n,m -s) is an isomorphism. Hence, End R (W p,n,m ) is local. Remark 3.4. Observe that D(W 1,n-1,n ) is isomorphic to the indecomposable module built in the proof of[START_REF] Warfield | Decomposability of finitely presented modules[END_REF] Theorem 2].

We say that M is (ℵ 0 , m)-injective (respectively (n, ℵ 0 )-injective) if M is (n, m)injective for each integer n > 0 (respectively m > 0). A ring R is called left self (n, m)-injective if R is (n, m)-injective as left R-module.

If R is a commutative domain, then an R-module is (1, 1)-flat (respectively (1, 1)injective) if and only if it is torsion-free (respectively divisible).

The following propositions can be proved with standard technique: see [16, Theorem 4.3 and Proposition 2.3]. In these propositions the integers n or m can be replaced with ℵ 0 . Proposition 4.1. Assume that R is an algebra over a commutative ring S and let E be an injective S-cogenerator. Let M be a right R-module. The following conditions are equivalent:

(1) M is (n, m)-flat;

(2) ( Proof. Only "if" requires a proof. Let A be a left ideal. Assume that M is generated by

Since M is (1, p)-flat we successively deduce that z ′ = 0 and z = 0.

It is well known that each (1, ℵ 0 )-flat right module is (ℵ 0 , ℵ 0 )-flat. For each positive integer p, is each (1, p)-flat right module (ℵ 0 , p)-flat?

The following theorem and Theorem 4.11 give a partial answer to this question.

Theorem 4.5. Let p be a positive integer and let R be a ring. For each positive integer n, assume that, for each p-generated submodule

Proof. We shall prove that M is (n, p)-flat by induction on n. Let G be a p-

Then G ′ is a p-generated left module. We put technique: see [START_REF] Zhang | On (m, n)-injective modules and (m, n)-coherent rings[END_REF]Theorems 5.1 and 5.7]. In this theorem the integers n or m can be replaced with ℵ 0 .

Theorem 5.1. Let R be a ring and n, m two fixed positive integers. Assume that R is an algebra over a commutative ring S. Let E be an injective S-cogenerator.

Then the following conditions are equivalent:

(1) R is left (n, m)-coherent;

(2) any direct product of right (n, m)-flat R-modules is (n, m)-flat;

(3) for any set Λ, R Λ is a (n, m)-flat right R-module; (4) any direct limit of a direct system of (n, m)-injective left R-modules is (n, m)-injective; (5) for any exact sequence of left modules 0

For each positive integer p, is each left (1, p)-coherent ring left (ℵ 0 , p)coherent?

Propositions 5.2 and 5.3 and Theorem 5. [START_REF] Fuchs | Modules over Non-Noetherian Domains[END_REF] give a partial answer to this question.

Proposition 5.2. Let p be a positive integer and let R be a ring. For each positive integer n, assume that, for each p-generated submodule G of the left R-module R n ⊕ R, (G ∩ R n ) is the direct limit of its p-generated submodules. Then the following conditions are equivalent:

(1) R is left (1, p)-coherent;

(2) R is left (ℵ 0 , p)-coherent. Moreover, when these conditions hold each (1, p)-injective left module is (ℵ 0 , p)injective.

Proof. It is obvious that (2) ⇒ (1).

(1) ⇒ (2). Let Λ be a set. By Theorem 5.1 R Λ is a (1, p)-flat right module. From Theorem 4.5 we deduce that R Λ is a (ℵ 0 , p)-flat right module. By using again Theorem 5.1 we get [START_REF] Couchot | Exemples d'anneaux auto fp-injectifs[END_REF].

Let M be a (1, p)-injective left module. By Theorem 5.1 M ♯ is a (1, p)-flat right R-module. Then it is also (ℵ 0 , p)-flat. We deduce that (M ♯ ) ♯ is a (ℵ 0 , p)-injective left module. Since M is a pure submodule of (M ♯ ) ♯ , it follows that M is (ℵ 0 , p)injective too.

Proposition 5.3. Let R be a commutative perfect ring. Then R is Artinian if and only if it is (1, 1)-coherent.

Proof. Suppose that R is (1, 1)-coherent. Since R is perfect, R is a finite product of local rings. So, we may assume that R is local with maximal P . Let S be a minimal non-zero ideal of R generated by s. Then P is the annihilator of s. So, P is finitely generated and it is the sole prime ideal of R. Since all prime ideals of R are finitely generated, R is Noetherian. On the other hand R satisfies the descending chain condition on finitely generated ideals. We conclude that R is Artinian.

Except in some particular cases, we don't know if each (1, p)-injective module is (ℵ 0 , p)-injective, even if we replace p by ℵ 0 .

Theorem 5.4. Let R be a ring which is right perfect, left (1, 1)-coherent and right self (ℵ 0 , 1)-injective. Then each (1, 1)-injective left module is (ℵ 0 , ℵ 0 )-injective and R is left coherent.

Proof. Let M be a left (1, 1)-injective module. By Theorem 5.1 M ♯ is (1, 1)-flat. Whence M ♯ is projective by Theorem 4.11. We do as in the proof of Proposition 5.2 to conclude that M is (ℵ 0 , ℵ 0 )-injective.

For each set Λ, R Λ is a (1, 1)-flat right module by Theorem 5.1. It follows that R Λ is a projective right module by Theorem 4.11.

Recall that a ring is quasi-Frobenius if it is Artinian and self-injective.

Corollary 5.5. Let R be a quasi-Frobenius ring. Then, for each right (or left) R-module M , the following conditions are equivalent:

(1) M is (1, 1)-flat;

(2) M is projective;

(3) M is injective;

Proof. It is well known that (2) ⇔ (3). By Theorem 4.11 (1) ⇔ (2) because R satisfies the conditions of this theorem, and it is obvious that (3) ⇒ (4) and the converse holds by Theorem 5.4.

We prove the following theorem as [2, Théorème

Theorem 5.6. Let R be a commutative ring and n, m two fixed positive integers.

The following conditions are equivalent:

(1) R is (n, m)-coherent;

(2) for each multiplicative subset S of R, S -1 R is (n, m)-coherent, and for each (n, m)-injective R-module M , S -1 M is (n, m)-injective over S -1 R; (3) For each maximal ideal P , R P is (n, m)-coherent and for each (n, m)injective R-module M , M P is (n, m)-injective over R P .

Recall that a ring R is a right IF-ring if each right injective R-module is flat.

Theorem 5.7. Let R be a commutative ring which is locally perfect, (1, 1)-coherent and self (1, 1)-injective. Then:

(1) R is coherent, self (ℵ 0 , ℵ 0 )-injective and locally quasi-Frobenius;

(2) each (1, 1)-flat module is flat;

(3) each (1, 1)-injective module is (ℵ 0 , ℵ 0 )-injective.

Proof. By Theorem 5.6 R P is (1, 1)-coherent and (1, 1)-injective for each maximal ideal P . Let a be a generator of a minimal non-zero ideal of R P . Then P R P is the annihilator of a and consequently P R P is finitely generated over R P . Since all prime ideals of R P are finitely generated, we deduce that R P is Artinian for each maximal ideal P . Moreover, the (1, 1)-injectivity of R P implies that the socle of R P (the sum of all minimal non-zero ideals) is simple. It follows that R P is quasi-Frobenius for each maximal ideal P . Let M be a (ℵ 0 , ℵ 0 )-injective R-module. By Theorem 5.6 M P is (1, 1)-injective for each maximal ideal P . By Corollary 5.5 M P is injective for each maximal ideal P . We conclude that R is self (ℵ 0 , ℵ 0 )-injective and it is coherent by Theorem 5.6.

If M is (1, 1)-injective, we prove as above that M P is injective for each maximal ideal P . It follows that M is (ℵ 0 , ℵ 0 )-injective.

The second assertion is an immediate consequence of Corollary 4.12.

The following proposition is easy to prove: Proposition 5.8. A ring R is left (ℵ 0 , 1)-coherent if and only if each finitely generated right ideal has a finitely generated left annihilator.

Example 5.9. Let V be a non-Noetherian (commutative) valuation domain whose order group is not the additive group of real numbers and let R = V [[X]] be the power series ring in one indeterminate over V . Since R is a domain, R is (ℵ 0 , 1)coherent. But, in [START_REF] Anderson | Coherence of power series rings over pseudo-Bezout domains[END_REF] it is proven that there exist two elements f and g of R such that Rf ∩ Rg is not finitely generated. By using the exact sequence 0 → Rf ∩ Rg → Rf ⊕ Rg → Rf + Rg → 0 we get that Rf + Rg is not finitely presented. So, R is not (1, 2)-coherent.