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Abstract— It is known that a parallel manipulator with a 
singular configuration can gain one or more degrees of freedom 
and become uncontrollable. That is it might not reproduce a 
stable motion under a prescribed trajectory. However, it is 
proved experimentally that there is possible passing through 
the singular zones. This was simulated and shown on numerical 
examples and illustrated on several parallel structures. In this 
paper, we determine the optimal dynamic conditions 
generating a stable motion inside the singular zones. The 
obtained results show that the general condition for passing 
through a singularity can be defined as follows: the end-
effector of the parallel manipulator can pass through the 
singular positions without perturbation of motion if the wrench 
applied on the end-effector by the legs, and external efforts of 
the manipulator are orthogonal to the twist along the direction 
of the uncontrollable motion. This condition is obtained from 
the inverse dynamics and analytically demonstrated by the 
study of the Lagrangian of a general parallel manipulator. 
Numerical simulations are carried out using the software 
ADAMS and validated by experimental tests.    
 

Index Terms — parallel manipulators, singularity, 
controllability, dynamics. 

I. INTRODUCTION1 
arallel manipulators have experienced an increase in 
popularity in recent years due to their higher rate of 

acceleration, payload to weight ratio, stiffness and low 
effective inertia compared to those of  serial manipulators. 
However they have some drawbacks, like a small workspace 
and special singular zones in it. Thus, in the presence of 
singular positions, the workspace of the parallel 
manipulators, which is less than that of serial manipulators, 
becomes even smaller and limits their functional 
performance. The studies of singularity have had different 
stages of development. The previous work on this problem 
is reported in a great number of publications and can be 
classified by different criteria. We arrange them in three 
major groups, distinguished by study of the singularity from 
kinematic, kinetostatic and dynamic points of view.  

The physical interpretation of a singularity in kinematics 
refers to those configurations of parallel manipulators in 
which the number of degrees of freedom of the mechanical 
structure changes instantaneously, either the manipulator 
gains some additional, uncontrollable degrees of freedom or 
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loses some degrees of freedom. In this case the singularity 
analysis can be carried out on the base of the properties of 
the Jacobian matrices of the mechanical structure (i.e. when 
the Jacobian matrices relating the input speeds and the 
output speeds become rank deficient [1-4]), by using 
Grassmann geometry [5] or screw theory [6, 7].  

However, it was observed that close to a singular 
configuration, a parallel manipulator loses its stiffness and 
its quality of motion transmission, and as a result, its 
payload capability. Thus, there are not only positions but 
rather singularity zones which must be avoided; and an 
indicator of the quality of motion transmission close to the 
singular configurations of parallel manipulators must be 
defined. For this purpose, a kinetostatic approach has been 
applied for the evaluation of the quality of motion 
transmission.  

The quality of motion transmission of parallel 
manipulators was successfully studied in [8-11]. The quality 
of motion of manipulators with three degrees of freedom has 
been evaluated by means of a kinetostatic indicator, which is 
similar to the pressure angle [12]. In [13], the pressure angle 
was used as an indicator of the quality of motion 
transmission and the nature of the inaccessibility of singular 
zones by parallel manipulators are shown.  

 The study of singularities in parallel manipulators has 
revealed an interesting problem that concerns the path 
planning of parallel manipulators under the presence of 
singular positions, i.e. the motion feasibility in the 
neighborhood of singularities. In this case the dynamic 
conditions can be considered in the design process.     

One of the most evident solutions for the stable motion 
generation in the neighborhood of singularities is to use 
redundant sensors and actuators [14-17]. However, it is an 
expensive solution to the problem because of the additional 
actuators and the complicated control of the manipulator 
caused by actuation redundancy. Another approach concerns 
with motion planning to pass through singularity [18-25], 
i.e. a parallel manipulator may track a path through singular 
poses if its velocity and acceleration are properly 
constrained. This is a promising path for the solution of this 
problem. However only a few research papers on this 
approach have addressed the path planning for obtaining a 
good tracking performance but they have not adequately 
addressed the physical interpretation of dynamic aspects.   

In this paper, for the first time, the condition for passing 
through the singular positions is defined in general. It can be 
formulated as follows: “In the presence of a type 2 
singularity, the platform of the parallel manipulator can pass 
through the singular positions without perturbation of 
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motion if the wrench applied on the platform by the legs and 
external forces is orthogonal to the direction of 
uncontrollable motion”. In other terms, the condition is that 
the work of applied forces and moments on the platform 
along the uncontrollable motion is equal to zero. This 
condition is obtained from the inverse dynamics and 
analytically demonstrated by the study of the Lagrangian of 
a general parallel manipulator. The obtained results are 
illustrated by numerical simulations and validated by 
experimental tests. 

The paper is organized as follows. The next section 
presents theoretical aspects of the examined problem. Based 
on the Lagrangian formulation, the condition of force 
distribution is defined, that allows the passing of any parallel 
manipulator through the type 2 singular positions. In Section 
3, an application of the obtained theoretical results is 
examined for a parallel manipulator with 4 degrees of 
freedom. In section 4, the numerical simulations carried out 
using the software ADAMS are validated by experimental 
tests  

II. OPTIMAL DYNAMIC CONDITIONS FOR PASSING THROUGH 
TYPE 2 SINGULARITY 

Let us consider a parallel manipulator of m links, n 
degrees of freedom and driven by n actuators.  

The Lagrangian dynamic formulation for a parallel 
manipulator can be expressed as: 
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where,  
-  τ is the vector of the input efforts; 
-  L is the Lagrangian of the manipulator;  
- T

nqqq ],...,,[ 21=q  and T
nqqq ],...,,[ 21 &&&& =q  represent the 

vector of active joints variables and the active joints 
velocities, respectively; 

-  Tzyx ],,,,,[ θψφ=x  and Tzyx ],,,,,[ θψφ &&&&&&=v  are  
trajectory parameters and their derivatives, respectively; x, 
y, z represent the position of the controlled point and φ, ψ 
and θ  the rotation of the platform about three independent 
axes aφ, aψ and aθ); 

-  λ is the Lagrange multipliers vector, which is related to the 
wrench applied on the platform by: 

 pWA T−=λ  (2) 

where,  
-  A and B are two matrices relating the vectors v and q&  

according to qBAv &= . They can be found by the closure 
equations with respect to time. 

-  Wp is the wrench applied on the platform by the legs and 
external forces, which is defined as: 
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where fp is the force along the directions of the global frame 
and np is the torque about the axes aφ, aψ and aθ. 

The term Wp can be rewritten in the base frame using a 
transformation matrix D [26]: 
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p

R
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with p
R W0  is the expression of the wrench Wp in the base 

frame, and 
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where I3×3, 03×3 and R3×3 are respectively the identity matrix, 
the zero matrix and the transformation matrix between axes 
aφ, aψ and aθ and the base frame, which dimensions are 3×3. 

By substituting  (5) into (1), one can obtain: 
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where ( ) BAJ R 1
0

−
=  is the Jacobian matrix between twist t 

of the platform (expressed in the base frame) and q& , 

DAAR =0  is the expression of matrix A in the base frame. 
For any prescribed trajectory x(t), the values of vectors 

q&& , q& and q can be found using the inverse kinematics. Thus, 
taking into account that the manipulator is not in a type 1 
singularity [1], the terms Wb and p

R W0  can be computed. 
However, for a trajectory passing through a type 2 
singularity, the determinant of matrix J tends to infinity. 
Numerically, the values of the efforts applied by the 
actuators become infinite. In practice, the manipulator either 
is locked in such a position of the end-effector or it 
generates an uncontrolled motion. That is the end-effector of 
the manipulator produces a motion, different to the 
prescribed trajectory. 

It is known that a type 2 singularity appears when the 
determinant of matrix AR0  vanishes, in other words, when 
at least two of its columns are linearly dependant [26].  

Let us rewrite the matrix AR 0  as: 
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In this expression, vector Ri = [ai1, ai2, …, ai6] (i = 1, …, 
6) represents the direction of the wrench applied on the 
platform by the i-th actuator of the mechanism [26].  

If the columns of matrix AR0  are linearly dependant, we 
can write: 

 ∑
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0
j

ijj Rα , i = 1, …, 6 (8) 

where Rij is the j-th component of the vector Ri and αj are 
the coefficients, which in general can be functions of qp, p = 
1, …, n). Thus, it is possible to show that the vector ts = 
[α1, α2, …, α6]T is the reciprocal twist to the wrenches Ri. 
This vector represents the direction of the free motion of the 
platform in a type 2 singularity. 



 
 

 

Rewriting (8) in a vector form, we obtain: 

 ∑
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1j
jj 0Nα , Nj = [a1j, a2j, …, anj]T, j = 1, …, 6 (9), 

where Nj represents the j-th column of matrix AR0 . 
By substituting (9) into (2), we have 

 j
T
j W=λN , j = 1, …, 6 (10), 

where Wj is the j-th row of vector p
R W0 . 

Then, from (9) and (10) the following conditions are 
derived: 
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The right term of eq.(11) corresponds to the scalar product 
of vectors ts and p

R W0 .  
Thus, in the presence of a type 2 singularity, it is possible 

to satisfy conditions (11) if the wrench applied on the 
platform by the legs and external efforts are orthogonal 
to the direction of the uncontrollable motion (singular 
motion). Otherwise, the dynamic model is not consistent. 
Obviously, in the presence of a type 2 singularity, the 
displacement of the end-effector of the manipulator has to be 
planned to satisfy (11). In the case of an inconsistent 
trajectory close to or through the singular positions, the 
required input efforts gain importance and a feasible motion 
is unattainable.       

III. ILLUSTRATIVE EXAMPLE  
In this section, the above discussed theory is illustrated by 

the example of a spatial parallel manipulator, PAMINSA, 
developed in the I.N.S.A. of Rennes, France [27]. Then, the 
results of numerical simulations carried out by the software 
ADAMS are tested on  the built prototype.    

The particularity of the PAMINSA, is in decoupling of 
the displacements of the platform in the horizontal plane 
from the translations along the vertical axis. The advantages 
of such an approach was discussed in [28, 29] and the 
singularity analysis is discussed in [30, 31]. 

 

The previous studies have revealed that there are type 2 
singularities in the workspace of the symmetrical 
architecture of PAMINSA. In this section, we study the 
possibility of passing through the singular positions by this 
manipulator.  

Fig. 1 shows the PAMINSA with four degrees of 
freedom. Each leg of the manipulator is realized by a 
pantograph mechanism (Fig. 2) with two input points 3i and 
8i, and an output point 5i (i = 1, 2, 3). Each input point 8i is 
connected to the rotating drive Mi by means of a prismatic 
guide mounted on a rotating link. This kind of architecture 
allows for generation of motion in the horizontal plane by 
the use of rotating actuators M1, M2, M3 , and the vertical 
translations by means of the linear actuator Mv. Thus, the 
displacements (x, y, φ) of the platform in the horizontal 
plane xOy, that are translations along the x and y-axes and 
rotations about the z-axis, are independent of vertical 

 

                                                                                           
 

Fig. 1. PAMINSA: Parallel Manipulator of the I.N.S.A. [27]. 
 

 
Fig. 2. Kinematic chain of each leg. 

 
translations z. This implies that the kinematic models 
controlling the displacement of the manipulator can be 
divided into two parts: 
- a model for the displacements in the horizontal plane, 

which is equivalent to a 3-RPR manipulator; 
- a model for the translations along the vertical axis 

equivalent to the model for the vertical translations of a 
pantograph linkage. 
The type 2 singularities of such a manipulator appear when 

[30, 31]: 
a)  the three legs of the manipulators are parallel, which is 

impossible for the developed PAMINSA manipulator. 
b)  the orientation of the platform is equal to 

)/(cos 1
bpl RR− , where Rpl and Rb correspond respectively to 

the lengths PCi and OM’i (Fig. 3). In this case, the 
manipulator gains one infinitesimal rotation around one 
vertical axis. 

c) the platform is located in a circle defined by 
  φcos22222

bplbpl RRRRyx −+=+                          (15) 
In this case, the manipulator gains one finite rotation 

about one vertical axis (Cardanic self motion) [32]. 
For cases (b) and (c), the direction of the unconstrained 

motion can be represented by the twist ts = [0, 0, 1, xW, yW, 
0]T, where xW and yW correspond to the planar coordinates of 
the intersection point of the wrenches Ri applied on the 
platform by three legs of the manipulator (Fig. 3). 



 
 

 

 
 

Fig. 3. Type 2 singular configuration of examined manipulator  
          (horizontal projection of the examined structure). 

 
Let us now study the inverse dynamics of the PAMINSA. 

The potential energy V can be written as: 
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where Vpl is the potential energy of the platform and 
ilegV is 

the potential energy of the leg i (i = 1, 2, 3). 
By further considering that the coordinates of the all 

points of the pantograph linkages can be found as a linear 
combination of the coordinates of points 3i, 5i and 9i, one 
can express the terms Vpl and 

ilegV  as follows: 

 zgmV plpl =  (17) 

 439251 vvvivivleg CqCzCzCV
i

+++=  (18) 
Here, Cvj (j = 1, 2, 3) are constant terms whose dimension 

is equivalent to a mass multiplied by the gravitational 
acceleration g, mpl is the mass of the platform with a 
payload, and z5i and z9i are the altitude of joints 5i and 9i. 
The expressions of the coordinates of joints 5i and 9i, as well 
as the expressions for Cvj are complex, and their inclusion 
into this paper under the limited allowed length is not 
possible. An interested reader is referred to [33].    

We consider that the links are perfect tubes. Therefore the 
tensor of inertia Ij of the link Bji at the center of masses will 
be written as: 
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Thus, the kinetic energy T of the manipulator can be 
represented as: 
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where Tpl is the kinetic energy of the platform, Tlegi is the 
kinetic energy of the leg i, as 
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where Ipl is the axial moment of inertia of the platform about 
the vertical axis. 
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irotT  is the kinetic energy of the rotating links.  
Note that there are two types of rotations (see, Fig. 1): 

- rotation due to the actuators Mi (i = 1, 2, 3) (angle qi), 
which is about the vertical axis, 

- rotations due to the displacement of the pantograph in 
the linkage plane (angles ζi and εi denoted as the angles 
between the direction of the passive slider and the links 
B4i and B3i respectively). 

Thus, the kinetic energy of the rotating links can be 
written as: 
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The expressions for Ccj (j = 1, …, 13) are given in [33]. 
The input torques can be obtained from (6): 

 pb WJW T
PAM+=τ  (25), 

where the terms JPAM, Wb and Wp are presented in [30]. 
The following parameters of manipulator’s links are 

specified for the trajectory generation:  
- the radii of the circles circumscribed to the base and 

platform triangles are respectively equal to Rb = 0.35 m 
and Rpl = 0.1 m; 

- magnification factor of the pantograph: k = 3; 
- gravitational acceleration g is equal to 9.81 m/s2. 
- lengths of the links of the pantograph linkages: LB1 = 

0.308 m, LB2 = 0.442 m, LB3 = LB8 = 0.42 m, LB4 =k LB7 = 
0.63 m, LB5 = 0.0275 m, LB10 = 0.3635 m; 

- masses of the joints of the pantograph linkages: m2 = 
0.214 kg, m3 = 0.338 kg, m4 = 0.262 kg, m5 = 0.233 kg, 
m7 = 3.08 kg, m8 = 0.305 kg, m9 = 0.259 kg; 

- mass of the platform: mpl  = 2.301 kg; 
- masses of the links of the pantograph linkages: mB1 

=1.221 kg, mB2 = 0.921 kg, mB3 = 0.406 kg, mB4 = 0.672 
kg, mB7 = 0.107 kg, mB8 = 0.403 kg, mB10 = 0.436 kg; 

- term of the inertia matrix of the platform: 
2kg/m015.0=plI . 

- terms of the inertia matrices of the links of the 
pantograph linkages:  

 2)3( kg/m0038.0=B
XXI , 2)3( kg/m02.0=B
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2)4( kg/m0012.0=B
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YYI , 
2)8( kg/m0024.0=B

XXI , 2)8( kg/m02.0=B
YYI , 

2
2 kg/m003.0=BI , 2

10 kg/m02.0=BI  . 

The point P is desired to make a motion x(t) along a 
straight line between points P0 (x0, y0) = P0 (0, 0) and point 
Pf (xf, yf) = Pf (0.3, 0) in tf = 2.4 s. However, the manipulator 
will pass through a type 2 singular position at point Ps  (xs, 
ys) = (0.25, 0) (Fig. 4). 



 
 

 

 
 

Fig. 4. Displacement of the PAMINSA along the prescribed straight line 
divided into two parts. 

 
In order to carry out a comparative analysis for the 

optimized and not optimized dynamic conditions for passing 
through type 2 singularity, it has been considered two cases. 
The first is such a movement on the given trajectory, which 
is calculated from condition (11), and the second is an 
arbitrary motion. 

At first let us consider an optimized trajectory which 
allows satisfying the condition (11), i.e. the force Wp should 
be perpendicular to the to the twist ts [0, 0, 1, 0, 0.1, 0]T 
defining the direction of the unconstrained motion. 
Developing the expression (11) for the PAMINSA at point 
Ps, we obtain: 
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Now considering that the end-effector of the manipulator 
moves along a straight line directed along the x-axis, we can 
note that )( sty&  = )( stz&  = )( sty&&  = )( stz&&  = )( stφ&  = 

0)( =stφ&& . Thus, the relationships, which satisfy the passing 
through of the singular positions, taking into account that the 
velocity and the acceleration of the platform in the initial 
and final positions are equal to zero, can be expressed by the 
following boundary conditions: 

 x(t0) = x0,  (27) 
 x(tf) = xf,  (28) 
 x(ts = 2s) = xs,  (29) 
 0)( 0 =tx& , (30) 
 0)( =ftx& , (31) 

 0)( 0 =tx&& , (32) 
 05.0)( == ss xtx && m/s,  (34) 
 1.32583)( −== ss xtx &&&&  m/s². (35) 
In this case, a motion for passing of the platform through 

the singular position can be found from the following eighth 
order polynomial form: 
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(a) actuator M1. (b) actuator M2.

(c) actuator M3. (d) actuator Mv.
 

Fig. 5. Input efforts of the PAMINSA in the case of the sixth order 
polynomial trajectory planning, obtained by the ADAMS software. 

 

(a) actuator M1. (b) actuator M2.

(c) actuator M3. (d) actuator Mv.
 

Fig. 6. Input efforts of the PAMINSA in the case of the fifth order 
polynomial trajectory planning obtained by the software ADAMS. 

 
However, a trajectory obtained by (36) cannot be 
reproduced by the prototype because of the limited 
capability of drivers’ deceleration. Therefore, the trajectory 
was divided into two parts, i.e., the first sixth order 
polynomial trajectory assumes the motion from an initial to 
the singular position (P0Ps) and the second sixth order 
polynomial trajectory- from singular to the final position 
(PsPf). The core of the problem is same but it allows for 
generating motions for the prototype. 

Thus, the trajectory planning equations can be written as: 
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with b3 = -3.3033, b4 = 5.10456, b5 = -2.45207, b6 =0.37844,  
c1 = 1, c2 = -13.25829, c4 = 2365.3672, c5 = -11953.07236 
and c6 = 16158.76157. 

Thus, the motion obtained from sixth order polynomial 
equations allows for passing through the singularity without 
perturbation, and the input efforts take on finite values (Fig. 
5).  

It can be seen that by the end of the motion there is an 
increase of the input efforts, caused by a quick deceleration 
to stop the manipulator before it reaches the workspace 
boundary.  

It will be shown further that in the case of the motion 
generated by any trajectory planning without meeting the 
adopted boundary conditions (27) – (35), the manipulator 
platform is not able to pass through the singular position. 
For demonstration purpose, the generation of motion 
between initial and final positions is carried out by a fifth 
order polynomial trajectory planning. 

In this case, for y(t) = 0m, z(t) = -0.45m and φ(t) = 0°, the 
fifth order polynomial trajectory planning is the 
following:
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The obtained input efforts are represented in Fig. 6.  
It can be noted that for arbitrary trajectory while the 

manipulator passes through the singular configuration (for ts 
≈ 1.8 s), the value of the input torques tend to infinity. 

IV. EXPERIMENTAL VALIDATION OF OBTAINED RESULTS 
For validating the results of the previous section, we have 

carried out experimental tests on the prototype of the 
PAMINSA with 4 DOF developed in the I.N.S.A. of Rennes 
(Fig. 7). 

We have applied an arbitrary fifth order control law and   
observed the reproduction of motion during the 
displacement of the platform. The obtained trajectory is 
shown in Fig. 8 (dotted line). 

The different positions are classified by time. For 
positions from (a) to (d), the platform moves towards the 
singular zone but yet it is outside of it. In this case, the 
reproduction of the real trajectory is similar to the desirable. 
At position (e), the manipulator enters the singular zone, 
which is close to the circle of the theoretical singular loci, 
and starts an uncontrollable motion. Thus, since the motion 
generation is carried out by non optimized dynamic 
parameters, the platform moves along an unplanned 
trajectory (see positions (e) - (h) in Fig. 8). 

Next, we have implemented the sixth order control laws 
as it was shown in the previous section and observed the 
behavior of the platform during the displacement. The 
different positions are classified by time. During all these 
displacements, the manipulator retains its orientation and 
passes through the singular configuration without any 
perturbation. 

 
 

Fig. 7. The built prototype of the PAMINSA with 4 DOF, which was used 
for the experimental validation of obtained results. 

 

  

  

  

  
 
Fig. 8. Trajectory reproduction on the PAMINSA during the displacement 

of the platform with the fifth order polynomial law (view from below). 

V. CONCLUSION 
The singularities limit the functional performances of 

parallel manipulators. The best known solutions to increase 
the size of the workspace of parallel mechanisms, based on 
the actuation redundancy, are expensive and cannot be 
widely adopted. Therefore, other means for passing through 
singular configurations need to be developed. 



 
 

 

In this paper we have found the optimal dynamic 
conditions, for making the pass through the type 2 singular 
configurations possible. The general definition of the 
condition for passing through the singular position is 
formulated as follows: in the presence of type 2 singular 
configuration, the platform of a parallel manipulator can 
pass through the singular positions without perturbation of 
motion if the wrench applied on the platform by the legs and 
external efforts are orthogonal to the direction of the 
uncontrollable motion, or in other words, if the work of 
applied forces and moments on the platform along the 
uncontrollable motion is equal to zero. This condition has 
been verified by numerical simulations carried out with the 
software ADAMS and validated by experimental tests on the 
prototype of four degrees of freedom parallel manipulator 
PAMINSA. 

We point out that for the case of non controllable external 
forces applied on the platform the proposed technique 
cannot be used. Therefore, the most prominent field of the 
industrial application is a “fast pick and place” 
manipulation, when the generation of motion is determined 
by input, gravitational and inertia forces.  
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