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I. Introduction

Recently, parallel robotics has broken through new field of research such as high speed manipulation, material handling, motion platforms and medical equipment. In the latter, a new robot has been developed at École de technologie supérieure (Fig. 1). This robot is designed to perform an ultrasound scan of a human patient's arteries. It consists of two five-bar planar mechanisms, which are connected to a tool holder by an articulated telescopic strut. Four motors are mounted inside the main frame while a fifth motor is attached directly to the tool holder allowing large amplitude tool rotations. The whole frame is mounted on a linear motor which allows large horizontal displacements of the robot. Thus, such an architecture has six degrees of freedom and ensures the required geometric and kinematic characteristics (see tables I and II) [START_REF] Lessard | Parallel Robot for Medical 3D-Ultrasound Imaging[END_REF].

The robot workspace was defined considering the examination of one half of the human body, cut vertically * E-mail: simon.lessard.3@ens.etsmtl.ca A partnership with Institut National des Sciences Appliquées (Rennes, France) has led to this present work on optimum static balancing of the six-degree-of-freedom medical robot.

(Fig. 2). A robot suited for the quantification of the lower limbs arteries could perform any less restricting arterial examination since it is the longest arterial examination. The linear displacement was chosen long enough to cover the whole body from neck down, thus preventing repositioning of the patient for different examinations or having to place him meticulously in the robot workspace. Designing a robot for a precise confined workspace would have led to a less practical system. The first virtual prototype version of the robot (Fig. 1) is smaller resulting in a smaller workspace. For assembly considerations, symmetric motors of each five-bar mechanism are not mounted vis-à-vis.

The robot design next step is the minimization of the input torques. This goal is well-known in the field of robotics and is composed of the static balancing of moving masses.

Static balancing is typically achieved by adding a counterweight or a spring to each bar. Complete static balancing is carried out by keeping constant the potential energy of the system for all configurations. In previous studies, a number of methods have been proposed for gravity balancing of robotic systems: spring balancing of a planar pantograph [START_REF] Herder | Energy-Free Systems. Theory, conception and design of statically balanced mechanisms[END_REF][START_REF] Shin | Spring equilibrator theory for static balancing of planar pantograph linkages[END_REF], n-springs solutions to a single attached point [START_REF] Walsh | Spatial spring equilibrator theory[END_REF], balancing of a spatial positioning table [START_REF] Wang | Static balancing of spatial threedegree-of-freedom parallel mechanisms[END_REF] and 6-dof parallel manipulators [START_REF] Ebert-Uphoff | Static balancing of spatial parallel platform mechanisms -revisited[END_REF][START_REF] Gosselin | Static balancing of spatial six-degreeof-freedom parallel mechanisms with revolute actuators[END_REF], as well as several auxiliary mechanisms for spring support [START_REF] Fattah | On the design of a passive orthosis to gravity balance human legs[END_REF][START_REF] Fattah | Gravity-Balancing of Classes of Industrial Robots[END_REF][START_REF] Simionescu | Static balancing of the industrial robot arms. Part I: discrete balancing[END_REF][START_REF] Simionescu | Static balancing of the industrial robot arms. Part II: continuous balancing[END_REF][START_REF] Wang | Passive mechanisms with multiple equilibrium configurations[END_REF].

This article deals with the optimum static balancing of a parallel robot developed for medical 3D-ultrasound imaging. The suggested analytical solution allows a significant reduction in the input torques by means of simpler design solutions. The paper is organized as follows. Firstly, the input torques due to the static and dynamic loads are examined and a simplified calculation approach is proposed. Then an optimal static balancing method is developed, which is formulated by the input torques root-mean-square values minimization.

II. Static and Dynamic Models

In our medical robotic application, motion is slow and smooth. Therefore, the end-effector velocity and acceleration are small. Our observations show that the input torques caused by the inertia effect of the moving masses are very small compared to the input torques caused by the gravity force. Thus, inertia effect can be neglected. For example, the variation of the input torques for a prescribed trajectory (with 0.6m/s 2 maximal acceleration) shows that the maximal difference between the dynamic and the static loads is less than 1%. This means that the motor torques are mainly caused by gravity.

III. Complete Static Balance

Counterweights mounted on each moving links achieve complete static equilibrium. Fig. 3 illustrates the complete static balance of the parallel robot for medical 3Dultrasound.

Fig. 3. Complete balancing by counterweights

Clearly, the added counterweights increase the robot's inertia. Also, the tool holder motor would be difficult to assemble with a counterweight attached because the joint is not a ball joint, but a combination of a universal joint and a revolute joint.

In the case of complete balancing with springs, it is necessary to add auxiliary mechanisms (parallelograms), which lead to a very complicated mechanical architecture. A mechanical system that is completely balanced becomes either very heavy or too complicated to manufacture and assemble. That is why we developed a partial balancing approach. It is obvious that the load reduction on actuators is partial, but the design solution is very simple.

IV. Input Torques

The input torque of the i th actuator can be expressed as:

( ) ) 6 ,..., 1 ( 13 1 = ⋅ = ∑ = i j j i T j i G J τ (1)
where (J T j ) i corresponds to the i th line of the transposed Jacobian matrix between the center of masses S j of the link j and the actuated variables q i . G j is the gravity forces of the link j (Fig. 456).

The structure of this robot has some particularities which allow a considerable simplification of torques determination. The tool holder represents an Assur group [START_REF] Zinoviev | Théorie des mécanismes et des machines[END_REF] with two links and three joints (spherical, universal and revolute pairs) dividing the robot architecture in two parts. Thus the tool holder can be disconnected from the robot structure to be examined separately. From this point forward, the tool is considered statically balanced around the sixth motor, i.e. the tool's center of mass coincides with the motor rotation axis. Such an approach simplifies reaction forces and input torques calculations.

The reaction forces R E and R H (respectively applied by the tool holder at points E and H) are function of the yaw and pitch angles only, the roll angle being equal to the sixth motor rotation angle, this motor input torque being independent of the other motors. The length L of the passive linear joint is calculated as a function of the orientation angles:

α β cos cos f L L = (2)
where f L is the distance between the two planar five bar mechanisms:
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Thus, the vertical reaction forces on point H and E can be determined from the static equilibrium equations: 
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where m i , and r i are respectively the mass and position of the centre of masses of the i th link, g is the gravity and m 6 is the mass of actuator 6.

The horizontal reaction forces are projected from axis w to axis y: Thus, it is possible to deduce the potential energy V of the first five bar mechanism (Fig. 6):
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where z i is the vertical coordinate of the centre of mass S i of the i th link and r 2 =AS 2 , r 3 =CS 3 , r 7 =ES 7 , r 8 = ES 8 .

Then the input torques are determined by differentiating the potential energy by the motor articulation position vector Q. To transform the reaction forces at the tip into reaction motor torques, a Jacobian matrix is needed [START_REF] Clavel | The Lagrange-Based Model of Delta-4 Robot Dynamics[END_REF]:
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where τ i is the i th actuator torque, [ ]

3 2 , q q = Q
and J is the five-bar mechanism's Jacobian matrix [START_REF] Gosselin | Singularity analysis of closed-loop kinematic chains[END_REF]. The obtained expression of τ is given in appendix 1.

The second five-bar mechanism's torques τ 4 and τ 5 of actuators 4 and 5 are determined in a similar way. 

V. Input Torques Root-Mean-Square Values Minimization

The input torques minimization is carried out by each actuator torque root-mean-square values minimization for all the workspace. The workspace used in the calculation is only the yz plane because the linear motorized axis is not subject to gravity balancing. Three solutions are considered for optimum balancing.

A. Tension / Compression Spring Equilibrium

Firstly, one solution is an equilibrium mechanical system composed of zero free length springs (tension or compression) attached on each motorized arms. The fixed end of each spring is positioned optimally to release the actuator. The spring applied torque's potential energy is:

2 i ki ki ki ki i 2 ki ki ki i K V [ (z c o sq l c o sq) 2 (z sin q l sin q ) ] = - + - ( 13 
)
where K i is the stiffness spring coefficient, which is attached on a fixed arm of length z ki and orientation q ki (Fig. 7) and q i is the angular position of the i th actuator.

The other end is linked on the motorized arm at length l ki . By differentiating equation ( 13), we determine the input torque:
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The spring stiffness coefficient K i and attached linear positions z ki and l ki are consolidated into parameter C i . Thus, the optimal calculated C i will position precisely a certain spring K i on the arms:

) sin( ki i i ki q q C - = τ (15)
Two parameters have to be optimized for each motor: the constant C i and the angular position of the fixed arm q ki .

The torque root-mean-square value minimization leads to the following condition: 
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where WS := Workspace. For this purpose, these conditions must be satisfied:
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from which the coefficients are solved:
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where t mi are the roots of a polynomial p i (t) given in appendix 2.

B. Torsion Spring Equilibrium

Secondly, static balance can be achieved using torsion spring mounted on each actuator axes. The spring torque is linear to the bending angle: 
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from which the coefficients are solved:
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where N is the number of calculated positions in the workspace.

C. Counterweight Equilibrium

Lastly, a balancing approach is carried out by adding a counterweight of mass M i on each motorized axis. The mass M i is placed at a certain angle so that the maximum torque applied is at a specific desired motor angle. The optimum counterweight system is then function of the mass M i and position q ci for a given length

l ci . ) sin( ci i ci i ci q q l M - - = τ (25)
The mass M i and length l ci are consolidated into a single constant C i :

) sin( ci i i ci q q C - - = τ (26)
Determination of parameters C i and q ci is equivalent to the determination of parameters C i and q ki in section A.

VI. Results

The proposed robot (Fig. 1) with above mentioned geometrical parameters and mass distribution (appendix 3) was used for numerical simulation. Three mechanical solutions were tested. As a mean of comparison, reductions of the RMS and maximum motor torques are given in tables (III)-(V). The static torque root-mean-square sum minimization was reduced up to 50% ÷ 91.5%. In more practical terms, the maximum motor torque required was reduced up to % 7 . 46 % 3 . 34 ÷ . Fig. 10 shows input torques variations for unbalanced and optimum balanced robots with extension springs (the simulation was carried out in a static mode or operation). 

VII. Conclusion

The perfect static balancing of a spatial multibody mechanical system can eliminate completely the load caused by the gravity force. However, such a solution leads to inevitably complicated design add-ons or to unavoidable increase in total mass. In most cases, the complete balance is achieved only in theory but not in practice. In this paper, a parallel robot for medical 3Dultrasound imaging was optimally statically balanced. The proposed simple solutions presented a partial balancing effect minimizing the actuator torques.

Future work will investigate more efficient minimization by increasing the number of variables to the problem. The development of a prototype with the suggested balancing system is planned. 
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Fig. 1 .

 1 Fig. 1. CAD model of the prototype parallel robot
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 4 Fig. 4. Euler angles of the tool

Fig. 5 .

 5 Fig. 5. Schematic of the tool assembly

Fig. 6 .

 6 Fig. 6. Schematics of the two five-bars mechanisms with applied reaction forces
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Fig. 7 .

 7 Fig. 7. Spring balancing

2

 2 

Fig. 8 .

 8 Fig. 8. Torsion spring balancing The minimization conditions are the same: 2 ) (
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  Fig. 9. Counterweight balancing

  = 1.7 o C 2 = 0.104 Nm 57.6% 34.7% 3 q k3 = -42.7 o C 3 = 0.263 Nm 91.2% 45.6% 4 q k4 = 3.4 o C 4 = 0.081 Nm 50.1% 33.1% 5 q k5 = -43.0 o C 5 = 0.187 Nm 90.2% 43.1%

5 Fig. 10 .

 510 Fig. 10. Variation of the actuator torques for the orientation angles α=β=γ=0 deg

9 .

 9 81 m/s², m 2 = m 4 = 1.235kg, m 3 = m 5 = 1.549kg, m 6 = 0.331kg, m 7 = m 8 = m 9 = m 10 = 0.536kg, m 11 = 0.107kg, m 12 = 0.083kg, m 13 = 0.111 kg, L 2 = L 4 = 0.5m, L 3 = L 5 = 0.7m, L 7 = L 8 = L 9 = L 10 = 0.6m, L f =0.1m, z A = z F = 0.13m, z C =z K = 0.28m, r 2 =r 4 = 0.2094m, r 3 = r 5 = 0.3046m, r 7 = r 8 = r 9 = r 10 = 0.3m, r 11 = 0.0355m and r 12 = 0.0315m.

TABLE I .

 I Positioning workspace dimensions

	Axis	Orientation (degree)	Description
	Around X	-75° to 90°	Span (arteries axis)
	Around Y	-50° to 35°	Lateral
	Around Z	-45° to 45°	Vertical

TABLE II .

 II Workspace orientations 12th IFToMM World Congress, Besançon (France), June18-21, 2007 Fig. 2. Required workspace for the robotized ultrasound examination

TABLE III .

 III Tension / compression spring optimum configurations K 2 = -4.55 Nm/rad 56.9% 45.4% 3 q k3 = 180 o K 3 = 5.29 Nm/rad 90.4% 45.2% 4 q k4 = 6.2 o K 4 = -3.33 Nm/rad 50.0% 46.7% 5 q k5 = 180 o K 5 = 3.74 Nm/rad 89.2% 34.3%

	Motor	Torsion spring Parameters	RMS	Max Torque
	2	q k2 = 7.7 o		

TABLE IV .

 IV Torsion spring optimum configurations

	Motor	Counterweight Parameters	RMS	Max Torque
	2	q c2 = -178.4 o C 2 = 4.63 Nm 57.6% 34.7%
	3	q c3 = -221.4 o C 3 = 11.63 Nm 91.5% 46.4%
	4	q c4 = -176.9 o C 4 = 3.62 Nm 50.1% 33.1%
	5	q c5 = -224.2		

o C 5 = 8.36 Nm 90.2% 44.1%

TABLE V .

 V Counterweight optimum configurations

Appendix 1