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ABSTRACT* 

In this paper, the self motions of a novel 3-DOF fully de-

coupled translational parallel robot, called the Pantopteron, are 

presented. The Pantopteron is similar to the well-known Car-

tesian parallel manipulator (Tripteron), but due to the use of 

pantograph linkages, an amplification effect is achieved. 

Therefore, equipped with the same actuators, the mobile plat-

form of the Pantopteron moves faster than that of the Tripter-

on. This amplification is defined by the magnification factor of 

the pantograph linkages. The self motions are probably the 

most critical types of singularities a manipulator can meet. 

Therefore it is of utmost importance to have a good knowledge 

of them. Design considerations are also discussed in order to 

create Pantopterons without self motions. 

1 INTRODUCTION 
From an industrial point of view, the complexity and the ex-

istence of numerous singular configurations seem to be the 

worse drawback of parallel robots because these configura-

tions reduce the workspace, which is already smaller than that 

of similarly-sized serial robots. Fortunately, the determination 

of singularities is a well studied problem and several methods 

have already been presented [1-3]. 

The worst singular configuration a parallel robot can meet is 

the Type 2 singularity [1]. In such a singularity, the robot 

gains at least one degree of freedom and cannot resist some 

wrenches applied to its platform. Furthermore, the robot can-

not exit such a singular configuration, without external help. 

Type 2 singular configurations can be divided into two classes, 

depending on the nature of the degree(s) of freedom gained, 

being either infinitesimal or finite, i.e., self-motion. However, 

merely studying the Jacobian matrix of the robot [1,2], one 

cannot identify the nature of Type 2 singularities. 
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Symmetry and, more precisely, design conditions that sim-

plify the generally too complex direct kinematics of parallel 

robots are often privileged by robot designers. Unfortunately, 

such design conditions usually lead to self-motions, which are 

certainly the worst type of singularity. Hence, it is essential 

that the design conditions for such self-motions be well known 

in order to be avoided. 

Several papers discuss self-motions in parallel robots. Not 

surprisingly, most of them deal with the Gough-Stewart plat-

form whose direct kinematic model leads to as many as forty 

real solutions, for a relatively general design. Design condi-

tions simplifying the direct kinematics of the Gough-Stewart 

platform, and subsequently leading to self-motions, are given 

in [4-8]. A classification of all self-motions of the Stewart-

Gough platform is presented in [9]. It is shown that the self-

motions can be translations, pure rotations, generalized screw 

motions, motions equivalent to the displacements of spherical 

four-bar mechanisms, or more complex spatial motions. 

The Stewart-Gough platform is not the only parallel robot 

with self-motions. A few other parallel robots having self-

motions have also been studied. For example, in [10], it is 

shown that all singularities of the special 3-RRR (R stands for 

a passive revolute joint and R for an actuated revolute joint) 

spherical parallel robot, known as the Agile Eye, are self-

motions. The analysis of self mobility of spatial 5R closed-

loop mechanisms with one degree of freedom are presented in 

[11]. Reference [12] discusses the determination of general-

ized analytical expressions for the analysis of self-motions and 

presents several examples for both planar and spatial mecha-

nisms with legs composed of R joints. The self motions of pla-

nar 3-RPR manipulators are also studied in [13,14]. 

In this paper, we will study the self-motions of the so-called 

Pantopteron [15]. The Pantopteron is a manipulator similar to 

the Cartesian parallel manipulator (Tripteron) [16], but due to 
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the use of three pantograph linkages, an amplification of the 

actuators displacements is achieved. Therefore, given the same 

actuators, the mobile platform of the Pantopteron moves faster 

than that of the Tripteron. This amplification is equal to the 

magnification factor of the pantograph linkages. 

The paper is organized as follows. Next, the architecture of 

the Pantopteron is briefly recalled. Then, a constraint analysis 

is presented, which will lead to the determination of the self 

motions. These singularities are kinematically described and 

various design considerations for the avoidance of self mo-

tions are given. Finally, conclusions are drawn. 

2 DESCRIPTION OF THE ARCHITECTURE 
The architecture of the Pantopteron is schematized in Fig. 1. 

It is composed of three identical legs which correspond to pan-

tograph linkages (Fig. 2). 

The pantograph is a mechanical system with two input 

points, Ai and Bi, and one output point Ci (in the remainder of 

this paper, i = 1, 2, 3). These input points linearly control the 

displacement of the output point Ci. A kinematic analysis 

shows that a linear actuator connected with input point Bi con-

trols the vertical displacement of the output point Ci and an-

other linear actuator with an axis parallel to a1i controls the 

displacements along the same axis. Note that these motions are 

completely decoupled, i.e., they can be carried out inde-

pendently. The input-output relationships for displacements 

are linear and are determined by the magnification factor k of 

the pantograph (k = AiCi/AiBi). These properties of the panto-

graph mechanism are used in the Pantopteron 

For the Pantopteron, the actuators are located at the linear 

joints (1i) (Fig. 2). These three pairs are connected to the base 

so that their axes are orthogonal. All other joints are passive. 

Each pantograph linkage is attached to the platform at point Ci 

via a Cardan joint, the axes each joint (12i) being orthogonal. 

 

 
 

Figure 2.  Schematics of a leg of the Pantopteron 
 

 

They also are connected to actuator (1i) via a revolute joint, 

which allows the leg to have five DOFs, three translations and 

two rotations about the axes of the Cardan joint located at Ci.. 

Such an architecture allows three fully-decoupled translational 

DOFs and its kinematics can be written under the form: 

 

qJx   , (1) 
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Figure 1.  Schematics of the Pantopteron 
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k is the magnification factor of the pantograph linkages, x  is 

the vector of the platform velocities and q  the vector of the 

actuator velocities (see [15] for further details). 

3 CONSTRAINTS ANALYSIS 

3.1  Constraints applied on the platform  
Let x, y, z be the axes of the base frame (Fig. 1). It can be 

shown (see [15]) that each leg applies two wrenches on the 

platform: 

- a moment r1i (i = 1, 2, 3), which is orthogonal to the twist 

of all pairs (when actuators are disconnected); 

- a force r2i which is due to the actuator Mi. 

Let us consider leg 1. We denote by ej (j = 1 to 5) the unit 

screw corresponding to the passive displacement of the plat-

form. The expression of these screws, expressed in the base 

frame at point C1, can be written as: 

- for the translations along x, y and z, 

 T00100011 e ,  T01000021 e  

and  T10000031 e ; 

- for the rotations about the axes of joints (12,1) and (11,1), 

 T000sinsinsincoscos 1111141 e  and 

 T000cossin0 1151 e , where 1 is the 

angle between a11 and y axes, and 1 represents the rota-

tion between vector a31 and the axis of joint (12,1). 

The Plücker coordinates of the unit screws can be described 

in matrix E1 as 
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The wrench r11, transmitted to the platform by the leg, is or-

thogonal to the twists composing the lines of matrix E1: 
 

 Tzyx rrr 00011111111r  (4) 

with 

111 sin xr  (5a) 

1111 coscos yr  (5b) 

1111 cossin zr  (5c) 

Thus, r11 is a wrench of zero pitch (a pure moment). 

Similarly, it is possible to find that the wrenches r1i trans-

mitted to the platform by the legs when all actuators are dis-

connected are all pure moments. Let Q be the matrix com-

posed of these wrenches applied on the platform by the legs. 

The expression of Q in the base frame, and expressed at point 

O, is: 
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with 

2212 cossin xr  (7a) 

212 sin yr  (7b) 

2212 coscos zr  (7c) 

and 

3313 coscos xr  (8a) 

3313 cossin yr  (8b) 

313 sin zr  (8c) 

 

The passive displacements of the platform are orthogonal to 

this matrix of rank equal to 3. In the general case, there are 

three independent passive displacements, which are the three 

translations about x, y and z axes. Thus, the platform is con-

strained by the legs to have only translational displacements. 

As joints (12,i) are all orthogonal to each other, the follow-

ing relations must hold: 

 

04241 ee
T  (9a) 

04342 ee
T  (9b) 

04341 ee
T  (9c) 

with 

 T000sinsinsincoscos 11111 41e  (10a) 

 T000sincoscossinsin 22222 42e  (10b) 

 T000cossinsinsincos 33333 43e  (10c) 

 

Developing and simplifying Eqs. (9) leads to: 
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Thus it is possible to find the expression of angles i as a 

function of angles i. Two distinct sets of solutions can be 

found: 
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These two sets of solutions depend on the assembly of the 

mechanism. In a practical way, all angles i are set to 0°. 
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However, it will be seen later that the self motions of the 

mechanisms can be found by the analysis of Eqs. (13). 

Let us now consider that the actuator M1 located at joint 

(1,1) is fixed. So, due to the decoupling properties of the pan-

tograph linkages, the position about x axis of point C1 is fixed. 

Thus, the platform has now two passive translational DOFs, 

which are orthogonal to the x axis. Therefore, a supplementary 

constraint is applied on the platform, which restrains its dis-

placement. 

Using an approach similar to the previous one, the second 

wrench applied by the leg on the platform, expressed at point 

C1, is  T00100021 r . 

Let us denote by R the matrix composed of these wrenches 

applied on the platform by the legs. The expression of R in the 

base frame, and expressed at point O, is: 
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where xCi, yCi and zCi are the expressions of the coordinates of 

points Ci along x, y and z axes. 

3.2  Degeneracy of constraints  
As the mechanism is fully isotropic, it does not have any 

Type 2 singularities. However, it has been shown in [15] that 

it has constraint singularities [17]. These singular configura-

tions appear if the system of wrenches applied on the platform 

degenerates, i.e., if the matrix R of Eq. (14) becomes singular. 

Such a singularity is called a constraint singularity. This hap-

pens if: 

0sinsinsincoscoscos)det( 321321  R  (15) 

 

Introducing this expression in Eqs. (13), it can be seen that, 

in a constraint singularity, all angles i may admit only one so-

lution (indeed a double solution), which is i = 0. This is true if 

the denominators of the Eqs. (13) are different from 0. If not, 

expressions (13) are indefinite, which implies that the system 

of Eqs. (11) degenerates. 

Thus, let us analyze the degeneracy of Eqs. (13). These so-

lutions degenerate if the following system of equations admits 

solutions: 

 

0sinsinsincoscoscos 3213211  h  (16a) 

0coscossinsinsincos 3121322  h  (16b) 

0coscossinsinsincos 2132133  h  (16c) 

0coscossinsinsincos 3231214  h  (16d) 

 

It can be shown that this system of equations has several 

sets of solutions, which are: 

 

 n 01  and 2/2   , n = 0, 1, 2… (17a) 

or 

 n 02  and 2/3   , n = 0, 1, 2… (17b) 

or 

 n 03
 and 2/1   , n = 0, 1, 2… (17c) 

 

Let us consider the case of Eq. (17a) (Fig. 3). Introducing 

these new conditions into the system of Eqs. (11) leads to the 

following set of solutions: 

 

03   and  n 21 , n = 0, 1, 2… (18) 

 

Thus, in such a case, the values of angles 1 and 2 are inde-

 

 
 

Figure 3. Example of a constraint singularity for 1 = 0 and 2 = 90°. 
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terminate. Note that the same solutions for 2 and 3 or 1 and 

3 could be found by using Eqs. (17b) and (17c), respectively. 

In the next part, we will analyze the kinematics of the ma-

nipulator in such singular configurations. 

4 SELF MOTION ANALYSIS 

4.1  Kinematic analysis  

Let us examine the manipulator when 1 = 0 and 2 = /2 

(Fig. 3). In such a case, vectors a2i of legs 1 and 2 of the ma-

nipulator are collinear, i.e., the planes of the pantograph link-

ages are parallel (here, they are horizontal). From Eq. (18), 3 

= 0, therefore the altitude of the platform (and consequently of 

points C1 and C2 of the pantograph linkages, so as the values 

of angles 1 and 1) cannot change if actuator M3 is fixed.  

As the planes of the pantograph linkages stay horizontal, the 

passive prismatic joints of legs 1 and 2 are also horizontal 

plane (but also perpendicular), which implies that point C1 can 

have a passive translation along the y axis, and point C2 a pas-

sive translation along the x axis. Moreover, as the rotation 3 

of joints (2,3) and (10,3) of leg 3, such as the displacement of 

the prismatic joint (9,3), are not constrained (these joints are 

passive), the planar displacement of point C3 of the platform is 

completely free. 

Figure 4 represents the planar view of the manipulator in 

such a singularity. For clarity, leg 3 is replaced by an equiva-

lent passive RP chain which completely allows the same pla-

nar displacement as the pantograph linkage. 

As points C1 and C2 of the platform are constrained to move 

along lines L1 and L2, respectively, and as the planar dis-

placement of point C3 is free, the platform undergoes a so-

called Cardanic (self) motion [13,14,18,19]. 

As a consequence, each point Q of the platform describes a 

curve E(Q), which may be: 

- a straight line; 

- a doubly traced segment; 

- an ellipse. 

The same type of self motions will be found by analyzing 

the conditions (17b) and (17c), but the movements will take 

place in other planes.  

 
 

Figure 4. Cardanic self motion of the Pantopteron 

In the next section, we will analyze the conditions on the 

design parameters that allow creating mechanisms without self 

motions. 

4.2  Design considerations  
Let us analyze once again the Eq. (17a), which can also be 

written under the form: 

 

0sin 1   and 0cos 2  . (19) 

 

In the Cartesian space, Eq. (19) can be expressed as: 
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and xCi, yCi and zCi (xGi, yGi and zGi, resp.) are the expressions of 

the coordinates of points Ci (Gi, resp.) along x, y and z axes. 

Disregarding the case where i tends to infinity, singulari-

ties appear when: 

 

011  GC zz  and 022  GC zz  (22) 

 

Taking into account that the terms xGi, yGi, zGi appearing in 

Eq. (22) are constant and that  

 
T

iii

T

i cbazyx ],,[],,[ OC   (23) 

 

where ai, bi, ci are constant terms, Eq. (22) can be rewritten 

under the form: 

 

02211  GG zczzcz . (24) 

 

Thus, condition (17a) can appear if: 

 

2211 GG zczc  . (25) 

 

By a similar way, it can be proven that condition (17b) may 

appear if: 

 

2211 GG xaxa  , (26) 

 

and condition (17c) if: 

 

2211 GG ybyb  . (27) 

 

Thus, by avoiding these three conditions, the mechanism 

will never have self motions. 

5 CONCLUSIONS 
The singularities of a novel 3-DOF fully-decoupled iso-

tropic translational parallel mechanism, called the Pantop-

teron, were analyzed in detail. It was shown that the only sin-
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gularities that this robot can undergo are so-called constraint 

singularities. Furthermore, all of these constraint singularities 

were shown to be Cardanic self-motions. Fortunately, simple 

design conditions for eliminating the possibility for such sin-

gularities were found. 
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