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Abstract This paper deals with the problem of representing the rotational error of 
spatial robots with three orientational degrees of freedom (DOF). Typically, 
the errors on each of three Euler angles defining the orientation of an end-
effector are analysed separately. However, this is wrong since an accuracy 
measure should depend only on the “distance” between the nominal pose and 
the actual one, and not on the choice of reference frame in which these are 
represented. Several bi-invariant metrics for rotational error exist but are 
single-parameter and, by definition, disregard the shape of the robot end-
effector. Yet, robot end-effectors are typically axisymmetric. Therefore, we 
propose a two-parameter measure of rotational errors that is better suited 
for such robot end-effectors. 
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1.  Introduction  
Knowing the exact positioning accuracy is an important challenge 

when designing a robot. Such an analysis is useful for optimization pro-
cedures occurring in the design stage of a new robot. Many tools have 
been developed in order to promptly estimate the accuracy of a robot. The 
most common performance indices used to indirectly optimize the accu-
racy of a robot are the dexterity index (Gosselin, 1992), the condition 
numbers, and the global conditioning index (Gosselin and Angeles, 1991).  

Another way to estimate the accuracy of a robot is to use the first or-
der approximation of the direct kinematic model that maps the input 
error vector δq to the output error vector δp through the linear relation 
δp = J δq, where J is the Jacobian matrix of the robot. However, such an 
approach will only give a rough estimate of the maximal errors occurring 
in the workspace. This estimate is relevant for infinitesimal errors and 
far from singularities, but on real robots, errors are not always small. 

Furthermore, all of the above tools essentially take into account only 
errors in the inputs. Yet, errors are due to various factors such as manu-
facturing tolerances, backlash, compliance, sensor errors and control er-



rors. Besides, once a prototype is built, it is important to be able to sim-
ply measure and quantify these errors, which is obviously not done using 
the Jacobian matrix of the robot. 

Clearly, from the industrial point of view, the best accuracy measure 
would be the maximum translational and maximum rotational errors 
over a given portion of the workspace (Briot and Bonev, 2008; Merlet, 
2006a) or at a given nominal configuration. However, while representing 
the accuracy for planar robots is simple to realize (Briot and Bonev, 
2008), this problem is much more complicated when the number of orien-
tational DOFs increases. 

Several papers deal with the accuracy of robots with several orienta-
tional DOFs (Jelenkovic and Budin, 2002; Kim and Choi, 2000; Merlet 
and Daney, 2007; Ropponen and Arai, 1995; Wang and Ehmann, 2002; 
Zhao et al., 2002). In all of these works, the authors analyse the rota-
tional accuracy of robots by considering the errors on three Euler angles. 
However, such an analysis is wrong because these errors depend on the 
choice of reference frame in which the nominal pose and the actual one 
are expressed. Yet, obviously, a rotational error should depend only on 
the “distance” between the nominal orientation and the actual one. 

For the design of mechanisms, defining metrics for measuring the dis-
tance between one pose (position and orientation) and another is of ut-
most importance and is still an area of ongoing research (Larochelle et 
al., 2007). For representing the accuracy of a robot in industry, however, 
it is meaningless to combine translational and rotational errors in a sin-
gle measure. Fortunately, for the specific case of body orientations, there 
exists a family of bi-invariant metrics (Park, 1995; Gupta, 1997). Cer-
tainly, the most intuitive one is the rotation angle about a unique axis 
that brings one reference frame to coincide with another. 

Single-parameter invariant measures of rotational error are relevant 
only for asymmetric robot end-effectors. However, robot end-effectors 
usually have axial symmetry (in most industrial robots, which are sold 
without an end-effector, the flange on which an end-effector is mounted 
is axisymmetric). That is why, in this paper, we propose a pair of rota-
tional error measures that is better suited for such end-effectors. These 
measures are not invariant because their raison d’être is to depend on an 
end-effector reference frame that takes into account the axial symmetry 
of the end-effector. However, our measures depend only on the orienta-
tion of the actual reference frame with respect to the nominal one. 

The remainder of this paper is organized as follows. Section 2 deals 
with the definition of the proposed measure for orientational accuracy. In 
Section 3, the new error measure is illustrated on a well-known spherical 
robot called the Agile Eye. Conclusions are given in the last section.  



2.  Representation of Rotational Errors 
To describe the orientation of a body, three consecutive rotations about 

some of the three axes of the base reference frame are generally used. 
The angles of these rotations are referred to as Euler angles.  

As previously mentioned, the offsets between the corresponding Euler 
angles associated with two reference frames varies significantly with the 
choice of base reference frame that is used to define these Euler angels. 
Therefore, such an offset cannot be used for measuring rotational errors. 
As a matter of fact, the same is true when considering the individual x, y 
and z translational errors, though these errors are bounded by the dis-
tance between the origins of the first two reference frames. This distance 
is, in fact, used in industry to represent translational errors, which is the 
only accuracy measure currently used (ISO 9283 standard). 

Thus, it would be great if a similar invariant metric for the “distance” 
between two orientations existed. Such metrics exist and the best known 
one is the rotation angle about a unique axis that brings one reference 
frame to coincide with another. This angle is not only physically mean-
ingful but also quite easy to compute from the trace of the rotation ma-
trix that represents the orientation of one reference frame with respect to 
the other. 

The only problem with such single-parameter invariant metrics is that 
robot end-effectors are typically axisymmetric. In some cases, when axi-
symmetric tools are used, the rotation about the tool axis is even irrele-
vant. Therefore, if industry ever becomes interested in rotational errors, 
it will more likely look for a two-parameter metric—one measure that re-
flects the deviation of the axis of symmetry and, for example, another 
that reflects the rotation about this axis of symmetry. 

Consider two different orientations of an axisymmetric robot end-
effector: a nominal one denoted by the index 0, and another one denoted 
by the index 1. Let d0 and d1 be two unit vectors parallel to the axis of 
symmetry of the robot end-effector in each of the two orientations 
(Fig. 1). The first meaningful parameter characterizing the change of ori-
entations is clearly the angle α between vectors d0 and d1. Its expression 
is trivial: 

 ( )1
0 1cos Tα −= d d . (1) 

Now, consider that we render the axes of symmetry of both end-
effectors of Fig. 1 coincident by rotating end-effector 1 about an axis v0 
normal to d0 and d1. The smallest angle to which end-effector 1 needs to 
be rotated about the d0-axis in order to coincide with end-effector 0 will 
be denoted by β and will be our second error measure. 



 

Figure 1. Measuring the rotation errors of a robot end-effector. 
 
Of course, while the choice for the first measure is pretty obvious and 

unquestionable, there might be other alternatives for the second one. 
However, we believe that our choice is the most logical and intuitive one. 

It can be shown that angles α and β are actually the tilt and torsion 
angles (to a sign difference) of the Tilt-and-Torsion (T&T) three-angle 
orientation parameterization introduced in (Bonev, 2002). Therefore, an-
gle β can be found using the following equation: 
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where ri,j (i,j = 1,2,3) are the elements of the rotation matrix that repre-
sents the orientation of the reference frame associated with the real pose 
with respect to the reference frame associated with the nominal pose. 
Note, that β does not depend on the choice of the x and y axes. 

Obviously, 0 ≤α < 90° in the context of accuracy analysis. In this range, 
angles α and β are the direct equivalent of the translational and rota-
tional errors, respectively, associated with planar 3-DOF motion. 

3.  Example: the Agile Eye 
In this section, for simplicity, we address the problem of computing the 

rotational accuracy of a parallel robot in the presence of active-joint er-
rors only. Specifically, we will analyse the rotational accuracy of the well 
known spherical parallel robot called the Agile Eye (Fig. 2a). Its kinemat-
ics, singularities (Fig. 2b), workspace, and working and assembly modes 
have been studied in detail in several papers (Bonev and Gosselin, 2005; 
Bonev and Gosselin, 2006; Bonev et al., 2006). Therefore, we will recall 
only one important fact before focusing on the accuracy analysis. 

The Agile Eye is a very particular parallel robot with its Type 1 (serial) 
and Type 2 (parallel) singularities coinciding and degenerating to six 
curves as shown in Fig. 2b using a T&T angles coordinate system. Each 
curve corresponds to finite self motions of both the platform and the legs. 



  

(a) (b) 

Figure 2. (a) A CAD model of the Agile Eye at its reference configuration (zero ac-
tive-joint variables and φ = 0°, θ = 0° and σ = 60° T&T angles) and (b) its singu-
larity loci. 

3.1  Accuracy Analysis  
In order to compute the rotational errors of the Agile Eye, we use T&T 

angles (φ, θ, σ) and the following discretization method. For a fixed tor-
sion angle σ, we discretize the orientation space (φ, θ). At a given nominal 
orientation (φ0, θ0, σ0) of the mobile platform, we compute the active-joint 
variables (q10, q20, q30) for one given working mode using the inverse 
kinematics. Clearly, we should stick to the same working mode through-
out the whole workspace. Then, assuming that active-joint variable qi 
can vary from its nominal value qi0 by an error ε  (in our study, 
ε = ±0.01°), we discretize the active-joint interval from qi0 – ε to qi0 + ε 
and for each set of active-joint variables solve the direct kinematics. For 
the Agile Eye, the direct kinematics can be found analytically. As pre-
sented in (Bonev et al., 2006), there are four non-trivial solutions which 
define the assembly modes of the robot. Therefore, the problem is to 
know which of the obtained solutions is the desired assembly mode corre-
sponding to the nominal configuration. Fortunately, this problem has al-
ready been solved in (Bonev et al., 2006). 

Of course, the direct kinematics of parallel robots can rarely be solved 
analytically. Therefore, in such cases, a numerical method should be 
used, such as the Newton-Raphson algorithm. This method is much more 
time-consuming, but, when sufficiently far from singularities, it con-
verges to the appropriate assembly mode of the robot. 



Thus, for a given nominal configuration, it is possible to compute all 
possible rotational errors α and β, and to retain their maxima. These 
maximal errors are presented in Fig. 3 using T&T polar plots for several 
constant torsions. We can think of these polar plots as the equivalent of 
constant-orientation polar plots for planar robots. 

Analysing Fig. 3, it appears that our rotational errors grow considera-
bly near singularities (represented by crosses and dotted lines in Fig. 3), 
which is perfectly normal. An unexpected result is, however, the fact 
that, when computing the rotational errors, most of the time, the maxi-
mal output errors occur when the active-joint variables are inside their 
error intervals, whereas it has been demonstrated in (Briot and Bonev, 
2008) that for planar parallel robots, the maximal output errors can only 
occur when at least two of the active-joint variables are at the extremes 
of their error intervals. This observation suggests that it should be im-
possible to find a manageable analytic expression for the output (rota-
tional) errors of even a simple spherical parallel robot such as the Agile 
Eye. A simple discretization method such as ours will be sufficient but 
more time-consuming and less accurate. However, more efficient ap-
proaches could be used, such as interval analysis (Merlet 2006a). 

It should also be noted that the curves are periodic, but not symmetric, 
which is due to the fact that the output errors depend on the robot’s 
working mode.  

4.  Conclusions  
In this paper, we addressed the problem of representing rotational er-

rors of spatial robots. A review of previous works has shown that, most 
frequently, authors analyse the errors on each Euler angle defining the 
orientation of a robot end-effector. However, this is generally wrong since 
an accuracy measure should depend only on the “distance” between the 
nominal pose and the actual one, and not on the choice of reference frame 
in which these are expressed. In contrast, several bi-invariant metrics for 
rotational error exist. However, they are single-parameter and, by defini-
tion, disregard the shape of the robot end-effector. Yet, most robot end-
effectors are axisymmetric. Therefore, the choice of end-effector reference 
frame is not arbitrary and users are likely to be interested in more than 
one rotational error measure. To fill this gap, we propose a pair of meas-
ures of rotational errors that is better suited for such robot end-effectors. 

In order to present the efficiency of our approach, we applied it to 
compute the output errors of a well-known spherical parallel robot called 
the Agile Eye. It was shown that its accuracy depends on the working 
mode and is poor near singularities.  



  
(a) Rotational error α, σ =0° (b) Rotational error β, σ =0° 

  
(c) Rotational error α, σ =60° (d) Rotational error β, σ =60° 

  
(e) Rotational error α, σ =120° (f) Rotational error β, σ =120° 

Figure 3. Rotational errors of the Agile Eye for σ ∈ [0°, 120°]. 
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