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This paper is dedicated to the semiclassical limit of the nonlinear focusing Schrödinger equation (NLS) with a potential with initial data in the form Q(

ε ,whereQ is the ground state of the associated unscaled elliptic problem. Using a refined version of the method introduced by Bronski and Jerrard [Math. Res. Lett. 7(2-3) (2000), 329-342], we prove that, up to a time-dependent phase shift, the initial shape is conserved with parameters that are transported by the classical flow.

Introduction

This paper is a sequel to [START_REF] Keraani | Semiclassical limit of a class of Schrödinger equations with potential[END_REF]. We continue to study the semiclassical limit of the nonlinear focusing Schrödinger equation with a potential:

iε∂ t u ε + ε 2 2 ∆u ε -V (x)u ε + u ε 2σ u ε = 0, t ∈ R, x ∈ R N . (1.1)
Here, ∆ = j=N j=1 ∂ 2 x j is the Laplace operator on R N , u ε : R × R N → C is a complex-valued family of functions, ε is a small parameter (referring to Planck's constant) and V a real-valued potential. This equation arises in many fields of physics such as the propagation of light in some nonlinear optical materials. Roughly speaking the potential V is due to the inhomogeneities of the medium (see [START_REF] Sulem | The Nonlinear Schrödinger Equation. Self-Focusing and Wave Collapse[END_REF] for more details). The case V = |x| 2 and σ = 1 describe the Bose-Einstein condensate.

The semiclassical analysis of Eq. (1.1) aims to describe the asymptotic behavior of the family of solutions when ε → 0. The common situation is to associate to (1.1) a family of initial data which oscillate or concentrate with scale ε (or both) and then study the evolution of these properties in time. There are many methods to deal with this problem. The main usual one is the geometrical optics -or WKB method. It consists in representing the solution in the form u ε = U ε e i ε ϕ(x,t) where U ε has the formal expansion U ε = U 0 + εU 1 + ε 2 U 2 + •••. The phase ϕ is a solution of a Hamilton-Jacobi type equation called eikonal equation and the amplitudes U j are solutions of a recurrent infinite system of nonlinear equations (called transport equations). The justification of this formal solution is the main difficulty of this method. In general we have to linearize the equation around the approximative solution and use the ap r i o r iestimates (energy estimate, Strichartz estimate, ...) to prove that error term goes to 0 when ε → 0. 1 Another related topic, which is well developed in the last few years, is to concentrate on the existence and the stability of the associated standing waves (see [START_REF] Ambrosetti | Semiclassical states on nonlinear Schrödinger equations[END_REF][START_REF] Oh | Existence of semiclassical bound states of nonlinear Schrödinger equations with potential of class (v)α[END_REF] and [START_REF] Oh | On positive multi-lump bound states of nonlinear Schrödinger equations under multiple-well potentials[END_REF], for instance). A perturbed elliptic equation is then studied and some different behaviors (related to the properties of the potential V )a r e found.

In [START_REF] Bronski | Soliton dynamics in a potential[END_REF] Bronski and Jerrard have considered Eq. (1.1) with the particular family of initial data

u ε (0, x) = Q x -x 0 ε e i x•ξ 0 ε , (1.2) 
where (x 0 , ξ 0 ) ∈ R N × R N and Q is the ground state of the associated unscaled elliptic problem (see Section 2 below). The very particular form of the initial data allows them to use an alternative approach to prove that the solution of Eq. (1.1)-(1.2) has asymptotic soliton dynamics. Their method does not use a linearizion argument as is usually done, but the conservation laws (quantum and classical) and the stability of the ground state Q. In [START_REF] Keraani | Semiclassical limit of a class of Schrödinger equations with potential[END_REF], we have used the same method combined with a WKB intuition to improve the results of [START_REF] Bronski | Soliton dynamics in a potential[END_REF]. The main objective of the present paper is to improve our result in [START_REF] Keraani | Semiclassical limit of a class of Schrödinger equations with potential[END_REF] and to give a sharper description of the asymptotic behavior of the family of solutions to Eq. (1.1)-(1.2). It will be clear to the reader that this work relies strongly to the arguments developed by Bronski and Jerrard in [START_REF] Bronski | Soliton dynamics in a potential[END_REF]. Before going further into details, we fix some notations.

Notation.

(i) For m ∈ N, C m (R N ) stands for the space of functions satisfying:

φ C m := |α| m ∂ α x φ L ∞ < ∞.
(ii) H s ε stands for the usual Sobolev space H s equipped with the rescaled norm:

f 2 H s ε := 1 ε N f 2 L 2 + 1 ε N -2s ∇ s f 2 L 2 .
Let us now give the precise assumptions of this paper.

Assumptions.

(A0) σ< 2 N : the nonlinearity is subcritical.

(A1) V (x) = V 1 (x) + V 2 (x) where V 1 and V 2 are real functions. (A2) V 1 (x) belongs to the C 3 class. (A3) ∂ α V 2 belongs to C 2 for every |α| = 2 and V 2 is bounded from below.
Example. An example of potential satisfying the assumptions below is V = 1 2 |x| 2 the harmonic potential.

If V ≡ 0 then the solution of (1.1)-(1.2) is explicitly given by

u ε (t, x) = Q x -(ξ 0 t + x 0 ) ε e i xξ 0 +θ(t) ε , where θ(t) = t(1 -|ξ 0 | 2 2
). Remark that t → (ξ 0 t + x 0 , ξ 0 ) is the solution (when V ≡ 0) of the classical Hamiltonian system

ẋ(t) = ξ(t), ξ(t) = -∇V x(t) ,( x, ξ) | t=0 = (x 0 , ξ 0 ). (1.3)
Observe that, in view of the properties of V , the system (1.3) is globally solvable. Furthermore, the classical Hamiltonian

H(t) = |ξ(t)| 2 2 + V x(t) (1.4)
is conserved. Keeping this in mind, we seek a solution of (1.1)-(1.2) in the form

u(t, x, ε) = ∞ j=0 ε j U j t ε , x -x(t) ε e i ϕ(t,x) ε . (1.5)
Substitution of (1.5) into Eq. (1.1) implies that U 0 = Q and the phase ϕ is solution to the eikonal equation

∂ t ϕ(t, x) + 1 2 ∇ϕ(t, x) 2 + V (x) -1 = 0, ϕ(0, x) = xξ 0 .
By Taylor expansion in x, one obtains

ϕ(t, x) = ϕ t, x(t) + ∇ϕ t, x(t) x -x(t) + O x -x(t) 2 .
It is not hard to check that ∇ x ϕ(t, x(t)) = ξ(t)andthat

Q x -x(t) ε e i ϕ(t,x) ε ∼ ε→0 Q x -x(t) ε e i xξ(t)+θ(t) ε in L 2 ε ,
where θ(t):= ϕ(t, x(t))ξ(t) • x(t). An easy computation yields

θ(t) = t 1 -H(0) + t 0 ∇V x(s) • x(s)ds
a quantity which is defined for all t ∈ R (since it depends only on x(t)). We expect that, up to an error term of size ε, u ε (t) is equal to Q( x-x(t) ε )e i xξ(t)+θ(t) ε . In the main theorem of this paper we give a partial justification of this predicted behavior. More precisely, we prove the following Theorem 1.1. Assume (A0)-(A3).Let{u ε } be the family of solutions to (1.1)-(1.2),then

u ε (t, x) = Q x -x(t) ε e i xξ(t)+θ ε (t) ε + O(ε), in H 1 ε as ε ↓ 0,
locally uniformly in t ∈ R,w h e r e(x(t), ξ(t)) is the solution of the classical Hamiltonian system (1.3) and θ ε is a t-dependent shift term.

Some remarks are in order.

Remark 1.2. The novelty of this result is that the concentration center is shown to be exactly the one predicted by the WKB method. The x-dependent part of the phase function xξ(t) ε is also obtained. Also, the rate of convergence is improved (in [START_REF] Keraani | Semiclassical limit of a class of Schrödinger equations with potential[END_REF] the rate was √ ε) and the potential is taken in larger class.

Remark 1.3. In general, the asymptotic behavior proved in Theorem 1.1 breaks down when the nonlinearity is critical. In fact, if we take x 0 = ξ 0 = 0andV = 1 2 |x| 2 then the solution of (1.1)-(1.2) is given by

1 ε N/2 u ε (t, x) = 1 (ε cos t) N/2 Q x ε cos t e i (1- |x| 2 2 )tant ε , t ∈ 0, π 2 .
In the critical case, the profile is the modulated ground state 1

(cos t) N/2 Q( • cos t ).
See [START_REF] Carles | Nonlinear Schrödinger equations with repulsive harmonic potential and applications[END_REF] for more details about the semiclassical nonlinear Schrödinger equations with harmonic potential.

Remark 1.4. A Wigner measure associated to a bounded family {ψ ε }i nL 2 is a weak limit, up to subsequence, of its Wigner transform

W ε ψ ε (x, ξ) = 1 (2π) N R N ψ ε x - εv 2 ψε x + εv 2 e iξv dv.
Every limit is a positive Radon measure (see [START_REF] Gérard | Mesures semi-classiques et ondes de Bloch[END_REF][START_REF] Gérard | Homogenization limits and Wigner transforms[END_REF][START_REF] Lions | Sur les mesures de Wigner[END_REF] for more details). A straightforward calculus show that, under the same notations and assumptions used in Theorem 1.1, we have

W ε 1 ε N/2 u ε (t) ⇀δ (x-x(t)) ⊗ Q ξ -ξ(t) 2 dξ (2π) N ,a s ε ↓ 0, locally uniformly in t ∈ R.
The main point is that the unknown shift term of Theorem 1.1 disappears (since Wigner measure neglects any x-independent phase) and the dynamics of t-dependent Wigner measure associated to the family ( 1 ε N/2 u ε (t)) is rigorously described.

The rest of this paper is structured as follows. In Section 2 we present some results about Eq. (1.1) and the ground state Q needed for the proofs of our results which are given in Section 3.

Preliminaries

In what follows C stands for a constant depending only on N , Q,( x 0 , ξ 0 )a n dV , but not on ε.I t will change from line to line. If necessary, by C(⋆) we denote positive constants depending also on the quantities appearing in parentheses.

It is well-known (see [START_REF] Cazenave | An Introduction to Nonlinear Schrödinger Equations[END_REF], for instance) that Eq. (1.1) is locally well posed in Σ = {f ∈ H 1 , xf ∈ L 2 }. Furthermore, the solutions of Eq. (1.1) have the following quantities conserved as t varies

N ε (t) = 1 ε N u ε (t, x) 2 dx
and

E ε (t) = 1 2ε N -2 ∇u ε 2 dx - 1 ε N (σ + 1) u ε 2σ+2 dx + 1 ε N V (x) u ε 2 dx. (2.1)
Notice that, since V is assumed to be bounded from below, these conservation laws give

1 2ε N -2 ∇u ε 2 dx - 1 ε N (σ + 1) u ε 2σ+2 dx C. (2.2)
From the Galiardo-Nirenberg inequalities, it ensures that

u ε L 2σ+2 C u ε 1-θ L 2 ∇u ε θ L 2 ,w h e r e θ = Nσ 2σ + 2 .
Combined with (2.2), this yields

1 ε N -2 ∇u ε 2 L 2 C 1 + 1 ε N -2 ∇u ε 2 L 2 Nσ/2 . If σ< 2 N , one obtains 1 ε N -2 ∇u ε 2 L 2 C, ∀t ∈ R.
(

The nonlinear focusing Schrödinger equation

i∂ t u + 1 2 ∆u + |u| 2σ u = 0 (2.4)
has a family of localized, finite energy solutions which result from a competition between the dispersion and the focusing nonlinearity. Such solutions can be found in the form

u(t, x) = e it Q(x). (2.5) 
Substitution of (2.5) into (2.4) yields

1 2 ∆Q -Q + |Q| 2σ Q = 0. (2.6)
This equation has an infinite number of H 1 solutions (see [START_REF] Cazenave | An Introduction to Nonlinear Schrödinger Equations[END_REF], for instance). Among them is a real, positive and radial solution Q which is called ground state. In [START_REF] Kwong | Uniqueness of positive solutions to ∆u -u + u p = 0inR N[END_REF] it has been proved that such solution is unique: the elliptic problem (2.6) has a unique real, positive and radial solution.

In the sequel, we use the fact that Q is the unique solution, up to translation and rotation, of the minimization problem:

E(Q) = inf E(v), v ∈ H 1 , v L 2 = Q L 2 ;
where

E(v):= 1 2 |∇v| 2 dx - 1 σ + 1 |v| 2σ+2 dx. (2.7)
Proposition 2.1. There exist two constants C>0 and h>0, such that

inf y∈R N ,θ∈S 1 φ -e iθ Q(•-y) 2 H 1 C E(φ) -E(Q) for all φ ∈ H 1 , such that φ L 2 = Q L 2 and E(φ) -E(Q) <h.
3. Proof of Theorem 1.1

Preparation of the proof

Our test functions will be taken in C 2 (R N ). We let C 2 * denote the dual space of C 2 , equipped with the dual norm. It is clear that C 2 * contains the space of bounded Radon measures. One can check the following Lemma 3.1. For every (ξ, η) ∈ R N × R N , we have

δ ξ -δ η C 2 * ≃ 2|ξ -η| 2 + |ξ -η| .
Proof. Set α := |η -ξ|.Ifα = 0 the result is trivial. Let us prove the result for α = 0. On one hand, for every θ ∈ [0, 1] and every f ∈ C 2 , one has

f (ξ) -f (η) = θ f (ξ) -f (η) + (1 -θ) f (ξ) -f (η) 2θ f L ∞ + (1 -θ)α ∇f L ∞ .
If we take θ = α 2+α we get that δ ξδ η C 2 * 2α 2+α . On the other hand, let f α and g α be the family of C 2 functions given by

f α (x) = α 2 sin π 2 (ξ -x)(ξ -η) α 2 , g α (x) = sin (ξ -x)(ξ -η) α ,
where α is as above. By a straightforward computation we obtain that there exits some absolute constant C>0suchthat

f α (ξ) -f α (η) = α 2 , f α C 2 α 2 + Cα + C, and 
g α (ξ) -g α (η) = sin(α), g α C 2 C.
Thus, we get

ℓ(α) δ ξ -δ η C 2 * ,
where ℓ(α) = max(

α 2
α 2 +Cα+C , sin(α) C ). Since sin(α) ≃ α for small α it follows that 2α 2 + α ℓ(α).

This completes the proof of Lemma 3.1.

In our proofs later we shall use the following trivial consequence of Lemma 3.1.

Lemma 3.2.

There exits two constants C 0 > 1 and

K 0 > 0 such that if δ ξ -δ η C 2 * K 0 then |ξ -η| C 0 δ ξ -δ η C 2 * .
In the sequel one denotes

m ε (t, x):= 1 ε N u ε (t, x) 2 , ξ ε (t, x):= 1 ε N -1 ℑ ūε ∇u ε , (3.1) 
the rescaled position and momentum densities. One denotes also

ξ ε (t) = 1 M ξ ε (t, x)dx, (3.2) 
where M =: Q 2 L 2 . From Cauchy-Schwartz inequality and (2.3), we get easily

ξ ε (t) ξ ε (t, x) dx C 1 , ∀t ∈ R, (3.3) 
for some constant C 1 depending only on N , Q,(x 0 , ξ 0 )andV , but not on ε.

For our future convenience we state the following identities:

∂m ε ∂t = -div x ξ ε , ∂ξ ε ∂t (t, x)dx = -∇V (x)m ε dx. (3.4)
We conclude this subsection by the following lemma which will be useful later.

Lemma 3.3. Assume V satisfying (A1)-(A3). Then, there exists C>0 such that

V (εx + y) Q(x) 2 dx -MV (y) Cε 2 , ∀y ∈ R N , where M = Q 2 L 2 .
Proof. Taylor expansion and the fact that

∂ α V ∈ L ∞ ,forevery|α| = 2, yield V (εx + y) -V (y) -εx∇V (y) Cε 2 |x| 2
uniformly in y ∈ R. The result follows from the fact that Q is radial (this cancels the term x∇V (y)|Q(x)| 2 dx) and the integrability1 of |x| 2 Q.

Proof of Theorem 1.1

Let us remark firstly that without loss of generality we may assume that V (x) 0. In fact, if u ε is a solution to (1.1)-( 1.2) with a potential V then e -i Lt ε u ε is a solution to the same equation with the potential V (x) + L instead of V .SinceV is assumed to be bounded from below we have to choose L such that V (x) + L 0.

The rest of the proof proceeds in two steps. The first and main one consists in proving the theorem on some interval [0, T 0 ]. In the second one we shall use an argument of iteration to extend the results of step 1 to [0, T ], for every T>0.

Step 1. Let T 0 > 0 be a certain positive number which will be explicited later. We set

v ε (t, x) = e -i (εx+x(t))ξ(t) ε u ε εx + x(t) .
It is clear that

v ε (t, •) 2 L 2 = 1 ε N u ε (t, •) 2 L 2 = Q 2 L 2 = M , ∀t ∈ R.
By a direct computation, and under the notations (2.1), (2.7) and (3.2), we get

E v ε (t) = 1 2 ∇v ε 2 dx - 1 σ + 1 |v ε | 2σ+2 dx = M |ξ(t)| 2 2 -ξ(t) ξ ε dx -V (x)m ε dx + E ε u ε (t) .
However, the conservation law (2.1) implies

E ε u ε (t) = E ε u ε (0) = M |ξ 0 | 2 2 + E(Q) + V (εx + x 0 )|Q| 2 dx.
In the last equality we have used the fact that Q is real (it's momentum is then null). From Lemma 3.3, it holds that

V (εx + x 0 )|Q| 2 dx = MV (x 0 ) + O ε 2 as ε ↓ 0.
Thus, we obtain

E v ε (t) -E(Q) = MH(0) + M |ξ(t)| 2 2 -ξ(t) ξ ε dx -V (x)m ε dx + O ε 2 .
By using conservation of the classical Hamiltonian (1.4) one can replace H(0) by H(t)toget

E v ε (t) -E(Q) = M ξ(t) 2 -ξ(t) ξ ε dx + MV x(t) -V (x)m ε dx + O ε 2 . (3.5)
At this stage we introduce

A := sup t∈[0,T 0 ] C 0 x(t) + K 0 ,
where C 0 and K 0 are as in Lemma 3.2. Remark that, since

C 0 > 1, then |x(t)| A for every t ∈ [0, T 0 ]. Let χ ∈C ∞ 0 (R N ), such that χ(x) = 1i f |x| <A, χ(x) = 0i f |x| > 2A.
Under notations (1.3) and (3.2), we define

η ε 1 (t) = xχ(x)m ε dx -M x(t), η ε 2 (t) = ∇V 2 (x)m ε dx -M ∇V 2 x(t) , η ε 3 (t) = ξ ε dx -M ξ(t), η ε 4 (t) = χ(x)V (x)m ε dx -MV x(t) , η ε (t) = η ε 1 (t) + η ε 2 (t) + η ε 3 (t) + η ε 4 (t) .
It is easy to check, via Lemma 3.3, that

η ε (0) = O ε 2 .
Let us come back to (3.5). Since V is nonnegative, it holds that

V (x)m ε dx χ(x)V (x)m ε dx, which implies 0 E v ε (t) -E(Q) 1 + ξ(t) η ε (t) + O ε 2 .
The first inequality follows from the variational characterization of Q (see Section 2 above). However, from (1.4) and fact that V is nonnegative, it follows that ξ(t) is uniformly bounded. Thus, we infer

0 E v ε (t) -E(Q) Cη ε (t) + O ε 2 . (3.6)
Let h 0 to be a small number to be chosen (it satisfies some smallness conditions with respect to some constants used in this analysis). One defines

T * ε := sup t ∈ 0, T 0 : η ε (s) h 0 , ∀s ∈ (0, t) .
Obviously, one can choose h 0 and ε 0 sufficiently small so that

0 E v ε -E(Q) Cη ε (t) + O ε 2 <h, ∀t ∈ 0, T * ε , ε ε 0 ,
where h is the constant in Proposition 2.1. Thus, there exist2 two families of functions y ε (t)and θε (t), such that

v ε (t) -e i θε (t) Q • + y ε (t) 2 H 1 C E v ε -E(Q) η ε (t) + O ε 2 , (3.7) 
for all t ∈ [0, T * ε [andε ε 0 . It is easily deduced from (3.7) and the bound of ξ(t)that

u ε (t) -e i •ξ(t)+θ ε (t) ε Q •-z ε (t) ε 2 H 1 ε Cη ε (t) + O ε 2 , (3.8) 
for t ∈ [0, T * ε [andε ε 0 , where we have denoted

z ε (t) = x(t) -εy ε , θ ε (t) = ε θε (t).
The rest of the first part of the proof consists in proving that η ε (t) has the size ε 2 (which allows to take T * ε = T 0 and y ε = 0). For that purpose we start by the following Lemma 3.4. For every t ∈ [0, T * ε [ and ε ε 0 ,

m ε (t)dx -Mδ z ε (t) C 2 * + ξ ε (t)dx -M ξ(t)δ z ε (t) C 2 * Cη ε (t) + O ε 2 . (3.9) 
Proof. First, a straightforward calculus yields

E v ε (t) = 1 2 ∇ v ε 2 dx + |ℑ(v ε ∇v ε )| 2 |v ε | 2 dx - 1 σ + 1 v ε 2σ+2 dx = E v ε + |ℑ(v ε ∇v ε )| 2 |v ε | 2 dx.
Combined with (3.6), this gives

0 E v ε -E(Q) + |ℑ(v ε ∇v ε )| 2 |v ε | 2 dx Cη ε (t) + O ε 2 .
From the variational characterization of Q it holds that E(|v ε |) -E(Q) 0, which implies

|ℑ(v ε ∇v ε )| 2 |v ε | 2 dx Cη ε (t) + O ε 2 .
In term of u ε this becomes

ξ ε √ m ε -ξ ε √ m ε 2 dx + M ξ(t) -ξ ε (t) 2 Cη ε (t) + O ε 2 , (3.10) 
where ξ ε is as in (3.2). Second, the estimate (3.8) yields

1 ε N u ε -Q •-z ε ε 2 L 2 Cη ε (t) + O ε 2 . (3.11) Let ψ ∈ C 2 (R N ), such that ψ C 2 1. Set γ ε (t) = ψ(x)m ε dx -Mψ z ε + ψ(x)ξ ε dx -M ξψ z ε .
Using (3.10) and (3.11) we shall prove that

γ ε (t) Cη ε (t) + O ε 2 .
The triangle inequality yields

ψ(x)ξ ε dx -M ξψ z ε ψ(x)ξ ε dx -M ξ ε ψ z ε + M ξ ε (t) -ξ(t) ψ(x)ξ ε dx -M ξ ε ψ z ε + Cη ε (t). (3.12) 
The triangle inequality again gives

ψ(x)ξ ε dx -M ξ ε ψ z ε ξ ε ψ(x)m ε dx -Mψ z ε + ψ(x) ξ ε -ξ ε m ε dx .
Combined with the fact that ξ ε is bounded3 and (ξ εξ ε m ε )dx = 0, this gives

γ ε (t) C ψ(x) m ε dx + ψ(x) ξ ε -ξ ε m ε dx + Cη ε (t),
where ψ(x):= ψ(x)ψ(z ε ). Using the trivial inequality ab a 2 + b 2 and (3.10), one obtains from the latter inequality

γ ε (t) C ψ(x) + ψ(x) 2 m ε dx + ξ ε √ m ε -ξ ε √ m ε 2 dx + Cη ε (t) C ψ(x) + ψ(x) 2 m ε dx + Cη ε (t) + O ε 2 . (3.13)
In view of the trivial inequality a 2 2b 2 + 2(ab) 2 and (3.11), we infer

ψ(x) + ψ(x) 2 m ε dx 2 ψ(x) + ψ(x) 2 Q •-z ε ε 2 dx ε N + Cη ε (t) + O ε 2 .
Since ψ(z ε ) = 0thenLemma3.3yields

ψ(x) + ψ(x) 2 Q •-z ε ε 2 dx ε N = O ε 2 , which implies ψ(x) + ψ(x) 2 m ε dx Cη ε (t) + O ε 2 . (3.14) 
Putting together (3.13) and (3.14) the desired result follows.

The next lemma shows that the family z ε (t) is close to x(t).

Lemma 3.5.

There exist h 0 > 0 and ε 0 > 0, such that if η ε h 0 and ε ε 0 then

x(t) -z ε (t) Cη ε (t) + O ε 2 ,
for every t ∈ [0, T * ε [.

Proof.

Recall that T 0 is not yet chosen. We shall choose it at this stage of the proof. If |z ε (t)| A,for every t ∈ [0, T * ε [, then the definition of η ε and the properties of χ imply

x(t) -z ε (t) = 1 M M x(t) -Mz ε (t) 1 M xχ(x)m ε dx -Mz ε (t) + 1 M η ε (t) C xχ C 2 m ε (t)dx -Mδ z ε (t) C 2 * + Cη ε (t) Cη ε (t) + O ε 2 .
In the last line we have used (3.9). Hence, it suffices to choose T 0 such that

|z ε (t)| A,f o re v e r y t T * ε T 0 . Let ψ ∈ C 2 (R N )andt 1 , t 2 ∈ [0, T * ε [, such that t 2 >t 1 . From (3.4) and (3.3) one obtains ψ(x) m ε (t 2 ) -m ε (t 1 ) dx = t 2 t 1 ψ(x) ∂m ε ∂t (t)dx dt = - t 2 t 1 ψ(x)divξ ε dx dt = t 2 t 1 ∇ψ(x)ξ ε dx dt ∇ψ ∞ t 2 t 1 ξ ε dx dt C 1 |t 2 -t 1 | ψ C 2 . (3.15) Thus, for every (t 1 , t 2 ) ∈ [0, T * ε [ 2 , one has m ε (t 2 )dx -m ε (t 1 )dx C 2 * C 1 |t 2 -t 1 | C 1 T 0 .
The triangle inequality, (3.9) and (3.15) yield

Mδ z ε (t 2 ) -Mδ z ε (t 1 ) C 2 * Cη ε (t 1 ) + Cη ε (t 2 ) + C 1 T 0 + O ε 2 2Ch 0 + C 1 T 0 + O ε 2 .
We choose T 0 then h 0 and ε 0 , such that 2h 0 C + C 1 T 0 + O(ε 2 0 ) <MK 0 (where K 0 is the constant in Lemma 3.2). With this choice we get

δ z ε (t 2 ) -δ z ε (t 1 ) C 2 * <K 0 , which implies, via Lemma 3.2, z ε (t 2 ) -z ε (t 1 ) <C 0 K 0 . Since z ε (0) = x 0 then z ε (t) C 0 K 0 + |x 0 | A, for every t ∈ [0, T * ε [, as required.
By using the last lemma, we get

δ x(t) -δ z ε (t) C 2 * x(t) -z ε (t) Cη ε (t) + ε 2 ,
for all t ∈ [0, T * ε [andε ε 0 . Combined with (3.9), this gives Firstly,

m ε dx -Mδ x(t) C 2 * + ξ ε (t)dx -M ξ(t)δ x(t) C 2 * Cη ε (t) + ε 2 , ( 3 
ηε 1 = xχ(x) ∂m ε ∂t (t, x)dx -M ξ(t) = -xχ(x)divξ ε (t, x)dx -M ξ(t) = ∇(xχ)ξ ε (t, x)dx -M ξ(t) = ∇(xχ)ξ ε (t, x)dx -M ξ(t)∇(xχ) x(t)
since ∇(xχ)(x(t)) = I d by the definition of χ. Thus, in view of (3.16), it ensues that

ηε 1 ∇(xχ) C 2 ξ ε (t)dx -M ξ(t)δ x(t) C 2 * Cη ε (t) + O ε 2 .
Secondly, by (3.4), we have

ηε 2 = ∇V 2 (x)divξ ε dx + M ξ(t)∇ 2 V 2 x(t) = ∇ 2 V 2 (x)ξ ε dx -M ξ(t)∇ 2 V 2 x(t) C ∇ 2 V 2 C 2 ξ ε (t)dx -M ξ(t)δ x(t) C 2 * Cη ε (t) + O ε 2 .
In the last line we have used the assumption (A3). Thirdly, in view of (1.3) and (3.4), we get

ηε 3 = -∇Vm ε (t)dx + M ∇V x(t) ∇V 1 m ε (t)dx -M ∇V 1 x(t) + η ε 2 ∇V 1 C 2 m ε (t)dx -Mδ x(t) C 2 * + η ε 2 Cη ε + O ε 2 .
In the last line we have used the assumption (A1) and Lemma 3.4.

Finally, since ∇(χV )(x(t)) = ∇V (x(t)) for every t ∈ [0, T 0 ], we obtain, via Lemma 3.4, that ηε 4 χ(x)V (x)divξ ε dx + M ∇V x(t) ξ(t) ∇(χV )(x)ξ ε dx -M ∇V 1 x(t) ξ(t)

∇(χV ) C 2 ξ ε (t)dx -M ξ(t)δ x(t) C 2 * Cη ε (t) + O ε 2 .
This achieves the proof of Lemma 3.6.

From Lemma 3.6 and the well-known Gronwall inequality, we get

η ε (t) C T 0 ε 2 , ∀t ∈ 0, T * ε .
By the definition of T * ε and the continuity of η ε it follows that T * ε = T 0 if ε is small enough. From what preceded one has 

u ε (t) -e i •ξ(t)+θ ε (t) ε Q •-x(t) + εy ε (t) ε 2 H 1 ε = O ε 2 , (3.17 
Q -Q •-y ε (t) 2 H 1 y ε 2 ∇Q 2 H 1 = O ε 2 ,
then, modulo an additional error term of size ε 2 ,wemaytakey ε = 0 in (3.17). This completes the proof of Theorem 1.1 on [0, T 0 ].

Step 2. According to the first step of this proof we get that, up to perturbation of size ε in H 1 ε and a t-dependent shift (which does not effect the calculus), the trace u ε I = u ε (T 0 , •)ofu ε on t = T 0 is given by Q( x-x(T 0 ) ε )e i xξ(T 0 ) ε . This allows us to repeat the same argument on [T 0 ,2T 0 ]. Since T 0 depends only upon the problem (V , M , N , ...) one can reach any T>0 after a finite number of iterations. This concludes the proof of Theorem 1.1.

  ) for t ∈ [0, T 0 ]where|εy ε (t)| = |x(t)z ε (t)| = O(ε 2 ). This means thaty ε = O(ε), as ε ↓ 0, uniformly in t ∈ [0, T 0 ]. Finally, since

  The conclusion of the first part of the proof has the following key tool.

	Lemma 3.6. Fo r a l l t<T * ε , we have
	η ε (t) O ε 2 +		0	t	Cη ε (s)ds.
	Proof. For every t<T * ε ,wehave
	η ε (t) η ε (0) +	0	t		ηε 1 + ηε 2 + ηε 3 + ηε 4 ds.

.16) for all t ∈ [0, T * ε [andε ε 0 .

Recall that there exists a constant α, such that Q e α|x| ∈ L ∞ .

The infimum in Proposition 2.1 is attained.

Remember (3.3).
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