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 Abstract— A procedure for the increase of singularity-

free zones in the workspace of spatial parallel manipulators 

is presented in this paper. The procedure is based on the 

control of the pressure angles in the joints of the 

manipulator. The zones, which cannot be reached by the 

manipulator, are detected. For increase of the reachable 

workspace of the manipulator the legs of variable structure 

are proposed. The design of the optimal structure of the 

spatial parallel manipulator 3-RPS is illustrated by a 

numerical simulation. 

 
 Keywords: Parallel manipulator, optimal control, 

singularity-free zones, pressure angle, force transmission 

 

I. Introduction 

It is well-known that the multiple closed chains in 

parallel manipulators often lead to difficulties in their 

design and control. One of the most important 

problems in the design of parallel mechanisms is the 

study of their singular configurations. The singular 

analysis has attracted the attention of several 

researchers and different studies have been published 

[1-11]. These studies are often developed for design of 

parallel mechanisms without singular configurations. It 

would be very suitable if such a result could be 

achieved by optimal legs assembly.  

However, in the previous works, there is another 

trend which consists in the elimination of singular 

zones from the whole workspace of the manipulator by 

the limitation of the workspace. Thus, the workspace 

of the parallel manipulators which is less than the 

serial manipulators becomes smaller and limits their 

functional performances. This has led some 

researchers to the problem of the optimal control of the 

parallel manipulators with singular configurations. 

Alvan and Slousch [12] suggested a solution based on 

the following considerations: the well known Gough-

Steward platform is modified and two legs are added, 

then the optimal control of the manipulator is carried 

out by six actuators chosen from eight. As an 

optimization criterion the algebraic value of the 

Jacobian matrices and the minimum sum of the root-

mean-square value of the input torques are used.   

The introduction in the initial system of 

complementary actuators, which make it possible to 

eliminate the singular configurations of the parallel 

manipulator by means of optimal control of the motion, 

can be exerted. However, it is an expensive solution 

because of the additional actuators (it is well known 

that the actuators are one of the most expensive 

components of manipulators) and the complicated 

control of the manipulator caused by actuation 

redundancy. 

In our previous work [13] the optimal control of 

planar parallel manipulators was studied and a new 

solution of this problem was proposed. It carried out by 

using mechanisms of variable structure, i.e. a 

mechanism whose structure parameters can be altered. 

With regard to the determination of singularity zones 

inside the workspace of the manipulator we proposed a 

kinetostatic approach taking account of the force 

transmission. 

In this paper a similar problem for spatial parallel 

manipulators is studied and a procedure for the increase 

of singularity-free zones in the workspace of spatial 

parallel manipulators is presented.  
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II. Force transmissivity analysis  

Let us consider a spatial parallel manipulator (Fig. 

1) with 3 degrees of freedom (two orientations and one 

translation) [14], which consists of the base A1A2A3, 

the output link B1B2B3 and 3 identical legs composed 

of one revolute pair Ai, one prismatic pair Ci and one 

spherical pair Bi (i = 1,2,3).   

 
Fig. 1. Spatial parallel manipulator 3-RPS. 

 

Let us examine the pressure angles of the 

considered manipulator [15]. Let the revolute pairs Ai 

be actuated and passive joints be located at Bi and Ci. 

Thus, each kinematic chain includes one actuated and 

two passive pairs. The wrench acting to the output link 

is reciprocal to the unit vectors situated along the axes 

of non-actuated pairs. Let Ei1, Ei2, Ei3 Ei4, Ei5 (Fig. 1) 

be the unit vectors of the axes of kinematic pairs, 

where i (i=1,2,3) is the number of the chain. Here Ei1 

corresponds to rotating actuated pair, Ei2 corresponds 

to sliding passive pair, Ei3 Ei4, Ei5 correspond to the 

spherical passive pair. The Plücker co-ordinates of 

these unit screws can be described in the matrix (E)i.  
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Here Ei1, Ei3 Ei4, Ei5 are the unit screws of zero pitch, 

i.e. 0 0
11

0
11

0
11  ziziyiyixixi eeeeee , etc., Ei2 is the 

unit screw of infinite pitch, iAiBixi lxxe /)(0
2  , 

iAiBiyi lyye /)(0
2  , 

iAiBizi lzze /)(0
2  , xAi, xBi, yAi, yBi, 

zAi, zBi are the coordinates of the points Ai and Bi, li is 

the distance between the points Ai and Bi, i=1,2,3. 

Without interruption of generality we can assume that 

Ei3 is parallel to Ei1, Ei4 is parallel to Ei2, and Ei5 is 

perpendicular to Ei4 and Ei2.  

The determinant of the matrix (E)i vanishes if the 

axes Ei1 and Ei3 coincide. It means the occurrence of 

singularity when the actuator causes only rotation in 

the joint Ei3. 

We can obtain the wrenches which are reciprocal 

to the unit vectors of the axes of the passive kinematic 

pairs. The conditions of reciprocity are:  
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Here 000 ,,,,, iziyixixiyix rrrrrr  are the Plücker co-

ordinates of the wrenches to be found. Equations (1) 

mean that each connecting kinematic chain determines 

two wrenches of zero pitch (vector) 
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11111 ziyixixiyixii rrrrrrR   and 

 0

2
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0

22222 ziyixixiyixii rrrrrrR  (i=1,2,3). They are 

perpendicular to the axis Ei2 and intersect the point Bi. 

Without the loss of generality we can assume that Ri1 is 

perpendicular to Ei1 and coincides with Ei5, and Ri2 is 

parallel to Ei1 and coincides with Ei3. The coordinates 

of wrenches in the form of the matrix (R) 6×6 are given 

by: 
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In singular configurations the system of the wrenches 

(R) degenerates.   

      To find the pressure angles we consider the 

wrenches Rij and the directions of the velocities of the 

points Bi [11]. The velocity of the point B1 is 

determined by the equations expressing the Plücker co-

ordinates  
zyxzyx vvv 111111   of the twist 

Ω1 existing by fixed actuated pairs A2 and A3. 
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Here ω11 is the generalized velocity in the pair A11. The 

left hand sides of the equations (2) express the 

reciprocal moments of the twist Ω1 and the wrenches 

R11, R12, R21, R22, R31, R32. According to the last five 

equations the twist Ω1 is reciprocal with the wrenches 

R12, R21, R22, R31, R32. The right hand sides of the first 

and second equations correspond to reciprocal 

moments of the twist E11ω11 and the wrenches R11 and 

R12.  
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      As the wrench R11 is of zero pitch and parallel to 

E11 then the reciprocal moment of this wrench and the 

twist E11ω11 can be written as: 

  zyxzzxx rrrlerer 11
2

11
2

11
2

111
0
1111111111 ...   . 

As the wrench R12 is perpendicular to the E11 then the 

reciprocal moment of this wrench and the twist E11ω11 

is equal to zero: 

  0... 0

1112111211  zzxx erer . All the wrenches R11, R12, 

R21, R22, R31, R32 are of zero pitch therefore the 

reciprocal moment of the twist Ω1 and the wrench R11 

can be written as: 
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where VB1x, VB1y, VB1z are the co-ordinates of the 

velocity VB1 of the point B1: 
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Finally, the pressure angle of leg 1 can be written as:  
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We can find two other pressure angles by a similar 

way. 

It was noted that in the singular configurations all 

the pressure angles are equal to 90°. Indeed, in this 

case the determinant of the matrix (R) is equal to zero. 

Therefore the wrench R11 is reciprocal to the twist Ω1 

and 0111111111  zzByyBxxB rVrVrV , i.e. 0αcos 1  , 

 90α1 , the velocity VB1 is perpendicular to the 

axis of the wrench R11. In this case ω11=0. 

Thus, the pressure angles can be determined at the 

joints of each kinematic chain. In this way we could 

map the maximum value of the pressure angles in the 

whole workspace of the parallel manipulator to detect 

the inaccessible zones with unfavourable values of the 

pressure angles.    

If the prescribed path of the parallel manipulator 

intersects any unacceptable zone in which the pressure 

angle has an inadmissible value the transmission of the 

motion can be disrupted. In this case, it is necessary to 

change the structural parameters of the mechanism, i.e. 

the input motions.  

Fig. 2 shows a schematic of the modified leg with 

the added articulated dyad which allows changing the 

input motion. The rotating actuators are mounted on 

the base and connected by electromagnetic clutches 

with the links AiDi and AiCi. The input motion can be 

transmitted either by the link AiDi or AiCi (i=1,2,3). In 

this way we can obtain the leg of the mechanisms with 

different structural parameters, which changes the 

direction of the wrench Ri1 and allows increasing the 

singularity-free zones. 

Let us consider the system of wrenches existing in 

this case. The link BiCi is constrained by two wrenches 

of zero pitch Ti1 and Ti2. The axis of the wrench Ti1 is 

perpendicular to the line AiBi and the axis of the wrench 

Ti2 coincides with the axis of the link CiDi. The unit 

screw E’i1 of the twist of the link BiCi is reciprocal to 

the wrenches Ti1 and Ti2. This twist is of zero pitch and 

is parallel to the axis Ei1. The location of the axis E’i1 

corresponds to the point of intersection of the wrenches 

Ti1 and Ti2. If the link CiDi is perpendicular to the link 

BiCi then the wrenches Ti1 and Ti2 are parallel and the 

instantaneous motion of the link BiCi is a translation. 

The wrench Ri1 (i=1,2,3) can be determined using the 

equation analogous to (1). The pressure angle can be 

found using the equation (3). 

 

 
 

Fig. 2. Planar representation of the leg with 

variable structure. 

 

This approach can be applied for mechanisms with 

different degrees of freedom and different structures of 

legs. Particularly at the point Ai can be situated a 

universal joint. Then each kinematic chain determines 

only one wrench Ri whose direction can be changed by 

choosing different input links. Thus, by such a way, we 

can determine the pressure angles corresponding to the 

different structures and obtain all possible workspace 

with singularity-free zones. 

III. Optimal structural architecture of the 

manipulator taking account of pressure angle 

In order to obtain the best structural architecture of 

the manipulator for a given trajectory, in this section 

we describe a procedure, which allows determining the 

optimal system of actuation. For this purpose, at the 

first time, we would like to show the singularity-free 

zones in the workspace of the 3-RPS spatial parallel 

manipulator with modified legs. These zones have been 

determined by using the maximum acceptable values of 

the pressure angles.  

For numerical simulation we consider a mani-

pulator in which the basis triangle A1A2A3 is equilateral 

with radius 0.35 m (Fig. 1) and the platform B1B2B3 

also represents an equilateral triangle with radius 0.1 m. 

For added dyads AiDi=CiDi=0.25 m, the articulated 

dyads are always located on the top of the prismatic 

pairs as it is shown in Fig. 2 and the translations of the 

prismatic pairs are limited relative to the joints Ai and 

Ci by values (AiCi)min=(BiCi)min=0.05 m. 

The origin of the fixed base frame (Oxyz) is 

located at the centre of the equilateral triangle A1A2A3, 



12th IFToMM World Congress, Besançon (France), June 18-21, 2007 

 

the vertical axis z is orthogonal to this triangle and the 

screws Ei1 are tangent to the circle passing through 

A1A2A3.  

This manipulator has three degrees of freedom 

and only three of the six position/orientation variables 

are independent. In this work, as the output parameters 

are defined two orientation angles 1, 2 and the 

vertical position z of the platform. The angles 1, 2 

can be obtained by expressing the directional cosines 

in terms of x-y-x Euler angles 1, 2, 3 (see the basic 

kinematic equations in [14]).     

Taking into account that the modified manipulator 

can be actuated either by links AiDi or by links AiCi, 

for given output parameters (z,1,2) of the platform, 

we have 8 different combinations of actuation, i.e. we 

have 8 different combinations of input parameters 

presented below (underlined letters show the input 

pairs, “R” for input links AiCi with input angles i and 

“P” for input links AiDi with input displacements i): 

RRR: RPS-RPS-RPS: q(1)=(1,2,3) 

RRP: RPS-RPS-RPS: q(2)=(1,2,3) 

RPR: RPS-RPS-RPS: q(3)=(1,2,3) 

RPP: RPS-RPS-RPS: q(4)=(1,2,3) 

PRR: RPS-RPS-RPS: q(5)=(1,2,3) 

PRP: RPS-RPS-RPS: q(6)=(1,2,3) 

PPR: RPS-RPS-RPS: q(7)=(1,2,3) 

PPP: RPS-RPS-RPS: q(8)=(1,2,3) 

 

Table 1 shows the workspaces of each case of 

actuation for the altitude of the platform equal to 0.1 

m. In these figures, several zones can be seen, which 

correspond to the variations of the maximum values of 

the pressure angle for given orientation (1,2) of the 

platform. The contrast intensity shows the variations of 

the pressure angle (see Fig. 3). 

 
 

 
 

Fig. 3. The contrast intensity corresponding to the 

pressure angle values.  

 
 

Thus, the black zones are the surfaces where the 

pressure angle has inadmissible values, and as a result, 

these are the zones which cannot be reached and 

crossed by the parallel mechanism. These zones 

separate the workspace into different aspects, what 

decrease the capacity of displacement of the platform. 

 
Fig. 4. The reachable workspace of the spatial parallel 

      manipulator with modified legs (z = 0.1 m). 

 

Fig. 4 shows the reachable workspace of the 

modified parallel mechanism with legs of variable 

structure. We can see that the workspace of the 

modified manipulator is only composed of singularity-

free zones and the whole workspace of the manipulator 

is reachable (increase until 100%).      

Now we would like to describe a procedure, which 

allows determining the optimal system of actuation. 

This algorithm is based on the control of the pressure 

angles in the joints of the manipulator along the given 

trajectory. It is similar to the procedure given in [13] 

for planar parallel manipulators.  

At first the calculation of the pressure angles in the 

joints along the trajectory for all possible structures of 

the parallel mechanism with variable architecture must 

be accomplished, then the best structure must be 

chosen for which the maximum value of the pressure 

angle along the trajectory is always less than the limit 

value. If there is no structure satisfying this condition, 

the given trajectory must be decomposed in several 

parts and the generation of the motion must be carried 

out by different structures. It is obvious that in this case 

it would be desirable that the trajectory can be realized 

by minimal structural changes. 

A numerical example is considered below in order 

to illustrate the application of the suggested design 

procedure. 

For given parallel manipulator (Fig. 1) with legs of 

variable structure (Fig. 2) generate the trajectory from 

the initial position P1 (z=0.3 m, 1=0 rad., 2=0 rad.) to 

the final position P2 (z=0.3 m, 1=0 rad., 2=1 rad.), 

keeping z and 1 constant.    

Estimation of the pressure angle along the given 

trajectory shows that the best structural solution for 

generation of motion is the RPS-RPS-RPS mechanism, 

i.e. when the first actuator is connected with the link 

A1D1 and two others with the links A2C2 and A3C3. In 

this case the maximum values of the pressure angles in 

the joints are always less than the limit value.   

In order to illustrate the variations of torques for 

examined case we develop a model of the manipulator 

with the given trajectory using the ADAMS software. 
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A force parallel to the z-axis and equal to 100 N was 

applied to the platform and the friction coefficients in 

the prismatic pairs were equal to 0.01. The obtained 

torques are shown in Fig. 5. We can note that the 

torques have admissible values along the trajectory. 

It is obvious that the similar mechanisms of 

variable structure can also be designed on the base of 

the screw or cam systems, the rhombic pantographs, 

etc. 

 

 
(a) Actuator 1 

 
(b) Actuator 2 

 
(c) Actuator 3 

 

Fig. 5. Torques of the actuators. 

IV. Conclusion 

A procedure for the improvement of functional 

performance of spatial parallel manipulators has been 

presented in this paper. The procedure is based on the 

control of the pressure angles in the joints of the 

manipulator along the given trajectory of the platform. 

The zones, which cannot be reached by the 

manipulator, were detected. For increase of the 

reachable workspace of the manipulator the legs of 

variable structure were proposed. Such a solution 

allows obtaining the best structural architecture of the 

manipulator for any trajectory. The design of the 

optimal structure of the planar parallel manipulator 3-

RPS was illustrated by a numerical simulation. We 

believe that the suggested method is a useful tool for 

the improvement of the functional performance of 

parallel manipulators with singular zones.   
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(a) Actuators: RRR (b) Actuators: PPP 

  
(c) Actuators: PRR (d) Actuators: RPP 

  
(e) Actuators: RPR f) Actuators: PRP 

  
(g) Actuators: RRP (h) Actuators: PPR 

TABLE I. Maximum values of the pressure angles (z = 0.1m) 


