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Singularity Analysis of Zero-Torsion Parallel Mechanisms

Sébastien Briot and llian A. BoneMember, IEEE

Abstract—This paper presents the singularity analysis of far
3-DOF symmetric zero-torsion parallel mechanisms. Rese
mechanisms are composed of three identical legs éng with a
spherical joint that is constrained to move in oneof three
equally spaced plane intersecting at one line. Theomputation
of the singularity loci is based on the degeneraqyf the system
of screws applied on the platform by the legs. Thethole study
is based on the use of a special orientation repegation,
previously introduced under the name of Tilt-and-Tasion
angles. This representation is briefly introduced.Then the
interdependence between the Cartesian coordinatesf dhe
general class of parallel mechanisms is derived. rlly, the
singularity loci are derived and the size of the wikspace taking
into account all singular configurations is shown.

I. INTRODUCTION

I:OR the last few decades, parallel mechanisms are

increasingly being used and studied. Even if mastke/

on parallel mechanisms were focused on 6-degrees-of
freedom (DOFs) mechanisms (mainly hexapods), rgcent

more interest has been paid to mechanisms withttess 6

DOFs. The most popular of these mechanisms belong
undoubtedly to the group of 3-DOF symmetric patalle
mechanisms whose mobile platform is attached teethr

identical legs via spherical joints (Fig. 1). Tlegd constrain
the centers of the spherical joints to move in éhegually
spaced vertical planes intersecting at a comman lilmese
mechanisms will be referred to a§f]S ones.

There is abundant literature on this group of maismas,
studying their kinematics, singularity analysis amelsign.

(a) a 3PPSparallel mechanism (b) aRPS parallel mechanism

(c) a 3PRSparallel mechanism

(d) aBRSparallel mechanism

Fig. 1. Examples of 3-DOF [RP]S parallel mechanisms

For example, a BPS parallel mechanism was proposed in

In this paper, we use a special orientation reptasen to

[1] (Fig. 1a), the RPS architecture (Fig. 1b) was analyzed S PerE g | ! ¢
in [2-6], two different 3PRS designs were studied in [7] obtain S|mpl|f|eq relat|0n§ for. the .smgularlty dyms. of
(Fig. 1c) and [8] (Fig. 1d), the latter design lgebest known these mechgmsms. Th|s_ orientation  representatias w
through thez3 Headby DS Technologie [9], and finally a 3- recently applied to the derivation of the closed¥fadirect

RRSrobot was investigated in [10]. Of all these padfions,
only [3] seems to identify the exact nature of th
interdependence of the orientation parameters asd
geometric significance. To fill this important gdape second
author studied the kinematic geometry ofPR]S parallel
mechanisms and showed clearly their motion pafteth

Manuscript received January 25, 2008. This work wapgported by
FQRNT and the French Ministere des Affaires étragget européennes.

Sébastien Briot and I.A. Bonev are with the Departtrof Automated
Manufacturing Engineering of the Ecole de technielamipérieure (ETS),
Montreal, QC, Canada H3C 1K3 (phone: 514-396-84@8; 514-396-
8595; e-mails: sebastien.briot.1@ens.etsmtl.am.tionev@etsmtl.ca).

LIt is common to denote parallel mechanisms bygilie symbol®, R,
and S, which stand respectively for prismatic, revolated spherical joint.
When a joint is actuated, its symbol is underlinadhis paper, we also use
[PP] to denote any combination of joints that allow®@¥F planar motion.

kinematics of the mechanisms shown in Fig. 1(az&j)[1t

vas shown that this representation considerablyplgirthe

gxpressions of the direct kinematics of such meisha
Thus, in the next section, we describe briefly tiigntation
representation and use it in Section 3 to derive dimple
interdependence between the orientation angles thad
position of the platform of a general [BP]S parallel
mechanism. Then, in Section 4, we present the sgjme of
the singularity loci of four 3PP]S parallel mechanisms,
namely the PSdesign (Fig. 1a), the generaRES design
(Fig. 1b), and two common BRSdesigns (Fig. 1c and 1d).
We also analyze the size of the singularity-freekspace of
these structures, as a function of the design pateas)
taking into account all singular configurations.n&lly,
conclusions are drawn in Section 5.



Fig. 2. The successive rotations of the T&T andlektilt, (b) torsion

A novel three-angle orientation representatiorgriatlled
the Tilt-and-Torsion (T&T) angleswas proposed in [13] in
1999, in conjunction with a new method for compgtthe
orientation workspace of symmetric spatial
mechanisms. It was shown that the T&T angles take f
advantage of a mechanism’s symmetry. These angtes w
also independently introduced in [14] and [15] iB99.
Later, it was found out that the angles had beepgsed in
[16] in 1984 under the namdalfplane-deviation-twist
angles. The author of that reference proposedéeheie to
its indisputable advantages in modeling the limithiuman
body joints. Yet, again in 1999, these angles vpeoposed
independently in [17] as a new standard in modedingular
joint motion, and particularly that of the spinatlemn’s
vertebra. These angles are also used for compnit@aton
of articulated bodies, known as thewing-and-twist
representation. In [11], the advantages of the B&gles in
the study of spatial parallel mechanisms were @&irth
demonstrated. It was shown that there is a clas3DOF
mechanisms that have always a zero torsion, thatomecall
zero-torsion parallel mechanismsFurthermore, it was

ORIENTATION REPRESENTATION

parallel

Fig. 3. Kinematic geometry of a generglFR]S parallel mechanism

C,CsCop = SySs-p
R(¢.6,0) =|8,C4Cs_p +CySy—yp  ~S,C0S5-p +CoC0oyy S,Sp | 1)
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wherec,= COS @ S,= Sin @ Co= COS G, Sg= Sin b, Cypy=
cogo—¢) ands,_, = sinfo—¢).

One of the properties of three-angle orientation
representation is that a given orientation candpgasented
by at least two triplets of angles. In our case ttiplets
{@ 6 g} and {9+ 71 -6 d} are equivalent. To avoid this
and the representational singularityéat 77(which is hardly
achieved by any parallel mechanism), we set thgesrof
the azimuth, tilt, and torsion as, respectivei] (-7z 73,

6 0 [0, 7, and g O (-7 73. Then, probably the most
valuable property of the T&T angles is that for ttamges
just defined, the anglesp( 8, 0) can be represented in a
cylindrical coordinate systenr,(¢ h) through a one-to-one
mapping. In other words, any orientation (excep¥ &
srone) corresponds to a unique point within a cylindehe
cylindrical coordinate system, and vice versa. Tégeson is

demonstrated in [18] and [19] that the workspace arthat the T&T representational singularity &t= 0 is of the

singularities of symmetric spherical parallel metbms are
best analyzed using the T&T angles.

The T&T angles are defined in two stages—a tilt and
torsion. This does not, however, mean that only angles
define the T&T angles but simply that the axis i is
variable and is defined by another angle. In thst ftage,
illustrated in Fig. 2a, the body frame is tiltedoab a
horizontal axisa, at an angleg, referred to as thélt. The
axisa is defined by an angl@ called theazimuth which is
the angle between the projection of the badsixis onto the
fixed xy plane and the fixexk axis. In the second stage,
illustrated in Fig. 2b, the body frame is rotatdubat the
bodyz’ axis at an angle, called theorsion

For space limitations, we will omit the otherwisaitg
interesting details of the derivation process (ggd), and
write directly the resulting rotation matrix of th€&T
angles, which is

same nature as the singularity of the cylindricabrdinate
system occurring at zero-radius< 0).
lll. KINEMATIC GEOMETRY OF3-[PP]S PARALLEL
MECHANISMS

As already mentioned, each leg of dP®|S parallel
mechanisms has a 2-DOF planar chain, followed bysan
joint. The vertical planes in which the three edgtaht S
joints move are intersecting at a common line a0°12
(Fig. 3). Now, letO — xyzbe the base reference frame, such
that its z axis coincides with the common line of the three
planes, and it axis lies in the plane of leg 1.

For brevity, let the three equidistai® joint centers,
denoted byB;, lie on a circle of radius 1, i.e.,

Mes, = [100]", (2)
I'ee, =[cOS@Rr/3),sin(277/3 0], (3)
I'ce, =[cOS@r/3),sin(477/3)0]" (4)



wherer’ cg; are the vectors alor@B expressed in the mobile occurs até = 0. Indeed, as shown in [20], constraint
frameC — x'y'z’. We, then, express the coordinates of thessingularities generally separate the different nsods

three points in terms of the coordinates of thetfgie
centerx,y, z, and the three T&T angles:

X XO&
rog =RT'og *| Y| =| Yog |- )
z| | 2o

whereR is the rotation matrix defined by (1) (in this pap
= 1, 2, 3). Then, we write the three linear equetidhat
constrain the&sjoint centers in the three vertical planes:

Yog, =0, (6)
CoS@77/3) Yo, —SIN27T/3) X0, =0, (7)
CoS@77/3) Yop, —SIN(@A7T/3) Xoe, =0, (8)

operation of constrained parallel mechanisms. Whib¢h
modes exist in theory, in practice the tilt angieill be quite
limited, and the actual prototype will be confinedoperate
in only one of the modes. Furthermore, in practibe,mode
o = mis hardly realizable. Therefore, for any practical
3-{PP]S parallel mechanisnmg = 0.

Let us now analyze the singularity loci of several
examples of 3PP]S parallel mechanisms.

V. SINGULARITY LocCI OF3-[PP]S PARALLEL MECHANISMS

Among the abundant literature devoted to[P®]S
mechanisms, only a few papers deal with the subjéct
singularities [5, 6, 21, 22]. Among these papeeferences

Sincez is obviously an independent coordinate, it is @f n[5, 6] present the singularity analysis of &BS structure.

surprise that, after substitution Wg1, Xoro, Yoro, Xors, and
Yors from (5), none of the above three equations costtiat
variable:

y+0,5 =0, 9
Y31
—7X—§y+q2’3=0, (10)
31
TX‘EY+Q3,3=0- (11)

where g, 3, 23 and gs3 are functions of the three T&T
angles. Therefore, in order to have a solutiorkfandy, the
three linear equations must be linearly dependaioviously,
any two of these equations are linearly independéence,
for any feasible orientation of the mobile platfortimere is a
unique solution for {x, y}.

However, in both papers, the obtained expressiales a
numerous and complicated due to the use of geferal
angles and are basically not exploitable. Referefigd
presents a short singularity analysis of thBRS structure,
but gives no expressions characterizing the simgula
configurations. Finally, reference [22] presentgemmetric
approach to finding Type 2 singularities of threggded
parallel mechanisms.

In this section, we will analyze the Type 2 singtiles of
four 3{PP]S parallel mechanisms, namely théBSdesign,
proposed in [1] (Fig. 1a), the generaR®s design (Fig. 1b),
and the two 2RSdesigns proposed in [7] and [8] (Fig. 1c
and 1d). To realize this analysis, we will studye th
degeneracy of a 6-dimensional matrix composed ef th
screws applied on the platform by the moving legd will

Let Q be the coefficient matrix for the above threeagive for the first two mechanisms (thePBSand the 3RPS)

equations, i.e.,

0 1 G s
V31
Q= 5 T3 Up3 |- (12)
RER!
2 2 ks

For these equations to be linearly dependent, e
should be singular, i.e.,

detQ =¥sina(cos€+l)=0. (13)

simple analytical expressions characterizing timgjdarity

loci obtained by the use of the T&T angles. We wslilbw for

the other two mechanisms that the singularity loan be
represented by a polynomial of high order (of deged).
Moreover, for each mechanism, the maximal reachable
workspace taking into account the singular configion will

be represented as a function of the design parasmete

A. Singularity Loci of 3-PS Parallel Mechanisms

Referring to Fig. 4, the directions of the actugtedmatic
joints are vertical, while the directions of the spae
prismatic joints are horizontal.

Disregardingd = 77 (13) leads us to the only remaining Each leg applied two screvig; andR;, on the platform.

possibility: o= 0 oro = 7z If we substituteo= 0 oro = 7in
(9-11), and solve any two of them, we obtain tHe¥ang
for the feasible motion of the mobile platform camnt

X= Sécosw(cose —1) , (14)

y= —Sésin 2¢(cosf-1), (15)

whered = 1 foro= 0 andd = -1 for o= 77 These two modes
of operation are separated bga@nstraint singularity which

Thus, as shown on Fig. 4, for this manipulat®y, andR;,
are two forces located at poiB and directed along the
vertical axisz and perpendicular to the plane of the legs,
respectively. The system of screws degenerateshef t
determinant of matrix, of which the lines are composed of
the coordinates of the screwy (j = 1, 2), vanishes. After
simplification, this determinant can be written as:

detJ :%cosﬁ(1+ cost), (17)



Fig. 4. Schematics of aBPSparallel mechanism

Disregardingd = 7 (13) leads us to the only remaining
possibility for Type 2 singularitie® = +772.

Thus, for any 3PS parallel manipulator, the workspace
is bounded by the orientatiofi= +772 of the platform, for
any altitudez and anglep

B. Singularity Loci of 3-RB Parallel Mechanisms

As shown in Fig. 5, for this mechanisR;,; andR;, are
two forces located at poil, the first directed along the line
AB; and the second perpendicular to the plane oféjs. |
The system of screws degenerates if:

detJ =c, cos (3¢) + ¢, cos@y) +¢, =0, (18)
wherec,, ¢; andc, depend on anglé, on the altitude of the
center of the platform and on the radi of the

Fig. 6. Singularity loci in the workspace of aRBS parallel mechanism
with Ry =1.3forz=1

circumcircle of the base, 6 (deg.)
90"
02:%2(&0059)(0059—1)3, 80" O
7 70 Rotl /’:ﬁf””’f i
—_&7 _ _n2 2 | ) ~— Rbi5
¢ = 6486 (Cs l)(cs( €y +3c, +1) +2° (12, +8R, +4))’ 5532 //; §/§:;Z
27 ! ] e
=54 % ~1)(R (e, +1 (¢, + 4R, -1 -3) v // = |k
27 207 /// S
Co :—Ez(cg +1)(—c9(—c§ -4c, +3)+4c, 22) o
27 . R B T e 7 8 9 10
-5 e+ )R (¢ -1 (e, +2R,) °

Therefore, it is quite simple to find the exact egsion of Fig. 7. Maximal reachable angfor any angla

the singularity loci expressing angfeas a function of the  The approach used to compute the maximal reachable
other parameters: angle @ can be described as follows. First, we fix theigtes

—e +.[c? parameterR, and discretize the variable space § 8.
g glc 40 % + 2nn, n=0,1,2... (19) Then, for a given set of variableg, {¢ and starting from

2 =0, we observe the evolution of the sign of the

Fig. 6 shows an example of singularity loci in thedeterminant of matrixJ when 6 is varying. We met a
workspace of a RPS parallel mechanism witR, = 1.3 for ~ singularity if, between two values @, the sign of det]
z= 1. We can now analyze the size of the workspad@ries. Thus, we stop the procedure and retairvahee &,
represented by the maximal reachable agtfier any angle Of angle & just before crossing the singular configuration.
@ as a function of the altitude of the platform asfdthe ~1hen, we redo this algorithm for another value odla ¢
design parameter, (Fig. 7). When this procedure has been realized for any apgglee

Q= lcos'
3



find the minima of the angleg, plot it on Fig. 7 and
execute another time the entire algorithm.

Thus, it can be observed that the size of the vpats
increases with the altitude of the platform andrdase with
the value oR,.

C. Singularity Loci of 3-RB Parallel Mechanisms

As for the previous mechanisiR;; andR;, are two forces
located at poinB;, the first directed along the direction of
the leg and the second perpendicular to the platieedegs.
The system of screws degenerates if:

detJ=AT, [+ AT, T, +AlT,

: (20)
+B M +B,[,+B,[;+C=0
for the mechanism of Fig. 1c, with
9
A=Ay = 3 (c, =D (c D (co ~D(c+D(z-¢,Sy)
A = Ap-2m13), A, = Alp+2mr/3),
9
B, =B(@ = —ac¢(1—4c§, ~7c +4cic,)
(4cis; +4c, zs;+3c5+47° s, 3s,)
B, =B(¢—2mr1/3),B, = B(p+2m1/3),
27
C=-=—c,(c,+1)(-s3c,,—3s; z+47%),
327 oDy G ¢ ) (b) for the mechanism of Fig. 1d, for= 1 andR, = 1.3
r= +(¢) , wherel (@) = 2\/ 12— 22+2C¢ S, Z—C; S; Eingdesr.sizr&gularity loci in the workspace of thd®BSparallel mechanisms
I, =+l (p—-2m/3),I, =£[ (p+2711/3) ,
and g0 218
30 L=2
detJ=D A A, A +E A, A +E, A A +E A A, (21) 70 L=3| Lot I35 126 157|158 1129
+tRA+F A, +FA; =0 ’ 60 ')/ )
50 / / L=10
for the mechanism of Fig. 1d, with w7
__27 ol (//]/ o
D= _?CH (CH+1) ’ 20 / / /
9 10 |
_ — _ 2 _ 2
E =E(® —asgca,( 4c, —7cH4c,cotl) o 0

(-4cic e t4cs —3+2R)
E, = E(p-21/3),E; = E(p+21/3), L

-
(=]

9

R=F@= 79(46(6-26+1) 25 E /
+¢,(-5¢; +8G,+ 2R ¢ - 2R 3) ; é fgﬁd A ;qu
+c2-2R G+ K) 5 p

F, =F(¢p-2m/3),F, = F(p+2m/3), VAV

A, =xA(@) , where ;

A() = (AL+3J3+ (163~ 29c; - (6(V3 +R,) ~30 B

8 9 10
~8/3R )c2 + (12-2/3)R, +4RE ~39/4)"

b) for th hani f Fig. 1d
A, = +N@-2713) | B, = 0@+ 27713 | (b) for the mechanism of Fig

Fig. 9. Maximal reachable ang&or any anglep



In these expressions; and; are radicals depending on (2]
the working mode (solution of the inverse kinengtiof the
mechanism. Thus, Type 2 singularity loci are muabren [3]
complicated to determine due to the existenceesddherms.

Indeed, to eliminate all radicals in the equatiet X the
latter should be rearranged and squared three,tusesy a
similar method as that proposed in [23] for thBRR planar
parallel robot. The equation resulting after theperations
corresponds to all eight working modes.

Since this procedure cannot be performed symbolicallyg]
we firstly assign random integer values to the ficiehts &,

R,, L, andz Then, we eliminate the radicals by rearranging,]
terms and squaring three times the equations. Ifjred the
system is symmetrical, it is possible to rearrathgeobtained
polynomial in cosg and singinto a polynomial in cos @
Finally, it can be observed that the obtained pofyials are
of degree 16 for the mechanism of Fig. 1c, andegjrde 24
for the mechanism of Fig. 1d.

Fig. 8 shows examples of singularity loci in therkapace
of the 3PRSparallel mechanisms under study.

Finally, we analyze the size of the singularityefre
workspace represented by the minimum of all maxima{y
reachable angle® for any angleg@ without reaching a
singularity, as a function of the altitude of thatform and
of the design parameteRs andL (Fig. 9a and 9b). We use [1
an algorithm similar to that used for theRBS parallel
mechanism. It can be observed that:

- for the mechanism of Fig. 1lc, the size of théls]

singularity-free workspace increases with the wadtt
of the platform; moreover, fdr close to 2 and for a [14]
high altitudez, the value of anglé@ reaches 90°.

- for the mechanism of Fig. 1d, the size of thegis]
singularity-free workspace increases whemcrease
and R, decrease; moreover, fd®, close to 1, the
value of angled reaches 80°.

(4]

(5]

(8]

9]
[10]

[16]
[17]

V. CONCLUSIONS (18]

We presented in this paper yet another examplen®f t
advantages of using Tilt-and-Torsion angles forahalysis
of 3-DOF zero-torsion parallel mechanisms. In gattr, we
proposed, for the first time, simple expressions fioe
singular configurations of four different zero-tiors
mechanisms, namely a BRS design, the general RPS
design, and two BRSdesign. Furthermore, we analyzed thgz1]
maximal singularity-free workspace of these mectrasias
a function of their design parameters. It should i@ clear
that so-called zero-torsion parallel mechanisms tmes
analyzed using Tilt-and-Torsion angles only.

[19]

[20]

[22]
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