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Abstract—This paper presents the singularity analysis of four 
3-DOF symmetric zero-torsion parallel mechanisms. These 
mechanisms are composed of three identical legs ending with a 
spherical joint that is constrained to move in one of three 
equally spaced plane intersecting at one line. The computation 
of the singularity loci is based on the degeneracy of the system 
of screws applied on the platform by the legs. The whole study 
is based on the use of a special orientation representation, 
previously introduced under the name of Tilt-and-Torsion 
angles. This representation is briefly introduced. Then the 
interdependence between the Cartesian coordinates of the 
general class of parallel mechanisms is derived. Finally, the 
singularity loci are derived and the size of the workspace taking 
into account all singular configurations is shown.  

I. INTRODUCTION 

OR the last few decades, parallel mechanisms are 
increasingly being used and studied. Even if most works 

on parallel mechanisms were focused on 6-degrees-of-
freedom (DOFs) mechanisms (mainly hexapods), recently, 
more interest has been paid to mechanisms with less than 6 
DOFs. The most popular of these mechanisms belong 
undoubtedly to the group of 3-DOF symmetric parallel 
mechanisms whose mobile platform is attached to three 
identical legs via spherical joints (Fig. 1). The legs constrain 
the centers of the spherical joints to move in three equally 
spaced vertical planes intersecting at a common line. These 
mechanisms will be referred to as 3-[PP]S ones1. 

There is abundant literature on this group of mechanisms, 
studying their kinematics, singularity analysis and design. 
For example, a 3-PPS parallel mechanism was proposed in 
[1] (Fig. 1a), the 3-RPS architecture (Fig. 1b) was analyzed 
in [2-6], two different 3-PRS designs were studied in [7] 
(Fig. 1c) and [8] (Fig. 1d), the latter design being best known 
through the Z3 Head by DS Technologie [9], and finally a 3-
RRS robot was investigated in [10]. Of all these publications, 
only [3] seems to identify the exact nature of the 
interdependence of the orientation parameters and its 
geometric significance. To fill this important gap, the second 
author studied the kinematic geometry of 3-[PP]S parallel 
mechanisms and showed clearly their motion pattern [11]. 

 
Manuscript received January 25, 2008. This work was supported by 

FQRNT and the French Ministère des Affaires étrangères et européennes. 
Sébastien Briot and I.A. Bonev are with the Department of Automated 

Manufacturing Engineering of the École de technologie supérieure (ÉTS), 
Montreal, QC, Canada H3C 1K3 (phone: 514-396-8403; fax: 514-396-
8595; e-mails: sebastien.briot.1@ens.etsmtl.ca, ilian.bonev@etsmtl.ca).  

1 It is common to denote parallel mechanisms by using the symbols P, R, 
and S, which stand respectively for prismatic, revolute and spherical joint. 
When a joint is actuated, its symbol is underlined. In this paper, we also use 
[PP]  to denote any combination of joints that allows 2-DOF planar motion. 

 

(a) a 3-PPS parallel mechanism (b) a 3-RPS parallel mechanism 

  

(c) a 3-PRS parallel mechanism (d) a 3-PRS parallel mechanism 

Fig. 1.  Examples of 3-DOF 3-[PP]S parallel mechanisms 

 
In this paper, we use a special orientation representation to 

obtain simplified relations for the singularity analysis of 
these mechanisms. This orientation representation was 
recently applied to the derivation of the closed-form direct 
kinematics of the mechanisms shown in Fig. 1(a-c)[12]. It 
was shown that this representation considerably simplify the 
expressions of the direct kinematics of such mechanisms. 
Thus, in the next section, we describe briefly this orientation 
representation and use it in Section 3 to derive the simple 
interdependence between the orientation angles and the 
position of the platform of a general 3-[PP]S parallel 
mechanism. Then, in Section 4, we present the expression of 
the singularity loci of four 3-[PP]S parallel mechanisms, 
namely the 3-PPS design (Fig. 1a), the general 3-RPS design 
(Fig. 1b), and two common 3-PRS designs (Fig. 1c and 1d). 
We also analyze the size of the singularity-free workspace of 
these structures, as a function of the design parameters, 
taking into account all singular configurations. Finally, 
conclusions are drawn in Section 5. 
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Fig. 2.  The successive rotations of the T&T angles: (a) tilt, (b) torsion 

II.  ORIENTATION REPRESENTATION 

A novel three-angle orientation representation, later called 
the Tilt-and-Torsion (T&T) angles, was proposed in [13] in 
1999, in conjunction with a new method for computing the 
orientation workspace of symmetric spatial parallel 
mechanisms. It was shown that the T&T angles take full 
advantage of a mechanism’s symmetry. These angles were 
also independently introduced in [14] and [15] in 1999. 
Later, it was found out that the angles had been proposed in 
[16] in 1984 under the name halfplane-deviation-twist 
angles. The author of that reference proposed the set due to 
its indisputable advantages in modeling the limits of human 
body joints. Yet, again in 1999, these angles were proposed 
independently in [17] as a new standard in modeling angular 
joint motion, and particularly that of the spinal column’s 
vertebra. These angles are also used for computer animation 
of articulated bodies, known as the swing-and-twist 
representation. In [11], the advantages of the T&T angles in 
the study of spatial parallel mechanisms were further 
demonstrated. It was shown that there is a class of 3-DOF 
mechanisms that have always a zero torsion, that we now call 
zero-torsion parallel mechanisms. Furthermore, it was 
demonstrated in [18] and [19] that the workspace and 
singularities of symmetric spherical parallel mechanisms are 
best analyzed using the T&T angles. 

The T&T angles are defined in two stages—a tilt and a 
torsion. This does not, however, mean that only two angles 
define the T&T angles but simply that the axis of tilt is 
variable and is defined by another angle. In the first stage, 
illustrated in Fig. 2a, the body frame is tilted about a 
horizontal axis, a, at an angle θ, referred to as the tilt . The 
axis a is defined by an angle φ, called the azimuth, which is 
the angle between the projection of the body z’ axis onto the 
fixed xy plane and the fixed x axis. In the second stage, 
illustrated in Fig. 2b, the body frame is rotated about the 
body z’ axis at an angle σ, called the torsion. 

For space limitations, we will omit the otherwise quite 
interesting details of the derivation process (see [11]), and 
write directly the resulting rotation matrix of the T&T 
angles, which is 

 
Fig. 3.  Kinematic geometry of a general 3-[PP]S parallel mechanism 
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where cφ = cos φ, sφ = sin φ, cθ = cos θ, sθ = sin θ, cσ−φ = 
cos(σ−φ) and sσ−φ  = sin(σ−φ). 

One of the properties of three-angle orientation 
representation is that a given orientation can be represented 
by at least two triplets of angles. In our case, the triplets 
{ φ, θ, σ} and {φ ± π, −θ, σ} are equivalent. To avoid this 
and the representational singularity at θ = π (which is hardly 
achieved by any parallel mechanism), we set the ranges of 
the azimuth, tilt, and torsion as, respectively, φ ∈ (−π; π], 
θ ∈ [0, π), and σ ∈ (−π; π]. Then, probably the most 
valuable property of the T&T angles is that for the ranges 
just defined, the angles (φ, θ, σ) can be represented in a 
cylindrical coordinate system (r, φ, h) through a one-to-one 
mapping. In other words, any orientation (except a θ = 
π one) corresponds to a unique point within a cylinder in the 
cylindrical coordinate system, and vice versa. The reason is 
that the T&T representational singularity at θ  = 0 is of the 
same nature as the singularity of the cylindrical coordinate 
system occurring at zero-radius (r = 0). 

III.  KINEMATIC GEOMETRY OF 3-[PP]S PARALLEL 

MECHANISMS 

As already mentioned, each leg of a 3-[PP]S parallel 
mechanisms has a 2-DOF planar chain, followed by an S 
joint. The vertical planes in which the three equidistant S 
joints move are intersecting at a common line at 120° 
(Fig. 3). Now, let O – xyz be the base reference frame, such 
that its z axis coincides with the common line of the three 
planes, and its x axis lies in the plane of leg 1. 

For brevity, let the three equidistant S joint centers, 
denoted by Bi, lie on a circle of radius 1, i.e., 

 T
CB ]0,0,1['

1
=r , (2) 

 T
CB ]0),3/2sin(),3/2[cos('

2
ππ=r , (3) 
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CB ]0),3/4sin(),3/4[cos('

3
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where r ’CBi are the vectors along CBi expressed in the mobile 
frame C – x’y’z’. We, then, express the coordinates of these 
three points in terms of the coordinates of the platform 
center, x, y, z, and the three T&T angles: 
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where R is the rotation matrix defined by (1) (in this paper, i 
= 1, 2, 3). Then, we write the three linear equations that 
constrain the S joint centers in the three vertical planes: 
 0

1
=OBy , (6) 

 0)3/2sin()3/2cos(
22

=− OBOB xy ππ , (7) 

 0)3/4sin()3/4cos(
33

=− OBOB xy ππ , (8) 

Since z is obviously an independent coordinate, it is of no 
surprise that, after substitution of yOB1, xOB2, yOB2, xOB3, and 
yOB3 from (5), none of the above three equations contains that 
variable: 
 03,1 =+ qy , (9) 

 0
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3
3,3 =+− qyx , (11) 

where q1,3, q2,3, and q3,3 are functions of the three T&T 
angles. Therefore, in order to have a solution for x and y, the 
three linear equations must be linearly dependent. Obviously, 
any two of these equations are linearly independent. Hence, 
for any feasible orientation of the mobile platform, there is a 
unique solution for {x, y}. 

Let Q be the coefficient matrix for the above three 
equations, i.e., 
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For these equations to be linearly dependent, the matrix Q 
should be singular, i.e., 

 ( ) 01cossin
4

33
det =+= θσQ . (13) 

Disregarding θ = π, (13) leads us to the only remaining 
possibility: σ = 0 or σ = π. If we substitute σ = 0 or σ = π in 
(9–11), and solve any two of them, we obtain the following 
for the feasible motion of the mobile platform center: 

 ( )1cos2cos
2

1
δ −= θφx , (14) 

 ( )1cos2sin
2

1
δ −−= θφy , (15) 

where δ = 1 for σ = 0 and δ = −1 for σ = π. These two modes 
of operation are separated by a constraint singularity, which 

occurs at θ = 0. Indeed, as shown in [20], constraint 
singularities generally separate the different modes of 
operation of constrained parallel mechanisms. While both 
modes exist in theory, in practice the tilt angle θ will be quite 
limited, and the actual prototype will be confined to operate 
in only one of the modes. Furthermore, in practice, the mode 
σ = π is hardly realizable. Therefore, for any practical 
3-[PP]S parallel mechanism, σ = 0. 

Let us now analyze the singularity loci of several 
examples of 3-[PP]S parallel mechanisms. 

IV.  SINGULARITY LOCI OF 3-[PP]S PARALLEL MECHANISMS 

Among the abundant literature devoted to 3-[PP]S 
mechanisms, only a few papers deal with the subject of 
singularities [5, 6, 21, 22]. Among these papers, references 
[5, 6] present the singularity analysis of a 3-RPS structure. 
However, in both papers, the obtained expressions are 
numerous and complicated due to the use of general Euler 
angles and are basically not exploitable. Reference [21] 
presents a short singularity analysis of the 3-PRS structure, 
but gives no expressions characterizing the singular 
configurations. Finally, reference [22] presents a geometric 
approach to finding Type 2 singularities of three-legged 
parallel mechanisms. 

In this section, we will analyze the Type 2 singularities of 
four 3-[PP]S parallel mechanisms, namely the 3-PPS design, 
proposed in [1] (Fig. 1a), the general 3-RPS design (Fig. 1b), 
and the two 3-PRS designs proposed in [7] and [8] (Fig. 1c 
and 1d). To realize this analysis, we will study the 
degeneracy of a 6-dimensional matrix composed of the 
screws applied on the platform by the moving legs and will 
give for the first two mechanisms (the 3-PPS and the 3-RPS) 
simple analytical expressions characterizing the singularity 
loci obtained by the use of the T&T angles. We will show for 
the other two mechanisms that the singularity loci can be 
represented by a polynomial of high order (of degree 24). 
Moreover, for each mechanism, the maximal reachable 
workspace taking into account the singular configuration will 
be represented as a function of the design parameters.  

A. Singularity Loci of 3-PPS Parallel Mechanisms 

Referring to Fig. 4, the directions of the actuated prismatic 
joints are vertical, while the directions of the passive 
prismatic joints are horizontal.  

Each leg applied two screws Ri1 and Ri2 on the platform. 
Thus, as shown on Fig. 4, for this manipulator, Ri1 and Ri2 
are two forces located at point Bi and directed along the 
vertical axis z and perpendicular to the plane of the legs, 
respectively. The system of screws degenerates if the 
determinant of matrix J, of which the lines are composed of 
the coordinates of the screws Rij (j = 1, 2), vanishes. After 
simplification, this determinant can be written as: 

 ( )θθ cos1cos
8

27
det +=J , (17) 



  

 
Fig. 4. Schematics of a 3-PPS parallel mechanism 

 
Disregarding θ = π, (13) leads us to the only remaining 

possibility for Type 2 singularities: θ = ±π/2. 
Thus, for any 3-PPS parallel manipulator, the workspace 

is bounded by the orientation θ = ±π/2 of the platform, for 
any altitude z and angle φ. 

B. Singularity Loci of 3-RPS Parallel Mechanisms 

As shown in Fig. 5, for this mechanism, Ri1 and Ri2 are 
two forces located at point Bi, the first directed along the line 
AiBi and the second perpendicular to the plane of the legs. 
The system of screws degenerates if: 
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where c0, c1 and c2 depend on angle θ, on the altitude z of the 
center of the platform and on the radius Rb of the 
circumcircle of the base, 
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Therefore, it is quite simple to find the exact expression of 
the singularity loci expressing angle φ as a function of the 
other parameters: 
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Fig. 6 shows an example of singularity loci in the 
workspace of a 3-RPS parallel mechanism with Rb = 1.3 for 
z = 1. We can now analyze the size of the workspace 
represented by the maximal reachable angle θ for any angle 
φ as a function of the altitude of the platform and of the 
design parameters Rb (Fig. 7).  

 
Fig. 5. Schematics of a 3-RPS parallel mechanism 

 

 
 

Fig. 6. Singularity loci in the workspace of a 3-RPS parallel mechanism 
with Rb = 1.3 for z = 1 

 

 
Fig. 7. Maximal reachable angle θ for any angle φ  

 

The approach used to compute the maximal reachable 
angle θ can be described as follows. First, we fix the design 
parameter Rb and discretize the variable space {z, φ, θ}. 
Then, for a given set of variables {z, φ} and starting from 
θ = 0, we observe the evolution of the sign of the 
determinant of matrix J when θ is varying. We met a 
singularity if, between two values of θ, the sign of det J 
varies. Thus, we stop the procedure and retain the value θm 
of angle θ just before crossing the singular configuration. 
Then, we redo this algorithm for another value of angle φ. 
When this procedure has been realized for any angle φ, we 



  

find the minima of the angles θm, plot it on Fig. 7 and 
execute another time the entire algorithm. 

Thus, it can be observed that the size of the workspace 
increases with the altitude of the platform and decrease with 
the value of Rb. 

C. Singularity Loci of 3-RPS Parallel Mechanisms 

As for the previous mechanism, Ri1 and Ri2 are two forces 
located at point Bi, the first directed along the direction of 
the leg and the second perpendicular to the plane of the legs. 
The system of screws degenerates if: 
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for the mechanism of Fig. 1d, with 

)1(
6

27
+ccD θθ−= ,   

)2344(

)1474(
64

9
)(

22

22
1

bR+c++ccc

+cc+cccsEE

−−

−−==

φθθφ

θφφφφθφ
,  

)3/2(2 πφ −= EE , )3/2(3 πφ += EE ,  

2 2 4 2
1

2 2

2 2

9
( ) 4 ( 2 1)

4

( 5 8 2 2 3)

2

(

)

φ θ φ θ θ

φ θ θ θ

θ θ

φ= = − +

+ − + + − −

+ − +
b b

b b

F F s s c c c

c c c R c R

c R c R

,  

)3/2(2 πφ −= FF , )3/2(3 πφ += FF ,  

)(1 φ∆±=∆ , where  

2/122

42

)4/394)3212()38

30)3(16()28316(334()(

−+−+−

−+−−=∆

bbb

b

RRcR

Rc++L

φ

φφ
  

)3/2(2 πφ −∆±=∆ , )3/2(3 πφ +∆±=∆ .  

 

(a) for the mechanism of Fig. 1c, for L = 1.3 and z = 0.5 

 

(b) for the mechanism of Fig. 1d, for L = 1 and Rb = 1.3 

Fig. 8. Singularity loci in the workspace of the 3-PRS parallel mechanisms 
under study 

 

 

(a) for the mechanism of Fig. 1c 

 

(b) for the mechanism of Fig. 1d 

Fig. 9. Maximal reachable angle θ for any angle φ  

 
 



  

In these expressions, Γi and ∆i are radicals depending on 
the working mode (solution of the inverse kinematics) of the 
mechanism. Thus, Type 2 singularity loci are much more 
complicated to determine due to the existence of these terms.  

Indeed, to eliminate all radicals in the equation det J, the 
latter should be rearranged and squared three times, using a 
similar method as that proposed in [23] for the 3-RRR planar 
parallel robot. The equation resulting after these operations 
corresponds to all eight working modes. 

Since this procedure cannot be performed symbolically, 
we firstly assign random integer values to the coefficients θ, 
Rb, L, and z. Then, we eliminate the radicals by rearranging 
terms and squaring three times the equations. Finally, as the 
system is symmetrical, it is possible to rearrange the obtained 
polynomial in cos φ and sin φ into a polynomial in cos 3φ. 
Finally, it can be observed that the obtained polynomials are 
of degree 16 for the mechanism of Fig. 1c, and of degree 24 
for the mechanism of Fig. 1d. 

Fig. 8 shows examples of singularity loci in the workspace 
of the 3-PRS parallel mechanisms under study. 

Finally, we analyze the size of the singularity-free 
workspace represented by the minimum of all maximal 
reachable angles θ for any angle φ, without reaching a 
singularity, as a function of the altitude of the platform and 
of the design parameters Rb and L (Fig. 9a and 9b). We use 
an algorithm similar to that used for the 3-RPS parallel 
mechanism. It can be observed that: 

- for the mechanism of Fig. 1c, the size of the 
singularity-free workspace increases with the altitude 
of the platform; moreover, for L close to 2 and for a 
high altitude z, the value of angle θ  reaches 90°. 

- for the mechanism of Fig. 1d, the size of the 
singularity-free workspace increases when L increase 
and Rb decrease; moreover, for Rb close to 1, the 
value of angle θ  reaches 80°. 

V. CONCLUSIONS 

We presented in this paper yet another example of the 
advantages of using Tilt-and-Torsion angles for the analysis 
of 3-DOF zero-torsion parallel mechanisms. In particular, we 
proposed, for the first time, simple expressions for the 
singular configurations of four different zero-torsion 
mechanisms, namely a 3-PPS design, the general 3-RPS 
design, and two 3-PRS design. Furthermore, we analyzed the 
maximal singularity-free workspace of these mechanisms as 
a function of their design parameters. It should now be clear 
that so-called zero-torsion parallel mechanisms must be 
analyzed using Tilt-and-Torsion angles only. 
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