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COMPARISON OF SOME PURITIES, FLATNESSES AND

INJECTIVITIES

WALID AL-KAWARIT AND FRANÇOIS COUCHOT

Abstract. In this paper, we compare (n,m)-purities for different pairs of
positive integers (n,m). When R is a commutative ring, these purities are not

equivalent if R doesn’t satisfy the following property: there exists a positive
integer p such that, for each maximal ideal P , every finitely generated ideal of
RP is p-generated. When this property holds, then the (n,m)-purity and the
(n,m′)-purity are equivalent if m and m′ are integers ≥ np. These results are
obtained by a generalization of Warfield’s methods. There are also some inter-
esting results when R is a semiperfect strongly π-regular ring. We also compare
(n,m)-flatnesses and (n,m)-injectivities for different pairs of positive integers
(n,m). In particular, if R is right perfect and right self (ℵ0, 1)-injective, then
each (1, 1)-flat right R-module is projective. In several cases, for each positive
integer p, all (n, p)-flatnesses are equivalent. But there are some examples
where the (1, p)-flatness is not equivalent to the (1, p+ 1)-flatness.

All rings in this paper are associative with unity, and all modules are unital. Let
n andm be two positive integers. A rightR-moduleM is said to be (n,m)-presented
if it is the factor module of a free right module of rank n modulo a m-generated
submodule. A short exact sequence (Σ) of left R-modules is called (n,m)-pure if it
remains exact when tensoring it with any (n,m)-presented right module. We say
that (Σ) is (ℵ0,m)-pure exact (respectively (n,ℵ0)-pure exact if, for each positive
integer n (respectively m) (Σ) is (n,m)-pure exact. Let us observe that the (1, 1)-
pure exact sequences are exactly the RD-exact sequences (see (Warfield, 1969a))
and the (ℵ0,ℵ0)-exact sequences are the pure-exact sequences in the Cohn’s sense.
Similar results as in the classical theories of purity hold, with similar proofs. In
particular, a left R-module is (n,m)-pure-projective if and only if it is a summand
of a direct sum of (m,n)-presented left modules, and each left R-module has a
(n,m)-pure-injective hull which is unique up to an isomorphism.

In this paper, we compare (n,m)-purities for different pairs of positive integers
(n,m). When R is commutative, we shall see that these purities are not equivalent if
R doesn’t satisfy the following property: there exists a positive integer p such that,
for each maximal ideal P , every finitely generated ideal of RP is p-generated. When
this property holds, then the (n,m)-purity and the (n,m′)-purity are equivalent if
m and m′ are integers ≥ np. These results are obtained by using the following:
if R is a local commutative ring for which there exists a (p + 1)-generated ideal,
where p is a positive integer, then, for each positive integer n, for each integer
m, n(p − 1) + 1 ≤ m ≤ np + 1, there exists a (n,m)-presented R-module whose
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endomorphism ring is local. It is a generalization of the Warfield’s construction of
indecomposable finitely presented modules when R is not a valuation ring.

When R is semiperfect and strongly π-regular, we show that there exists an
integer m > 0 such that, for any integer n > 0, each (n,m)-pure exact sequence of
right modules is (n,ℵ0)-pure exact if and only if there exists an integer p > 0 such
that every finitely generated left ideal is p-generated.

As in (Zhang et al., 2005) we define (n,m)-flat modules and (n,m)-injective
modules. We also compare (n,m)-flatnesses and (n,m)-injectivities for different
pairs of positive integers (n,m). In particular, if R is a right perfect ring which
is right self (ℵ0, 1)-injective, then each (1, 1)-flat right R-module is projective. For
many classes of rings, for each positive integer p, we show that the (1, p)-flatness
implies the (ℵ0, p)-flatness, but we have no general result. If R is a local commu-
tative ring with a non finitely generated maximal ideal P satisfying P 2 = 0, then
for each positive integer p, there exists an R-module which is (ℵ0, p)-flat (resp,
(ℵ0, p)-injective) and which is not (1, p+ 1)-flat (resp, (1, p+ 1)-injective).

As in (Zhang et al., 2005) we define left (n,m)-coherent rings. When R is a
commutative locally perfect ring which is (1, 1)-coherent and self (1, 1)-injective, we
show that R is an IF-ring, each (1, 1)-flat R-module is flat and each (1, 1)-injective
R-module is FP-injective. For other classes of rings, for each positive integer p, we
show that the left (1, p)-coherence implies the left (ℵ0, p)-coherence, but we have
no general result. If R = V [[X ]], the power series ring over a valuation domain V
whose order group is not isomorphic to R, then R is a (ℵ0, 1)-coherent ring which
is not (1, 2)-coherent.

1. (n,m)-pure exact sequences

By using a standard technique, (see for instance (Fuchs and Salce, 2001, Chapter
I, Section 8)), we can prove the following theorem, and similar results hold if we
replace n or m with ℵ0.

Theorem 1.1. Assume that R is an algebra over a commutative ring S and E is
an injective S-cogenerator. Then, for each exact sequence (Σ) of left R-modules
0 → A → B → C → 0, the following conditions are equivalent:

(1) (Σ) is (n,m)-pure;
(2) for each (m,n)-presented left module G the sequence HomR(G, (Σ)) is exact;
(3) every system of n equations over A

m
∑

j=1

ri,jxj = ai ∈ A (i = 1, . . . , n)

with coefficients ri,j ∈ R and unknowns x1, . . . , xm has a solution in A
whenever it is solvable in B;

(4) the exact sequence of right R-modules HomS((Σ), E) is (m,n)-pure.

Propositions 1.2 and 1.3 can be deduced from (Warfield, 1969b, Theorem 1).
A left R-module G is called (n,m)-pure-projective if for each (n,m)-pure exact

sequence 0 → A → B → C → 0 the sequence

0 → HomR(G,A) → HomR(G,B) → HomR(G,C) → 0
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is exact. Similar definitions can be given by replacing n or m by ℵ0. From Theo-
rem 1.1 and by using standard technique we get the following proposition in which
n or m can be replaced by ℵ0:

Proposition 1.2. Let G be a left R-module. Then the following assertions hold:

(1) there exists a (n,m)-pure exact sequence of left modules

0 → K → F → G → 0

where F is a direct sum of (m,n)-presented left modules;
(2) G is (n,m)-pure projective if and only if it is a summand of a direct sum

of (m,n)-presented left modules.

A left R-module G is called (n,m)-pure-injective if for each (n,m)-pure exact
sequence 0 → A → B → C → 0 the sequence

0 → HomR(C,G) → HomR(B,G) → HomR(A,G) → 0

is exact.
If M is a left module we put M ♯ = HomZ(M,Q/Z). Thus M ♯ is a right module.

It is the character module of M .
If A is a submodule of a left R-module B, we say that B is a (n,m)-pure essential

extension of A if A is a (n,m)-pure submodule of B and for each submodule K of
B such that A ∩K = 0, (A +K)/K is not a (n,m)-pure submodule of B/K. If,
in addition, B is (n,m)-pure injective, we say that B is a (n,m)-pure injective hull
of A. In these above definitions and in the following proposition n or m can be
replaced by ℵ0.

Proposition 1.3. The following assertions hold:

(1) each left R-module is a (n,m)-pure submodule of a (n,m)-pure injective left
module;

(2) each left R-module has a (n,m)-pure injective hull which is unique up to
an isomorphism.

Proof. (1). Let M be a left R-module. By Proposition 1.2 there exists a (m,n)-
pure exact sequence of right R-modules 0 → K → F → M ♯ → 0 where F is a
direct sum of (n,m)-presented right modules. From Theorem 1.1 it follows that
(M ♯)♯ is a (n,m)-pure submodule of F ♯. By (Facchini, 1998, Corollary 1.30) M is
isomorphic to a pure submodule of (M ♯)♯. So, M is isomorphic to a (n,m)-pure
submodule of F ♯. By using the canonical isomorphism (F ⊗R −)♯ ∼= HomR(−, F ♯)
we get that F ♯ is (n,m)-pure injective since F is a direct sum of (n,m)-presented
modules.

(2). Since (1) holds and every direct limit of (n,m)-pure exact sequences is
(n,m)-pure exact too, we can adapt the method of Warfield’s proof of existence of
pure-injective hull to show (2)(see (Warfield, 1969a, Proposition 6)). We can also
use (Stenström, 1967, Proposition 4.5). �

Proposition 1.4. Let R be a commutative ring and let (Σ) be a short exact sequence
of R-modules. Then (Σ) is (n,m)-pure if and only if, for each maximal ideal P (Σ)P
is (n,m)-pure.

Proof. Assume that (Σ) is (n,m)-pure and let M be a (n,m)-presented RP -module
where P is a maximal ideal. There exists a (n,m)-presented R-moduleM ′ such that
M ∼= M ′

P and M ⊗RP
(Σ)P ∼= (M ′ ⊗R (Σ))P . We deduce that (Σ)P is (n,m)-pure.
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Conversely, suppose that (Σ) is the sequence 0 → A → B → C → 0. Let
M be a (n,m)-presented R-module. Then, for each maximal ideal P , (Σ)P is
(n,m)-pure over R since M ⊗R (Σ)P ∼= MP ⊗RP

(Σ)P . On the other hand, since
M ⊗R (

∏

P∈Max R(Σ)P )
∼= (
∏

P∈Max R M ⊗R (Σ)P ),
∏

P∈Max R AP is a (n,m)-pure
submodule of

∏

P∈Max R BP . By (Couchot, 1982, Lemme 1.3) A is isomorphic to a
pure submodule of

∏

P∈Max R AP . We successively deduce that A is a (n,m)-pure
submodule of

∏

P∈Max R BP and B. �

2. Comparison of purities over a semiperfect ring

In this section we shall compare (n,m)-purities for different pairs of integers
(n,m). In (Puninski et al., 1999) some various purities are also compared. In
particular some necessary and sufficient conditions on a ring R are given for the
(1, 1)-purity to be equivalent to the (ℵ0,ℵ0)-purity.

The following lemma is due to Lawrence Levy, see (Wiegand and Wiegand, 1975,
Lemma 1.3). If M be a finitely generated left (or right) R-module, we denote by
gen M its minimal number of generators.

Lemma 2.1. Let R be a ring. Assume there exists a positive integer p such that
gen A ≤ p for each finitely generated left ideal A of R. Then gen N ≤ p× gen M ,
if N is a finitely generated submodule of a finitely generated left R-module M .

From this lemma and Theorem 1.1 we deduce the following:

Proposition 2.2. Let R be a ring. Assume there exists a positive integer p such
that gen A ≤ p for each finitely generated left ideal A of R. Then, for each positive
integer n:

(1) each (n, np)-pure exact sequence of right modules is (n,ℵ0)-pure exact;
(2) each (np, n)-pure exact sequence of left modules is (ℵ0, n)-pure exact.

Corollary 2.3. Let R be a left Artinian ring. Then there exists a positive integer
p such that, for each positive integer n:

(1) each (n, np)-pure exact sequence of right modules is (n,ℵ0)-pure exact;
(2) each (np, n)-pure exact sequence of left modules is (ℵ0, n)-pure exact.

Proof. Each finitely generated left R-module M has a finite length denoted by
length M , and gen M ≤ length M . So, for each left ideal A we have gen A ≤
length R. We choose p = sup{gen A | A left ideal of R} and we apply the previous
proposition. �

Let R be a ring and J its Jacobson radical. Recall that R is semiperfect if R/J
is semisimple and idempotents lift modulo J .

Theorem 2.4. Let R be semiperfect ring. Assume that each indecomposable finitely
presented cyclic left R-module has a local endomorphism ring. The following con-
ditions are equivalent:

(1) there exists an integer p > 0 such that, for each integer n > 0, each (n, np)-
pure exact sequence of right modules is (n,ℵ0)-pure exact;

(2) there exists an integer p > 0 such that, for each integer n > 0, each (np, n)-
pure exact sequence of left modules is (ℵ0, n)-pure exact;

(3) there exists an integer q > 0 such that each (1, q)-pure exact sequence of
right modules is (1,ℵ0)-pure exact;
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(4) there exists an integer q > 0 such that each (q, 1)-pure exact sequence of
left modules is (ℵ0, 1)-pure exact;

(5) there exists an integer q > 0 such that each indecomposable finitely presented
cyclic left module is q-related;

(6) there exists an integer p > 0 such that gen A ≤ p for each finitely generated
left ideal A of R.

Moreover, if each indecomposable finitely presented left R-module has a local endo-
morphism ring, these conditions are equivalent to the following:

(7) there exist two positive integers n, m such that each (n,m)-pure exact se-
quence of right modules is (n,ℵ0)-pure exact;

(8) there exist two positive integers n, m such that each (m,n)-pure exact se-
quence of left modules is (ℵ0, n)-pure exact;

Proof. By Proposition 2.2 (6) ⇒ (1). By Theorem 1.1 (1) ⇔ (2), (3) ⇔ (4) and
(7) ⇔ (8). It is obvious that (2) ⇒ (4) and (2) ⇒ (7).

(4) ⇒ (5). Let C be an indecomposable finitely presented cyclic left module.
Then C is (q, 1)-pure-projective. So, C is a direct summand of a finite direct sum
of (1, q)-presented left modules. Since R is semiperfect, we may assume that these
(1, q)-presented left modules are indecomposable. So, by Krull-Schmidt theorem C
is (1, q)-presented.

(5) ⇒ (6). Let A be a finitely generated left ideal. Then R/A = ⊕t
i=1R/Ai

where, for each i = 1, . . . , t, Ai is a left ideal and R/Ai is indecomposable. We have
the following commutative diagram with exact horizontal sequences:

0 → ⊕t
i=1Ai → Rt → ⊕t

i=1R/Ai → 0
↓ ↓ ↓

0 → A → R → R/A → 0

Since the right vertical map is an isomorphism, we deduce from snake lemma that
the other two vertical homomorphisms have isomorphic cokernels. It follows that
gen A ≤ tq+1 because gen Ai ≤ q by (5). On the other hand, let P be a projective
cover of R/A. Then P is isomorphic to a direct summand of R. We know that the
left module R is a finite direct sum of indecomposable projective modules. Let s
the number of these indecomposable summands. It is easy to show that t ≤ s. So,
if p = sq + 1, then gen A ≤ p.

(8) ⇒ (5). Let C be an indecomposable finitely presented cyclic left module.
Then C is (m,n)-pure-projective. So, C is a direct summand of a finite direct sum
of (n,m)-presented left modules. Since R is semiperfect, we may assume that these
(n,m)-presented left modules are indecomposable. So, by Krull-Schmidt theorem
C is (1,m)-presented. �

A ring R is said to be strongly π-regular if, for each r ∈ R, there exist s ∈ R and
an integer q ≥ 1 such that rq = rq+1s. By (Facchini, 1998, Théorème 3.16) each
strongly π-regular R satisfies the following condition: for each r ∈ R, there exist
s ∈ R and an integer q ≥ 1 such that rq = srq+1. Recall that a left R-module M is
said to be Fitting if for each endomorphism f of M there exists a positive integer
t such that M = ker f t ⊕ f t(M).

Lemma 2.5. Let R be a strongly π-regular semiperfect ring. Then:

(1) each finitely presented cyclic left (or right) R-module is Fitting;
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(2) each indecomposable finitely presented cyclic left (or right) R-module has a
local endomorphism ring.

Proof. In (Facchini, 1998, Lemma 3.21) it is proven that every finitely presented R-
module is a Fitting module if R is a semiperfect ring with Mn(R) strongly π-regular
for all n. We do a similar proof to show (1).

(2). By (Facchini, 1998, Lemma 2.21) each indecomposable Fitting module has
a local endomorphism ring. �

Corollary 2.6. Let R be a strongly π-regular semiperfect ring. The following
conditions are equivalent:

(1) there exists an integer p > 0 such that, for each integer n > 0, each (n, np)-
pure exact sequence of right modules is (n,ℵ0)-pure exact;

(2) there exists an integer p > 0 such that, for each integer n > 0, each (np, n)-
pure exact sequence of left modules is (ℵ0, n)-pure exact;

(3) there exists an integer q > 0 such that each (1, q)-pure exact sequence of
right modules is (1,ℵ0)-pure exact;

(4) there exists an integer q > 0 such that each (q, 1)-pure exact sequence of
left modules is (ℵ0, 1)-pure exact;

(5) there exists an integer q > 0 such that each indecomposable finitely presented
cyclic left module is q-related;

(6) there exists an integer p > 0 such that gen A ≤ p for each finitely generated
left ideal A of R.

Moreover, if Mn(R) is strongly π-regular for all n > 0, these conditions are equiv-
alent to the following:

(7) there exist two positive integers n, m such that each (n,m)-pure exact se-
quence of right modules is (n,ℵ0)-pure exact;

(8) there exist two positive integers n, m such that each (m,n)-pure exact se-
quence of left modules is (ℵ0, n)-pure exact;

Proof. By Lemma 2.5 each indecomposable finitely presented cyclic left R-module
has a local endomorphism ring. If Mn(R) is strongly π-regular for all n, then by
(Facchini, 1998, Lemmas 3.21 and 2.21) each indecomposable finitely presented left
R-module has a local endomorphism ring. So, we apply Theorem 2.4. �

Recall that a ring R is right perfect if each flat right R- module is projective.

Corollary 2.7. Let R be a right perfect ring. The following conditions are equiv-
alent:

(1) there exists an integer p > 0 such that, for each integer n > 0, each (n, np)-
pure exact sequence of right modules is (n,ℵ0)-pure exact;

(2) there exists an integer p > 0 such that, for each integer n > 0, each (np, n)-
pure exact sequence of left modules is (ℵ0, n)-pure exact;

(3) there exists an integer q > 0 such that each (1, q)-pure exact sequence of
right modules is (1,ℵ0)-pure exact;

(4) there exist two positive integers n, m such that each (n,m)-pure exact se-
quence of right modules is (n,ℵ0)-pure exact;

(5) there exist two positive integers n, m such that each (m,n)-pure exact se-
quence of left modules is (ℵ0, n)-pure exact;

(6) there exists an integer p > 0 such that gen A ≤ p for each finitely generated
left ideal A of R.



COMPARISON OF SOME PURITIES 7

Proof. For all n > 0, Mn(R) is right perfect. Since each right perfect ring satisfies
the descending chain condition on finitely generated left ideals, then Mn(R) is
strongly π-regular for all n > 0. We apply Corollary 2.6. �

3. Comparison of purities over a commutative ring

In the sequel of this section R is a commutative local ring, except in Theorem 3.5.
We denote respectively by P and k its maximal ideal and its residue field

Let M be a finitely presented R-module. Recall that gen M = dimk M/PM .
Let F0 be a free R-module whose rank is gen M and let φ : F0 → M be an
epimorphism. Then ker φ ⊆ PF0. We put rel M = gen ker φ. Let F1 be a
free R-module whose rank is rel M and let f : F1 → F0 be a homomorphism
such that im f = ker φ. Then ker f ⊆ PF1. For any R-module N , we put
N∗ = HomR(N,R). Let f∗ : F ∗

0 → F ∗
1 be the homomorphism deduced from f .

We set D(M) = coker f∗ the Auslander and Bridger’s dual of M . The following
proposition holds:

Proposition 3.1. Assume that M has no projective summand. Then:

(1) ker f∗ ⊆ PF ∗
0 and im f∗ ⊆ PF ∗

1 ;
(2) M ∼= D(D(M)) and D(M) has no projective summand;
(3) gen D(M) = rel M and rel D(M) = gen M ;
(4) if M = M1 ⊕M2 then

gen M = gen M1 + gen M2 and rel M = rel M1 + rel M2;
(5) EndR(D(M)) is isomorphic to the opposite ring of EndR(M).

Lemma 3.2. Let M be a finitely generated R-module, s an endomorphism of M
and s̄ the endomorphism of M/PM induced by s. Then s is an isomorphism if and
only if so is s̄.

Proof. If s is an isomorphism it is obvious that so is s̄. Conversely, coker s = 0 by
Nakayama lemma. So, s is surjective. By using a Vasconcelos’s result (see (Fuchs
and Salce, 2001, Theorem V.2.3)) s is bijective. �

Proposition 3.3. Assume that there exists an ideal A with gen A = p+1 where p
is a positive integer. Then, for each positive integers n and m with (n− 1)p+ 1 ≤
m ≤ np+1, there exists a finitely presented R-module Wp,n,m whose endomorphism
ring is local and such that gen Wp,n,m = n and rel Wp,n,m = m.

Proof. Suppose that A is generated by a1, . . . , ap, ap+1. Let F be a free module
of rank n with basis e1, . . . , en and let K be the submodule of F generated by
x1, . . . , xm where these elements are defined in the following way: if j = pq + r
where 1 ≤ r ≤ p, xj = areq+1 if r 6= 1 or q = 0 and xj = ap+1eq + a1eq+1 else;
when m = pn+ 1, xm = ap+1en. We put Wp,n,m = F/K. We can say that Wp,n,m

is named by the following n×m matrix, where r = m− p(n− 1):















a1 .. ap ap+1 0 . . . . . . . . . . . . . . . . . . . .
0 .. 0 a1 a2 . . . ap+1 0 ..
...

. . .

0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0
...

0 a1 .. ap ap+1 0 .. 0
. . . . . . . . . . 0 a1 a2 .. ar
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Since K ⊆ PF , gen Wp,n,m = n. Now we consider the following relation:
∑m

j=0 cjxj = 0. From the definition of the xj we get the following equality:

n−2
∑

q=0

(

p+1
∑

i=1

cpq+iai

)

eq+1 +

(

r
∑

i=1

cp(n−1)+iai

)

en = 0.

Since {e1, . . . , en} is a basis and gen A = p+1 we deduce that cj ∈ P, ∀j, 1 ≤ j ≤ m.
So, rel Wp,n,m = m.

Let s ∈ EndR(Wp,n,m). Then s is induced by an endomorphism s̃ of F which
satisfies s̃(K) ⊆ K. For each j, 1 ≤ j ≤ n, there exists a family (αi,j) of elements
of R such that:

(1) s̃(ej) =

n
∑

i=1

αi,jei

Since s̃(K) ⊆ K, ∀j, 1 ≤ j ≤ m, ∃ a family (βi,j) of elements of R such that:

(2) s̃(xj) =

m
∑

i=1

βi,jxi

From (1), (2) and the equality x1 = a1e1 if follows that:

n
∑

q=1

αq,1a1eq =
n−2
∑

q=0

(

p+1
∑

i=1

βpq+i,1ai

)

eq+1 +

(

r
∑

i=1

βp(n−1)+i,1ai

)

en.

Then, we get:

∀q, 1 ≤ q ≤ n− 1, αq,1a1 =

p+1
∑

i=1

βp(q−1)+i,1ai

and αn,1a1 =

r
∑

i=1

βp(n−1)+i,1ai.

We deduce that: ∀q, 2 ≤ q ≤ n, βp(q−2)+p+1,1 ∈ P and βp(q−1)+1,1 ≡ αq,1 [P ]. So,

(3) ∀q, 2 ≤ q ≤ n, αq,1 ∈ P.

Now, let j = pℓ + 1 where 1 ≤ ℓ ≤ (n − 1). In this case, xj = ap+1eℓ + a1eℓ+1.
From (1) and (2) it follows that:

n
∑

q=1

(αq,ℓap+1 + αq,ℓ+1a1)eq =

n−2
∑

q=0

(

p+1
∑

i=1

βpq+i,jai

)

eq+1 +

(

r
∑

i=1

βp(n−1)+i,jai

)

en.

Then, we get:

∀q, 1 ≤ q ≤ n− 1, αq,ℓap+1 + αq,ℓ+1a1 =

p+1
∑

i=1

βp(q−1)+i,jai

and αn,ℓap+1 + αn,ℓ+1a1 =

r
∑

i=1

βp(n−1)+i,jai.

We deduce that

∀q, ℓ, 1 ≤ q, ℓ ≤ (n− 1), αq,ℓ ≡ βp(q−1)+p+1,j [P ] and αq+1,ℓ+1 ≡ βpq+1,j [P ],
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whence αq,ℓ ≡ αq+1,ℓ+1 [P ]. Consequently, ∀q, 1 ≤ q ≤ n, αq,q ≡ α1,1 [P ] and
∀t, 1 ≤ t ≤ (n− 1), ∀q, 1 ≤ q ≤ (n− t), αq+t,q ≡ α1+t,1 ≡ 0 [P ] by (3). Let s̄ be
the endomorphism of Wp,n,m/PWp,n,m induced by s. If α1,1 is a unit then s̄ is an
isomorphism, else 1Wp,n,m

− s is an isomorphism. By Lemma 3.2 we conclude that
either s or (1Wp,n,m

− s) is an isomorphism. Hence, EndR(Wp,n,m) is local. �

Remark 3.4. Observe that D(W1,n−1,n) is isomorphic to the indecomposable mod-
ule built in the proof of (Warfield, 1970, Theorem 2).

Theorem 3.5. Let R be a commutative ring. The following assertions hold:

(1) Assume that, for any integer p > 0, there exists a maximal ideal P and
a finitely generated ideal A of RP such that genRP

A ≥ p + 1. Then, if
(n,m) and (r, s) are two different pairs of integers, the (n,m)-purity and
the (r, s)-purity are not equivalent.

(2) Assume that, there exists an integer p > 0 such that, for each maximal ideal
P , for any finitely generated ideal A of RP , genRP

A ≤ p. Then:
(a) for each integer n > 0 the (ℵ0, n)-purity (respectively (n,ℵ0)-purity) is

equivalent to the (np, n)-purity (respectively (n, np)-purity);
(b) if p > 1, then, for each integer n > 0, for each integer m, 1 ≤ m ≤

n(p−1), the (n,m)-purity (respectively (m,n)-purity) is not equivalent
to the (n,m+ 1)-purity (respectively (m+ 1, n)-purity).

Proof. By Proposition 1.4 we may assume that R is local of maximal ideal P . By
Theorem 1.1 the (n,m)-purity and the (r, s)-purity are equivalent if and only if so
are the (m,n)-purity and the (s, r)-purity.

(1). Suppose that r > n and let t = min(m, s). Let q be the greatest divisor of
(r− 1) which is ≤ t and p = (r− 1)/q. Let A be a finitely generated ideal such that
gen A > p. By way of contradiction, suppose that Wp,q,r is (n,m)-pure-projective.
By Proposition 1.2 Wp,q,r is a summand of ⊕i∈IFi where I is a finite set and
∀i ∈ I, Fi is a (m,n)-presented R-module. Since its endomorphism ring is local,
Wp,q,r is an exchange module (see (Facchini, 1998, Theorem 2.8)). So, we have
Wp,q,r ⊕ (⊕i∈IGi) ∼= (⊕i∈IHi)⊕ (⊕i∈IGi) where ∀i ∈ I, Gi and Hi are submodules
of Fi and Fi = Gi ⊕ Hi. Let G = ⊕i∈IGi. Then G is finitely generated. By
(Fuchs and Salce, 2001, Proposition V.7.1) EndR(G) is semilocal. By using Evans’s
theorem ((Facchini, 1998, Corollary 4.6)) we deduce that Wp,q,r

∼= (⊕i∈IHi). Since
Wp,q,r is indecomposable, we get that it is (m,n)-presented. This contradicts that
rel Wp,q,r = r > n.

(2)(a) is an immediate consequence of Proposition 2.2.
(2)(b). There exist two integers q, t such that m + 1 = (q − 1)(p − 1) + t with

n ≥ q ≥ 1 and 1 ≤ t ≤ p. As in (1) we prove that Wp−1,q,m+1 is not (m,n)-pure-
projective. �

Remark 3.6. In the previous theorem, when there exists an integer p > 1 such that,
for any finitely generated ideal A gen A ≤ p, we don’t know if the (n,m)-purity and
the (n,m+1)-purity are equivalent when n(p− 1)+1 ≤ m ≤ np− 1. If R is a local
ring of maximal ideal P with residue field k such that P 2 = 0 and dimk P = p it is
easy to show that each finitely presented R-module F with gen F = n and rel F = np
is semisimple. So, the (np, n)-purity is equivalent to the (np− 1, n)-purity.
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4. (n,m)-flat modules and (n,m)-injective modules

Let M be a right R-module. We say that M is (n,m)-flat if for any m-generated
submodule K of a n-generated free left R-module F , the natural map: M ⊗R K →
M ⊗R F is a monomorphism. We say that M is (ℵ0,m)-flat (respectively (n,ℵ0)-
flat) if M is (n,m)-flat for each integer n > 0 (respectively m > 0). We say that M
is (n,m)-injective if for any m-generated submodule K of a n-generated free right
R-module F , the natural map: HomR(F,M) → HomR(K,M) is an epimorphism.
We say that M is (ℵ0,m)-injective (respectively (n,ℵ0)-injective) if M is (n,m)-
injective for each integer n > 0 (respectively m > 0). A ring R is called left self
(n,m)-injective if R is (n,m)-injective as left R-module.

If R is a commutative domain, then an R-module is (1, 1)-flat (respectively (1, 1)-
injective) if and only if it is torsion-free (respectively divisible).

The following propositions can be proved with standard technique: see (Zhang
et al., 2005, Theorem 4.3 and Proposition 2.3). In these propositions the integers
n or m can be replaced with ℵ0.

Proposition 4.1. Assume that R is an algebra over a commutative ring S and
let E be an injective S-cogenerator. Let M be a right R-module. The following
conditions are equivalent:

(1) M is (n,m)-flat;
(2) each exact sequence 0 → L → N → M → 0 is (n,m)-pure, where L and N

are right R-modules;
(3) for each (m,n)-presented right module F , every homomorphism f : F → M

factors through a free right R-module;
(4) HomS(M,E) is a (n,m)-injective left R-module.

Proposition 4.2. Let M be a right module. The following conditions are equiva-
lent:

(1) M is (n,m)-injective;
(2) each exact sequence 0 → M → L → N → 0 is (m,n)-pure, where L and N

are right R-modules;
(3) M is a (m,n)-pure submodule of its injective hull.

Proposition 4.3. Let R be a commutative ring. Then an R-module M is (n,m)-
flat if and only if, for each maximal ideal P , MP is (n,m)-flat over RP .

Lemma 4.4. Let M be p-generated right R-module where p is a positive integer.
Then M is flat if and only if it is (1, p)-flat.

Proof. Only “if” requires a proof. Let A be a left ideal. Assume thatM is generated
by x1, . . . , xp. So, if z ∈ M ⊗R A, z =

∑p
i=1 xi ⊗ ai where a1, . . . , ap ∈ A. Suppose

that the image of z in M ⊗R R is 0. If A′ is the left ideal generated by a1, . . . , ap,
if z′ is the element of M ⊗R A′ defined by z′ =

∑p
i=1 xi ⊗ ai, then z (respectively

0) is the image of z′ in M ⊗R A (respectively M ⊗R R). Since M is (1, p)-flat we
successively deduce that z′ = 0 and z = 0. �

It is well known that each (1,ℵ0)-flat right module is (ℵ0,ℵ0)-flat. For each

positive integer p, is each (1, p)-flat right module (ℵ0, p)-flat?
The following theorem and Theorem 4.11 give a partial answer to this question.
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Theorem 4.5. Let p be a positive integer and let R be a ring. For each positive
integer n, assume that, for each p-generated submodule G of the left R-module
Rn ⊕ R, (G ∩ Rn) is the direct limit of its p-generated submodules.Then a right
R-module M is (1, p)-flat if and only if it is (ℵ0, p)-flat.

Proof. We shall prove that M is (n, p)-flat by induction on n. Let G be a p-
generated submodule of the left R-module Rn+1 = Rn⊕R. Let π be the projection
of Rn+1 onto R and G′ = π(G). Then G′ is a p-generated left module. We put
H = G ∩ Rn. We have the following commutative diagram with exact horizontal
sequences:

M ⊗R H → M ⊗R G
1M⊗π
−−−−→ M ⊗R G′ → 0

↓ ↓ ↓

0 → M ⊗R Rn → M ⊗R Rn+1 1M⊗π
−−−−→ M ⊗R R → 0

Let u : G → Rn+1, u′ : G′ → R, w : Rn → Rn+1 be the inclusion maps and let
v = u|H . Then (1M ⊗u′) is injective. Let H ′ be a p-generated submodule of H . By
the induction hypothesis M is (n, p)-flat. So, (1M ⊗ (v|H′ )) is injective. It follows
that (1M ⊗ v) is injective too. We conclude that (1M ⊗ u) is injective and M is
(ℵ0, p)-flat. �

Corollary 4.6. Let p be a positive integer and let R be a ring such that each left
ideal is (1, p)-flat. Then, for each positive integer q ≤ p, a right R-module M is
(1, q)-flat if and only if it is (ℵ0, q)-flat.

Proof. Let the notations be as in the previous theorem. Since G′ is a flat left R-
module by Lemma 4.4, H is a pure submodule of G. Let {g1, . . . , gq} be a spanning
set of G and let h1, . . . , ht ∈ H . For each k, 1 ≤ k ≤ t there exist ak,1, . . . , ak,q ∈ R
such that hk =

∑q
i=1 ak,igi. It follows that there exist g′1, . . . , g

′
q ∈ H such that

∀k, 1 ≤ k ≤ t, hk =
∑q

i=1 ak,ig
′
i. So, each finitely generated submodule of H is

contained in a q-generated submodule. We conclude by applying Theorem 4.5. �

Corollary 4.7. Let R be a commutative local ring of maximal ideal P . Assume
that P 2 = 0. Let q a positive integer. Then:

(1) each (1, q)-flat module is (ℵ0, q)-flat;
(2) each (1, q)-injective module is (ℵ0, q)-injective.

Proof. Let the notations be as in the previous theorem. We may assume that
G ⊆ PRn+1. Then G is a semisimple module and H is a direct summand of G. So,
(1) is a consequence of Theorem 4.5.

(2). Let M be a (1, q)-injective module. We shall prove by induction on n that
M is (n, q)-injective. We have the following commutative diagram:

0 → HomR(R,M) → HomR(R
n+1,M) → HomR(R

n,M) → 0
↓ ↓ ↓

0 → HomR(G
′,M) → HomR(G,M) → HomR(H,M) → 0

where the horizontal sequences are exact. By the induction hypothesis the left and
the right vertical maps are surjective. It follows that the middle vertical map is
surjective too. �

By (Shamsuddin, 2001, Example 5.2) or (Jøndrup, 1971, Theorem 2.3), for each
integer n > 0, there exists a ring R for which each finitely generated left ideal is
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(1, n)-flat (hence (ℵ0, n)-flat by Corollary 4.6) but there is a finitely generated left
ideal which is not (1, n+1)-flat. The following proposition gives other examples in
the commutative case.

Proposition 4.8. Let R be a commutative local ring of maximal ideal P with
residue field k. Assume that P 2 = 0 and dimk P > 1. Then, for each positive
integer p < dimk P , there exists:

(1) a (p+ 1, 1)-presented R-module which is (ℵ0, p)-flat but not (1, p+ 1)-flat;
(2) a (ℵ0, p)-injective R-module which is not (1, p+ 1)-injective.

Proof. (1). Let F be a free R-module of rank (p+ 1) with basis {e1, . . . , ep, ep+1},
let (a1, . . . , ap, ap+1) be a family of linearly independant elements of P , let K be

the submodule of F generated by
∑p+1

i=1 aiei and let M = F/K. Then M ∼=
D(Wp,1,p+1). First, we show that K is a (1, p)-pure submodule of F . We consider
the following equation:

(4)

p
∑

j=1

rjxj = s(

p+1
∑

i=1

aiei)

where r1, . . . , rp, s ∈ R and with unknowns x1, . . . , xp. Assume that this equation
has a solution in F . Suppose there exists ℓ, 1 ≤ ℓ ≤ p, such that rℓ is a unit.
For each j, 1 ≤ j ≤ p, we put x′

j = δj,ℓr
−1
ℓ s(

∑p+1
i=1 aiei). It is easy to check that

(x′
1, . . . , x

′
p) is a solution of (4) in K. Now we assume that rj ∈ P, ∀j, 1 ≤ j ≤ p.

Suppose that (x1, . . . , xp) is a solution of (4) in F . For each j, 1 ≤ j ≤ p, xj =
∑p+1

i=1 cj,iei, where cj,i ∈ R. We get the following equality:

(5)

p+1
∑

i=1





p
∑

j=1

rjcj,i



 ei =

p+1
∑

i=1

saiei

We deduce that:

(6) ∀i, 1 ≤ i ≤ p+ 1,

p
∑

j=1

rjcj,i = sai

So, if s is a unit, ∀i, 1 ≤ i ≤ p+ 1, ai ∈
∑p

j=1 Rrj . It follows that

dimk

(

p+1
∑

i=1

Rai

)

≤ p

that is false. So, s ∈ P . In this case (4) has the nil solution. Hence M is (ℵ0, p)-flat
by Propositions 4.1(2) and 4.7.

By way of contradiction suppose that M is (1, p + 1)-flat. It follows that K is
a (1, p + 1)-pure submodule of F by Proposition 4.1. Since M is (1, p + 1)-pure-
projective we deduce that M is free. This is false.

(2). Let E be an injective R-cogenerator. Then HomR(M,E) is (ℵ0, p)-injective
but not (1, p+ 1)-injective by Proposition 4.1(4). �

In a similar way we show the following proposition.

Proposition 4.9. Let R be a commutative local ring of maximal ideal P . Assume
that P 2 = 0. Let M be a (m, 1)-presented R-module with m > 1, let {x1, . . . , xm} be
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a spanning set of M and let
∑m

j=1 ajxj = 0 be the relation of M , where a1, . . . , am ∈

P . If p = gen (
∑m

j=1 Raj)− 1 > 0, then:

(1) M is (ℵ0, p)-flat but not (1,m)-flat;
(2) HomR(M,E) is (ℵ0, p)-injective but not (1,m)-injective, where E is an

injective R-cogenerator.

When R is an arithmetical commutative ring, i.e. its lattice of ideals is distribu-
tive, each (1, 1)-flat module is flat and by (Fuchs and Salce, 2001, Theorem VI.9.10)
the converse holds if R is a commutative domain (it is also true if each principal
ideal is flat). However we shall see that there exist non-arithmetical commutative
rings for which each (1, 1)-flat module is flat. Recall that a left (or right) R-module
M is torsionless if the natural map M → (M∗)∗ is injective.

Proposition 4.10. For each ring R the following conditions are equivalent:

(1) R is right self (ℵ0, 1)-injective;
(2) each finitely presented cyclic left R-module is torsionless;
(3) each finitely generated left ideal A satisfies A = l− ann(r − ann(A)).

Proof. We prove (1) ⇔ (2) as (Jain, 1973, Theorem 2.3) and (2) ⇔ (3) is easy. �

Theorem 4.11. Let R be a right perfect ring which is right self (ℵ0, 1)-injective.
Then each (1, 1)-flat right module is projective.

Proof. Let M be a (1, 1)-flat right R-module. It is enough to show that M is
flat. Let A be a finitely generated left ideal of R. Assume that {a1, . . . , an} is
a minimal system of generators of A with n > 1. Let z ∈ M ⊗R A such that
its image in M is 0. We have z =

∑n
i=1 yi ⊗ ai, where y1, . . . , yn ∈ M , and

∑n
i=1 yiai = 0. For each i, 1 ≤ i ≤ n, we set Ai =

∑n

(j=1

j 6=i)
Raj. Then, ∀i, 1 ≤ i ≤ n,

Ai ⊂ A. For each finitely generated left ideal B we have B = l− ann(r − ann(B)).
It follows that, ∀i, 1 ≤ i ≤ n, r− ann(A) ⊂ r− ann(Ai). Let bi ∈ r− ann(Ai)) \
r− ann(A). Then yiaibi = 0. From the (1, 1)-flatness of M we deduce that yi =
∑mi

k=1 y
′
i,kci,k, where y′i,1, . . . , y

′
i,mi

∈ M and ci,1, . . . , ci,mi
∈ R with ci,kaibi =

0, ∀k, 1 ≤ k ≤ mi. It follows that z =
∑n

i=1(
∑mi

k=1 y
′
k,i ⊗ ck,iai). Let A(1] be

the left ideal generated by {ck,iai | 1 ≤ i ≤ n, 1 ≤ k ≤ mi}. Then A(1) ⊂ A;
else, ∀i, 1 ≤ i ≤ n, ai =

∑n
j=1(

∑mj

k=1 di,j,kcj,kaj) with di,j,k ∈ R; we get that

aibi =
∑n

j=1(
∑mj

k=1 di,j,kcj,kajbi); but ajbi = 0 if j 6= i and ci,kaibi = 0; so,
there is a contradiction because the second member of the previous equality is 0

while aibi 6= 0 . Let {a
(1)
1 , . . . , a

(1)
n1

} be a minimal system of generators of A(1). So,

z =
∑n1

i=1 y
(1)
i ⊗a

(1)
i where y

(1)
1 , . . . , y

(1)
n1

∈ M , and z is the image of z(1) ∈ M⊗RA
(1)

defined by z(1) =
∑n1

i=1 y
(1)
i ⊗ a

(1)
i . If n1 ≤ 1 we conclude that z(1) = 0 since M is

(1, 1)-flat, and z = 0. If n1 > 1, in the same way we get that z(1) is the image of
an element z(2) ∈ M ⊗R A(2) where A(2) is a left ideal such that A(2) ⊂ A(1). If
gen A(2) > 1 we repeat this process, possibly several times, until we get a left ideal
A(l) with gen A(l) ≤ 1; this is possible because R satisfies the descending chain
condition on finitely generated left ideals since it is right perfect (see (Renault,
1975, Théorème 5 p.130)). The (1, 1)-flatness of M implies that z(l) = 0 and z = 0.
So, M is projective. �

Let P be a ring property. We say that a commutative ring R is locally P if RP

satisfies P for each maximal ideal P .
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The following corollary is a consequence of Theorem 4.11 and Proposition 4.3.

Corollary 4.12. Let R be a commutative ring which is locally perfect and locally
self (ℵ0, 1)-injective. Then each (1, 1)-flat R-module is flat.

5. (n,m)-coherent rings

We say that a ring R is left (n,m)-coherent if each m-generated submodule of a
n-generated free left R-module is finitely presented. We say that R is left (ℵ0,m)-
coherent (respectively (n,ℵ0)-coherent) if for each integer n > 0 (respectively m >
0) R is left (n,m)-coherent. The following theorem can be proven with standard
technique: see (Zhang et al., 2005, Theorems 5.1 and 5.7). In this theorem the
integers n or m can be replaced with ℵ0.

Theorem 5.1. Let R be a ring and n,m two fixed positive integers. Assume that
R is an algebra over a commutative ring S. Let E be an injective S-cogenerator.
Then the following conditions are equivalent:

(1) R is left (n,m)-coherent;
(2) any direct product of right (n,m)-flat R-modules is (n,m)-flat;
(3) for any set Λ, RΛ is a (n,m)-flat right R-module;
(4) any direct limit of a direct system of (n,m)-injective left R-modules is

(n,m)-injective;
(5) for any exact sequence of left modules 0 → A → B → C → 0, C is (n,m)-

injective if so is B and if A is a (ℵ0,m)-pure submodule of B;
(6) for each (n,m)-injective left R-module M , HomS(M,E) is (n,m)-flat.

It is well known that each left (1,ℵ0)-coherent ring is left (ℵ0,ℵ0)-coherent.
For each positive integer p, is each left (1, p)-coherent ring left (ℵ0, p)-
coherent?

Propositions 5.2 and 5.3 and Theorem 5.4 give a partial answer to this question.

Proposition 5.2. Let p be a positive integer and let R be a ring. For each positive
integer n, assume that, for each p-generated submodule G of the left R-module
Rn ⊕ R, (G ∩ Rn) is the direct limit of its p-generated submodules. Then the
following conditions are equivalent:

(1) R is left (1, p)-coherent;
(2) R is left (ℵ0, p)-coherent.

Moreover, when these conditions hold each (1, p)-injective left module is (ℵ0, p)-
injective.

Proof. It is obvious that (2) ⇒ (1).
(1) ⇒ (2). Let Λ be a set. By Theorem 5.1 RΛ is a (1, p)-flat right module.

From Theorem 4.5 we deduce that RΛ is a (ℵ0, p)-flat right module. By using again
Theorem 5.1 we get (2).

Let M be a (1, p)-injective left module. By Theorem 5.1 M ♯ is a (1, p)-flat right
R-module. Then it is also (ℵ0, p)-flat. We deduce that (M ♯)♯ is a (ℵ0, p)-injective
left module. Since M is a pure submodule of (M ♯)♯, it follows that M is (ℵ0, p)-
injective too. �

Proposition 5.3. Let R be a commutative perfect ring. Then R is Artinian if and
only if it is (1, 1)-coherent.
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Proof. Suppose that R is (1, 1)-coherent. Since R is perfect, R is a finite product
of local rings. So, we may assume that R is local of maximal ideal P . Let S be a
minimal non-zero ideal of R generated by s. Then P is the annihilator of s. So, P is
finitely generated and it is the sole prime ideal of R. Since all prime ideals of R are
finitely generated, R is Noetherian. On the other hand R satisfies the descending
chain condition on finitely generated ideals. We conclude that R is Artinian. �

Except in some particular cases, we don’t know if each (1, p)-injective module is
(ℵ0, p)-injective, even if we replace p by ℵ0.

Theorem 5.4. Let R be a ring which is right perfect, left (1, 1)-coherent and right
self (ℵ0, 1)-injective. Then each (1, 1)-injective left module is (ℵ0,ℵ0)-injective and
R is left coherent.

Proof. Let M be a left (1, 1)-injective module. By Theorem 5.1 M ♯ is (1, 1)-flat.
Whence M ♯ is projective by Theorem 4.11. We do as in the proof of the previous
proposition to conclude that M is (ℵ0,ℵ0)-injective.

For each set Λ, RΛ is a (1, 1)-flat right module by Theorem 5.1. It follows that
RΛ is a projective right module by Theorem 4.11. �

Recall that a ring is quasi-Frobenius if it is Artinian and self-injective.

Corollary 5.5. Let R be a quasi-Frobenius ring. Then, for each right (or left)
R-module M , the following conditions are equivalent:

(1) M is (1, 1)-flat;
(2) M is projective;
(3) M is injective;
(4) M is (1, 1)-injective.

Proof. It is well known that (2) ⇔ (3). By Theorem 4.11 (1) ⇔ (2) because R
satisfies the conditions of this theorem, and it is obvious that (3) ⇒ (4) and the
converse holds by Theorem 5.4. �

We prove the following theorem as (Couchot, 1982, Théorème 1.4).

Theorem 5.6. Let R be a commutative ring and n,m two fixed positive integers.
The following conditions are equivalent:

(1) R is (n,m)-coherent;
(2) for each multiplicative subset S of R, S−1R is (n,m)-coherent, and for each

(n,m)-injective R-module M , S−1M is (n,m)-injective over S−1R;
(3) For each maximal ideal P , RP is (n,m)-coherent and for each (n,m)-

injective R-module M , MP is (n,m)-injective over RP .

Recall that a ring R is a right IF-ring if each right injective R-module is flat.

Theorem 5.7. Let R be a commutative ring which is locally perfect, (1, 1)-coherent
and self (1, 1)-injective. Then:

(1) R is coherent, self (ℵ0,ℵ0)-injective and locally quasi-Frobenius;
(2) each (1, 1)-flat module is flat;
(3) each (1, 1)-injective module is (ℵ0,ℵ0)-injective.
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Proof. By Theorem 5.6 RP is (1, 1)-coherent and (1, 1)-injective for each maximal
ideal P . Let a be a generator of a minimal non-zero ideal of RP . Then PRP is
the annihilator of a and consequently PRP is finitely generated over RP . Since
all prime ideals of RP are finitely generated, we deduce that RP is Artinian for
each maximal ideal P . Moreover, the (1, 1)-injectivity of RP implies that the socle
of RP (the sum of all minimal non-zero ideals) is simple. It follows that RP is
quasi-Frobenius for each maximal ideal P .

Let M be a (ℵ0,ℵ0)-injective R-module. By Theorem 5.6 MP is (1, 1)-injective
for each maximal ideal P . By Corollary 5.5 MP is injective for each maximal ideal
P . We conclude that R is self (ℵ0,ℵ0)-injective and it is coherent by Theorem 5.6.

If M is (1, 1)-injective, we prove as above that MP is injective for each maximal
ideal P . It follows that M is (ℵ0,ℵ0)-injective.

The second assertion is an immediate consequence of Corollary 4.12. �

The following proposition is easy to prove:

Proposition 5.8. A ring R is left (ℵ0, 1)-coherent if and only if each finitely gen-
erated right ideal has a finitely generated left annihilator.

Example 5.9. Let V be a non-Noetherian (commutative) valuation domain whose
order group is not the additive group of real numbers and let R = V [[X ]] be the
power series ring in one indeterminate over V . Since R is a domain, R is (ℵ0, 1)-
coherent. But, in (Anderson and Watkins, 1987) it is proven that there exist two
elements f and g of R such that Rf ∩ Rg is not finitely generated. By using the
exact sequence 0 → Rf ∩Rg → Rf ⊕ Rg → Rf + Rg → 0 we get that Rf +Rg is
not finitely presented. So, R is not (1, 2)-coherent.
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