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Abstract— In this paper, a new methodology for the optimal 
design of parallel kinematic machine tools is proposed. This 
approach is based on the concept of the maximal inscribed 
parallelepiped and uses technology-oriented constraints that 
are motivated by particular applications. This methodology is 
applied on two translational parallel robots with three degrees-
of-freedom (DOF): the Y-STAR and the UraneSX. An analysis 
of the size of their workspace as a function of the design 
constraints is made. It is shown that, for identical workspaces 
with similar properties, the size of the legs of the UraneSX are 
greater than for the Y-STAR, thus leading to larger 
deformations. However, the footprint surface needed in order 
to install the Y-STAR is about two times bigger than for the 
UraneSX. Therefore, it may be interested to use the UraneSX 
in order to save some place on ground in manufacturing 
centres. 

I. INTRODUCTION1 

arallel kinematic machines (PKM) are commonly 
claimed to offer several advantages over their serial 

counterparts, such as high structural rigidity, better payload-
to-weight ratio, high dynamic capacities and high accuracy 
[1–3]. Therefore, they are prudently considered as promising 
alternatives for many modern material processing 
operations, especially in automotive and aerospace industry, 
in which high accuracy positioning and high-speed motions 
of a work tool are required. Thus, PKM have gained 
essential attention of a number of companies and 
researchers. However, most of the existing PKM still suffer 
from two major drawbacks, namely, a complex workspace 
and highly non-linear input/output relations [4, 5]. 

For most of PKM, the performances vary considerably for 
different points in the workspace and for different directions 
at one given point. This is a serious disadvantage for 
machining applications [6, 7], which require regular 
workspace shape and acceptable kinetostatic performances 
throughout. In milling applications, for instance, the 
machining conditions must remain constant along the whole 
tool path [8]. Nevertheless, in many research papers, this 
criterion is not taken into account in the algorithmic methods 
used for the optimization of robots [9, 10]. 

This work is focused on the optimal design of a robot for 
given geometric, kinematic and kinetostatic properties 
derived from technical applications (e.g. size of the 
workspace, maximum speeds, forces transmission, 
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accuracy). The main contribution of this paper is in the area 
of application of the operation research methods to the 
integrated design optimization of complex mechanical 
structures, such as parallel robots. The proposed approach 
operates with the ‘workspace grid’ that is evaluated using a 
dedicated dynamic-programming-based algorithm allowing, 
for each particular set of the design parameters, to estimate 
the largest cuboid-shaped workspace with the desired 
properties. Further, the workspace parameters are evaluated 
in the frame of the global optimization. Finally, contrary to 
many works on optimal design of parallel robots (see for 
example [11, 12]), it is proposed in this paper to use 
technology oriented indices in order to define the optimal 
design parameters. 

The paper will be divided as follows. In the second part, 
the design problem and methodologies are explained. In the 
third section, the performance measures used are presented. 
In part four, the optimization procedure is described and it is 
applied on an industrial case study in part five. Finally, in 
the last section, conclusions are drawn. 

II. DESIGN PROBLEM AND METHODOLOGY 

Manipulator design traditionally begins with the selection 
of a kinematic framework and achieving certain geometric 
goals such as workspace size and dexterity. Besides, for 
particular manufacturing tasks, the manipulator geometry is 
optimized with respect to the desired velocity, accuracy or 
force transmission factors. This yields a simplified CAD 
model of a relevant mechanism that defines basic 
dimensions of the links and spatial locations of all active and 
passive joints, as well as joint limits. At the next step, this 
model should be detailed by providing real shapes of links to 
produce the solid CAD model. 

To formulate the design problem, let us define the 
manipulator geometry by the mapping g:   W, where  
= 1 × … n and W = p1 × … pn denote respectively the 
configuration space and the workspace. i are the joint 
coordinates and pi are the coordinates of the end-effector. n 
is the number of DOF. Besides, for each workspace point p 
 W, let us define the matrices Kv(p, ), Kf(p, ), Ka(p, ), 
that describe various mechanical properties of the 
manipulator (velocity, force transmission, accuracy, etc.) for 
any given set of the design parameters . Let us also assume 
that for each type of the matrices K,   {v, f, a, …}, there 
are defined physically consistent scalar measures (K),  
 {i, t, …} that may be directly included in the design 
objectives or constraints. Some examples of such measures 
(isotropy, transmission factors, etc.) are presented in the 
following sections. 
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Similarly, for the global evaluation of the manipulator, let 
us introduce the performance measures (g, ),   {m, l, 
w, …}, that depend both on the adopted geometrical 
structure g and the physical parameters of the links . 
Examples of the global measures include the total mass of 
the manipulator, the length of the principal links, the 
workspace size, etc. 

Then, following the general methodology adopted for the 
considered application area (high-speed machining), the 
design optimisation problem can be stated as achieving the 
best value of the performance indices 

   ,min),(
π

πg  (1) 

subject to the constraints 
     ,,),(  SπpK  (2) 

that must be satisfied for all points of the cuboid workspace 
W0 of size a × b × c, which includes the manufacturing task. 
It should be noted that the latter assumption (concerning the 
workspace shape) is essential here and allows considerably 
speed-up the optimization routines. Since in practice this 
problem cannot be solved by the direct search methods, in 
the following subsections, there will be presented the 
discretisation scheme and relevant optimisation algorithms 
allowing to obtain desired solutions in reasonable time. 

III. PERFORMANCE MEASURES 

Let us present here the most essential technology-oriented 
performance measures that are used in the following of this 
paper. Traditionally, they are directly included in the design 
constraints/objectives to be satisfied or optimized 
throughout the prescribed workspace. However, in this 
paper, each performance measure is preliminary converted 
in an alternative form that defines the workspace subset 
where the relevant criterion is higher/lower of the desired 
value.  

It should be noted that, in the following of this paper, our 
analysis will be restrained to 3-DOF translational PKM as 
they are mostly used for machining of materials. 

A. Size of the workspace 

Using the set of parameters , the workspace W may be 
generated using the kinematic equations and the joint limits 
[1]. 

Since, for the considered application, the desired regular 
workspace is a parallelepiped W0 of size {a0 × b0 × c0}, the 
relevant measure may be defined by the largest similar 
object Wabc = {µa0 × µb0 × µc0} inscribed in W, i.e. 

 WWTTWTW 0
T

0  )(maxarg),();(
,




abc  (1) 

where µ, T are respectively the scalar scaling factor and the 
coordinate transformation operator in the Cartesian space. 
This notion is the fundamental issue of this paper and is 
discussed in details in the following section. 

B. Velocity transmission factors 
For quantifying the speed capability of a manipulator, 

several kinematic performance indices are defined using the 
Jacobian matrix J (see [13]), such as the condition number, 
the largest/smallest singular value (also called the maximal/ 

minimal transmission factor and denoted as max and min, 
respectively – Fig. 1a), the dexterity, the manipulability, etc.  

However, as mentioned by Merlet in [13], the previously 
cited indices does not take into account the ‘technological 
reality’ of the mechanism, as they are based on the use of the 

Euclidian norm of the input velocity vector Φ  (||Φ || being 
considered equal to 1) while it is clear that each actuator 

may have a velocity i   [– max
i , max

i ], where i  and max
i  

are the actual and maximal velocities for the actuator i (i = 1 
to n). Thus, it is necessary to redefine the transmission 
factors, of which expressions are presented in the next 
subsections.  

1. Velocity transmission along all directions of the 
workspace. 

Normalizing the problem and considering that max
i  = 1, 

i.e. replacing the unit sphere by a unit cube (Fig. 1b), one 
can obtain the image of the unit square by the transformation 
f: x  J x. The obtained figure is a parallelepiped, where 
point Bj is considered to be the image of point Aj by the 
transformation f. 

One can now define the minimal and maximal 

transmission factors min
vk and max

vk . Factor max
vk  is the largest 

distance from the origin of the frame to the faces of the 
parallelepiped. Its corresponding expression may be written 
as: 

 ))((maxmax
j

j
vk eqJ , for j = 1 to 4 (2) 

where e1 = [+1, +1, +1]T, e2 = [+1, –1, +1]T, e3 = [+1, +1, –
1]T and e4 = [+1, –1, –1]T.  

To obtain the expression of min
vk , more computations are 

required. Indeed, min
vk  is the smallest distance between point 

O and the faces of the parallelepiped.  
Let us consider that the Jacobian matrix J may be 

decomposed into three vectors I1, I2 and I3 such as: 
  321 IIIJ . (3) 

The faces of the parallelepiped are the images by the 
transformation f of the faces of the unit cube, i.e. there are 
attained when at least one actuator is at its maximal velocity 

max
i  ( 1max i , i = 1, 2, 3). Therefore, the parameterized 

expressions of the faces of the parallelepiped are, for any 
vector  = [1, 2]

T, ]1,1[, 21  : 

   )()()()()( mTm
ijk

m
ijk

m
ijk

m
ijk zyx 21 JδJV  ,  (4) 

for m = 1 or 2, i, j, k = 1, 2, 3, i ≠ j, i ≠ k, j ≠ k, where 

 ][ ji IIJ1  , k
m IJ 2 )1( . (5) 

The distances || )(m
ijkV || (m = 1, 2) from the origin to any 

point belonging to the faces are given by 

 )()()( m
ijk

Tm
ijk

m
ijk VVV  . (6) 

Finding the minimum of this expression remains to 

computing the minimum of || )(m
ijkV ||². Thus, differentiating 

expression (6) with respect to the parameter , it may be 
found that the minimum appears when 
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Fig. 1. Mapping, using the Jacobian matrix, (a) of the unit sphere and (b) of 
the unit cube. 
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Verifying that the components of  belong to the interval [–
1, +1] and introducing them into (6), it may be found 

that:       21111222 JJJJJJJJVV TTTTm
ijkijkm

1)(min min




 (8) 

Thus, the expression of min
vk  is 

 )(min min

,,,

min
ijkm

mkji
vk V , (98) 

for m = 1, 2, i, j, k = 1, 2, 3, i ≠ j, i ≠ k, j ≠ k. 
It should be mentioned that, if the components of  do not 

belong to the interval [–1, +1], thus the obtained value for 
min
ijkmV  does not correspond to the minimal distance between 

the face of the parallelepiped and the centre of the frame, but 
between the plane on which is lying the face under 
consideration and the centre of the frame. It could be proved 

that, even if this happens, the value of min
vk  will be obtained 

when considering another face for which the components of 
 will belong to the interval [–1, +1]. Therefore, there is no 
need to use other expressions than those presented above. 

2. Velocity transmission along some particular directions of 
the workspace. 

In some cases, it is not necessary to guarantee a minimal 
velocity along all the axes of the workspace, but along some 
particular directions (e.g., in the xy plane). For 
demonstration purpose, let us consider that a minimal 
velocity has to be guaranteed in the xy plane. Vector vxy = 
[vx, vy]

T corresponds to the velocity of the platform in the xy 

plane and is of dimension 2, while Φ  is still of dimension 3. 
These vectors are linked by the relation: 

 ΦJv xyxy
 ,  (10) 

where xyJ  is a 2 by 3 matrix, of which lines are identical to 

the two first lines of the matrix J. 

 
Fig. 2. Mapping of the unit cube using the matrix Jxy. 

 

 
Fig. 3. Projection of the 3D parallelepiped onto the (Vx, Vy) plane. 

 
In such a case, let us consider the transformation g: x  

Jxy x. The image of the unit sphere by the transformation g is 
an ellipse, and the image of the unit cube is a hexagon (Fig. 
2). Indeed, this hexagon is the projection of the 
parallelepiped of Fig. 1 onto the (Vx, Vy) plane (Fig. 3). Six 
of the edges of the unit cube are transformed into the six 
edges of the hexagon. The six others edges of the cube are 
transformed into six other lines inscribed inside the surface 
of the hexagon. Moreover, six of the eight vertices of the 
cube are transformed into the six vertices of the hexagon. 
The images of the two other vertices of the cube are located 
inside of the hexagon. 

So the problem remains to find the smallest and largest 
distances from the origin to the edges of the hexagon. Factor 

max
vk  is defined as the largest distance from the origin of the 

frame to the hexagon. Therefore, max
vk may be written as: 

 ))((maxmax
j

j
vk eqJ xy , for j = 1 to 4 (11) 

where ej are defined at Eq. (2). 

Factor min
vk  is the smallest distance between point O and 

the edges of the hexagon.  
Let us decompose the Jacobian matrix Jxy into three 

vectors I1, I2 and I3 such as: 
  321xy IIIJ  . (12) 

The edges of the hexagon are the image by the 
transformation g of the edges of the unit cube, i.e. there are 
attained when at least two actuators are at their maximal 

velocity max
i  ( 1max i , i = 1, 2, 3). Therefore, the 

parameterized expressions of the edges of the hexagon may 
be found among these expressions, for any ]1,1[  : 

   )()()()( mTm
ijk

m
ijk

m
ijk yx 21 JJV   ,  (13) 

for m = 1 to 4, and i, j, k = 1, 2, 3, i ≠ j, i ≠ k, j ≠ k,  
where 
 iIJ1  , (14a) 

 kj IIJ 2 )1( , kj IIJ 2 )2( , (14b) 



 
 

 

 kj IIJ 2 )3( , kj IIJ 2 )4( . (14c) 

The minimal distance min
ijkmV  =  )(min m

ijkV  from the origin 

to any point belonging to the edges of the hexagon may be 
obtained by a similar way as that presented in the previous 
section. Its expression is identical to that given at Eq. (8), for 
m = 1 to 4; i, j, k = 1, 2, 3 with i ≠ j, i ≠ k, j ≠ k. 

It is necessary to find the value min
vk  among all these 

twelve expressions. The six smallest values for the distances 
)(m

ijkV  should be disregarded, because they do not 

correspond to distances between the origin of the frame and 

the edges of the hexagon. The value of min
vk  will be found as 

the seventh smallest value among the distances )(m
ijkV . 

3. Performance measure 

Here, let us propose to redefine the global kinematic 
metric by using the above notion of the “largest inscribed 
parallelepiped”. For instance, if the velocity transmission 

factors min
vk  and max

vk  are used as the global metrics, the 

manipulator global performance is evaluated by the size of 
the parallelepiped workspace that satisfies the design 

specification min
min vkv   and max

max vkv  , where vmin and 

vmax represent the minimal and maximal desired velocity 
transmission factors in the workspace of the manipulator: 

);( 0WTW abc  (15) 
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T
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min
min

,



vkvk vv  

In the next subsection, we present a performance measure 
for the accuracy of the robot to optimize. 

C. Accuracy transmission factors 

The accuracy of a mechanism depends on different 
factors. However, as pointed out by Merlet [14], active-joint 
errors are the most significant source of errors in a properly 
designed, manufactured, and calibrated parallel robot.  

The classical approach consists in considering the first 
order approximation that maps the input error to the output 
error: 

 ΦJp δδ   (16) 

where  represents the vector of the active-joint errors, p 
the vector of end-effector errors. This method will give only 
an approximation of the end-effector maximum error, but at 
an optimisation stage, this model may be sufficient. 
However, it is preferable to use a safety coefficient on the 
desired accuracy of the platform in order not to have too 
poor accuracy for the finally designed machine. 

From Eq. (16), it may be noticed that this expression is 
similar to the relationship for the velocity, which states that: 

 ΦJv   (17) 

Moreover, it seems obvious that, taking account that the 
accuracy i of one actuator is comprised between – and + 
( being the accuracy of the actuated pair), the method to 
compute the accuracy transmission factors is totally 
equivalent to the computation of the velocity transmission 

factors. Moreover, by normalizing the problem, (i.e.  = 1), 
the accuracy transmission factors are equivalent to the 
velocity transmission factors. 

Once again, the manipulator global performance may be 
evaluated by the size of the parallelepiped workspace that 

satisfies the design specification min
min vk  and 

max
max vk , where min and max represent the minimal and 

maximal desired accuracy transmission factors in the 
workspace of the manipulator: 

);( 0WTW abc   (18) 

 WWTT 0
T
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min
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,


 vv kk  

Let us now deal with the last proposed performance 
measure. 

D. Force transmission factors 

For 3-DOF translational parallel manipulators, the input 
efforts  are related to the forces f applied on the platform by 
the following relation: 

 τJf T  (19) 

From expression (19), it may be noticed that the 
relationship for the accuracy is similar to the relationship for 
the velocity (Eq. (17)), but J–T is used instead to J. 
Moreover, it is also clear that the effort i of one actuator is 
comprised between –max and +max, max being the maximal 
effort admissible by the actuated pair. So, the force 
transmission factors may be computed in the same manner 
as the velocity transmission factors. The maximal and 
minimal force and moment transmission factors will be 

denoted as min
fk and max

fk  respectively 

The manipulator global performance may now be 
evaluated by the size of the parallelepiped workspace that 

satisfies the design specification min
min fk f   and 

max
max fk f  , where fmin and fmax represent the minimal and 

maximal desired accuracy transmission factors in the 
workspace of the manipulator: 

);( 0WTW abc   (20) 
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T
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,



fkfk ff  

In the next subsection, we show that the velocity and 
force transmission factors are antagonistic and that some 
zone of dominance for these factors may be defined. 

E. Duality between force and velocity transmission 
factors 

From Eqs. (17) and (19), it may be noticed that if the 
velocity and force transmission factors were computed as 
usual as the minimal and maximal eigenvalues of J and J–T, 
the following equivalence would have existed: 

 maxmin /1 vf kk   and minmax /1 vf kk   (21) 

Such reciprocity allows us defining some zones of 

dominance between the parameters min
fk  and max

vk  ( min
vk  and 

max
fk , resp.) that are separated by a hyperbola. The zone 



 
 

 

upside the hyperbola corresponds to the zone where max
vk  > 

min/1 fk  ( max
fk  > min/1 vk , resp.), i.e. in this zone, the 

inequality max
max vkv   of Eq. (15) ( max

max fk f   of Eq. (20), 

resp.) is unnecessary because the limit fmin (vmin, resp.) of 

parameter min
fk  ( min

vk , resp.) is more constraining. On the 

contrary, the zone downside the hyperbola is the zone where 

the parameter max
vk  ( max

fk , resp.) is dominant. 

Theses assertions are quite simple when considering the 
transmission factors defined as the eigenvalues of J and J–1. 
But, as presented above, these factors are defined differently 
and expression (21) is not valuable. But, as it will be 
observed in part V, some zones of dominance between the 
parameters may be found and these zones seem to be 
separated by hyperbolas. 

IV. DESIGN PROCEDURE 

The first step of the design procedure is to evaluate the 
value of the scale factor µ defining the size of the workspace 
Wabc for the design parameters  and the constraints . The 
problem of the estimation of the largest cuboid-shaped sub-
workspace, where the relevant criterion is higher or lower of 
the desired value, may be solved numerically, using the 
workspace discretisation and applying the dynamic 
programming. 

Let us define the workspace grid {Gijk} that includes the 
manipulator workspace W0 = {a0 × b0 × c0} and possesses 
uniform but differents steps along the Cartesian axes, 
namely (a0/N0; b0/N0; c0/N0), where N0 defines the 
discretisation precision. Besides, for each node of the grid, 
let us compute relevant local performance measure and 
define a 3D binary matrix ijk  {0, 1}, where ijk = 1 if the 
corresponding design constraint/objective is satisfied, and 
ijk = 0 otherwise. For computation conveniences, let us also 
set ijk = 0 if Gijk  W0. 

Thus, the original problem is reduced to searching for the 
largest cubic submatrix inside of {ijk} containing non-zero 
values only. The latter can be efficiently solved applying the 
following algorithm that operates with additional integer 
matrix {ijk} that defines sizes of the candidate solutions 
with the vertex (i, j, k): 

Step 0. Set ijk = 0, i, j, k 
Step 1. Setijk = ijk, for 
  {i = 1 & j, k}  {j = 1 & i, k}  {k = 1 & i, j}  
Step 2. for i = 2:imax do 
    for j = 2:jmax do 
     for k = 2:kmax do 
      if ijk = 1 then 

















1,1,11,1,1,,1

,1,11,,,1,,,1

,,

,,,,
min1

kjikjikji

kjikjikjikji
ijk  

Step 3. Find d = max(ijk) – 1; (i0, j0, k0) = argmax(ijk) 
Step 4.  Retrieve from the grid {Gijk} the desired cuboid 
bounded by the indices (i0 – d, j0 – d, k0 – d) and (i0, j0, k0).
 

 

Validity of this routine and correctness of the relevant 
recurrent expression can be proved using the standard ideas 
of the dynamic programming, similar to finding the largest 
square block in two-dimensional binary matrix. 

Hence, for each performance measure and each set of the 
design parameters, it can be computed a workspace-based 
metrics composed of the coordinates ranges of the largest 
cuboid-shaped sub-workspace Wabc and of the scale factor µ 
(= µ()) defining the ratio between the size of W0 and Wabc. 

The second step of the design procedure is to find the 
optimal geometry of the robot according to the desired 
objectives fi. For instance, for the geometric, kinematic and 
kinetostatic design, the objective is to minimize the 
manipulator dimensions (links lengths), while the constraints 
define the desired workspace size and the range of the 
velocity, accuracy and effort transmission factors. 

Let us denote as 0 a set of normalized design parameters 
(in most of cases, 0 is not composed of fixed constants 
only, but also of variables). Moreover, for computational 
convenience, let us transform the design constraints and 

present them in the scalar form 0)( kk hh 0π . Then, the 

optimization problem may be rewritten as 
 

0π
0π max)(   (22) 

subject to 0)( kk hh 0π , k. (23) 

At the end of the design algorithm, it will be obtained 
only one value of the scale factor µ, which appear for the 

optimal normalized design parameters opt
0π . In order to get 

the real optimal design parameters opt allowing the real 
robot to have the desired properties into the entire 

workspace W0, the normalized design parameters opt
0π  have 

to be scaled using the factor µ. Thus, such a formulation 
allows considerably simplifying the design optimization 
problem. 

V. APPLICATION EXAMPLES 

A. Industrial problem 
Let us demonstrate the efficiency of our design approach 

on a concrete problem coming from the industrial sector of 
the region of Nantes (France). One of the most important 
activity areas of this region is the manufacturing of 
bathroom components (shower cabin, washbasin, bathtub, 
etc. – Fig. 4). Most of parts used during the assembly 
process of the bathroom component are flat and made of 
thermosetting materials. The main operations achieved on 
these parts is trimming, i.e. the suppression of the edges of 
the parts in order to obtain a good surface roughness. 

The machines tools that are used for the trimming of these 
bathroom components must be designed such as they attain 
the following characteristics: 

- workspace Wabc of size {2.5 m × 2.5 m × 0.5 m}; 
- ||vxy|| = 60 m/min, ||fxy|| = 300 N and ||pxy|| = 0.25 mm 

(fxy and pxy are the components of vectors f and p in 
the xy plane). 

From these requirements, and from our industrial 
 



 
 

 

       
 

Fig. 4. Typical examples of bathroom components manufactured in the 
region of Nantes (France). 

 

experience, several types of robots may be envisaged, such 
as the Y-STAR [15], the UraneSX [16], the Orthoglide [3], 
the Hybridglide [17], the 3-UPU [18], etc. However, 
because the workspace is not a cube, but a flat 
parallelepiped, it appears that only two kinds of 
architectures, that have non-orthogonal arrangement of legs 
and that are already used in machining process, seem to be 
best adapted: the Y-STAR and the UraneSX (Fig. 5). It 
should be mentioned that, in our study, the prismatic guides 
of the UraneSX are vertical. 

B. Comparison between the alternative solutions 

Let us first compare the size of the workspace of the Y-
STAR and the UraneSX in general cases, i.e. for many given 
maximal admissible values of the transmission factors. To 
apply the proposed design approach, let us normalize the 
problem by dividing the size of the workspace by 2.5 m such 
as the normalized workspace W0 is of dimension {1 × 1 × 
0.2} and by taking into account that the length of the legs of 
the mechanisms are identical and equal to 1.  

Taking into account the general design objective, the 
scale factor µ may be optimized1. The results are plotted at 
Figs. 6 and 7. 

It follows from these results that the curves may be 
decomposed into three parts. In the first part (in bright gray), 

the variation of min
fk  has no (or very few) influence on the 

value of µ. Therefore, this zone corresponds to the area 

where max
vk  is the dominant parameter. In the second part (in 

dark gray), the variation of max
vk  has no (or very few) 

influence on the value of µ. Therefore, this zone corresponds 

to the area where min
fk  is the dominant parameter. The third 

zone is the area between the two others, i.e. where none of 
the two parameters are dominating. It may be seen that the 
borders of the two zones of dominance seems to have the 
form of hyperbolic portions of curves, which correlates the 
comments of section III.E on the duality between the 

parameters min
fk  and max

vk .  

The obtained results allow comparing the value of µ for 
the Y-STAR and the UraneSX. It appears that the scale 
factor µ of the Y-STAR is mostly superior than that of the 
 

 
1 In the case of the UraneSX, the scale factor µ depends also on the radius R 
of circumcircle of the base triangle. But, we consider that the value of the 
scale factor is defined as the maximum of µ for any given R. 
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Fig. 5. The robots under study: (a) Y-STAR and (b) UraneSX. 

 
UraneSX, which implies that, for identical workspaces, the 
UraneSX will have legs of size greater than the Y-STAR, 
thus leading to larger deformations of the robot. But, before 
giving final conclusions on these two robots, other 
constraints coming from requirements that take into account 
the entire manufacturing cell should be considered.  

C. Optimization results for bathroom components milling 

For the design of these two robots, actuated prismatic 
tables have to be used. The admissible velocity found in 
manufacturers’ catalogues for long prismatic tables is about 
vt =150 m/min, and their common minimal payload along 
their axis is of ft = 3000 N for ball-screw systems. Moreover, 
the accuracy of these pairs is about at = 0.05 mm. Therefore, 

it was found that min
fk  = ||fxy|| / ft = 0.1, min

vk  = ||vxy|| / vt =0.4 

and  max
vk  = ||pxy|| / at = 5. 

Extracting µ from the previous general results and then 
scaling the robot taking into account that the corresponding 
normalized workspace is equal to µ W0, the lengths of legs 
are obtained. They are of 2.16 m for the Y-STAR and of 
4.62 m for the UraneSX. It is clear here that the Y-STAR 
will have smaller legs, and as a result, potentially a smaller 
loss of accuracy due to deformations, than the UraneSX. 
However, it could be shown that the footprint surface 
needed in order to install the Y-STAR is about two times 
bigger than for the UraneSX. Therefore, it looks more 
attractive to use the UraneSX in order to save some place on 
ground in manufacturing centres. 

VI. CONCLUSIONS 

In this paper, it has been proposed a new methodology for 
the optimal design of parallel kinematic machine tools. It is 
based on the concept of the maximal inscribed 
parallelepiped and uses technology-oriented constraints. To 
compute the parallelepiped, a dedicated combinatorial 
optimization algorithm is proposed. This approach is applied 
on two 3-DOF translational parallel robots: the Y-STAR and 



 
 

 

the UraneSX. An analysis of the size of their workspace as a 
function of the design constraints is made. It is presented 
that, for workspaces with similar properties, the legs of the 
UraneSX are longer than for the Y-STAR, thus leading to 
greater deformations. However, it is shown that the footprint 
surface needed in order to install the Y-STAR is about two 
times bigger than for the UraneSX. Therefore, it may be 
interesting to use the UraneSX in order to save some place 
on ground in manufacturing centres. 

ACKNOWLEDGMENTS 

This work has been supported by the French région Pays 
de la Loire (RoboComposite project). 

REFERENCES 
[1] J.-P. Merlet, “Parallel robots,” Kluwer Academic Publishers, 

Dordrecht, 2000. 
[2] J. Tlusty, J.C. Ziegert, and S. Ridgeway, “Fundamental comparison of 

the use of serial and parallel kinematics for machine tools,” CIRP 
Annals, Vol. 48, No. 1, 1999, pp. 351–356. 

[3] D. Chablat, P. Wenger, and J.-P. Merlet, “A Comparative Study 
between Two Three-DOF Parallel Kinematic Machines using 
Kinetostatic Criteria and Interval Analysis”, 11th World Congress in 
Mechanism and Machine Science, Tianjin, China, 2004. 

[4] L.W. Tsai, “Robot analysis: the mechanics of serial and parallel 
manipulators,” John Wiley and Sons, New York, 1999. 

[5] I.A. Bonev, “The parallel mechanism information center,” available 
from: <http://www.parallemic.org>. 

[6] J. Kim, and C. Park, “Performance analysis of parallel manipulator 
architectures for CNC machining applications,” Proceedings of the 
IMECE Symposium on Machine Tools, Dallas, TX, 1997. 

[7] Ph. Wenger, C.M. Gosselin, and D. Chablat, “A comparative study of 
parallel kinematic architectures for machining applications,” 

Proceedings of the 2nd Workshop on Computational Kinematics, 
Seoul, Korea, 2001, pp. 249–258. 

[8] F. Rehsteiner, R. Neugebauer, S. Spiewak, and F. Wieland, “Putting 
parallel kinematics machines (PKM) to productive work,” CIRP 
Annals 48, Vol. 1, 1999, pp. 345–350. 

[9] C.-M. Luh, F.A. Adkins, E.J. Haug, and C.C. Qui, “Working 
capability analysis of Stewart platforms,” Journal of Mechanical 
Design, Vol. 118, No. 6, 1996, pp. 89–91. 

[10] J.-P. Merlet, “Determination of 6D workspace of Gough-type parallel 
manipulator and comparison between different geometries,” 
International Journal of Robotics Research, Vol. 19, No. 9, 1999, pp. 
902–916. 

[11] X.-J. Liu, J. Wang, and G. Pritschow, “Performance atlases and 
optimum design of planar 5R symmetrical parallel mechanisms,” 
Mechanism and Machine Theory, Vol. 41, No. 2, 2006, pp. 119–144. 

[12] A. Pashkevich, D. Chablat, and P. Wenger, “Design optimization of 
parallel manipulators for high-speed precision machining 
applications,” Proceedings of the 13th IFAC Symposium on 
Information Control Problems in Manufacturing (INCOM’2009), 
Moscow, Russia, 2009, pp. 139–144. 

[13] J.-P. Merlet, “Jacobian, manipulability, condition number, and 
accuracy of parallel robots,” Transaction of the ASME Journal of 
Mechanical Design, 2006, Vol. 128, No. 1, pp. 199–206. 

[14] J.-P. Merlet, “Computing the worst case accuracy of a PKM over a 
workspace or a trajectory,” The 5th Chemnitz Parallel Kinematics 
Seminar, Chemnitz, Germany, 2006, pp. 83–96. 

[15] J.M. Hervé, “Group mathematics and parallel link mechanisms,” 
IMACS/SICE International Symposium on Robotics, Mechatronics, 
and Manufacturing Systems, Kobe, Japan, 1992, pp. 459–464. 

[16] O. Company, and F. Pierrot, “Modelling and design issues of a 3-axis 
parallel machine-tool,” Mechanism and Machine Theory, Vol. 37, 
2002, pp. 1325–1345. 

[17] O. Company, “Machine-Outils Rapides à Structure Parallèle. 
Méthodologie de Conception, Applications et Nouveaux Concepts,” 
PhD thesis, Montpellier University, 2000. 

[18] L.W. Tsai, and S. Joshi, “Kinematics and Optimization of a Spatial 3-
UPU Parallel Manipulator,” Journal of Mechanical Design, Vol. 122, 
No. 1, 2000, p. 5–11. 

(a) 

 

(b) 
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Fig. 6. Values of the scale coefficient µ for the Y-STAR robot as a function of min
fk  and max

vk , for (a) min
vk  = 0.2, (b) min

vk  = 0.4 and (c) min
vk  = 0.6. 

 

(a) 

 

(b) 

 

(c) 

 
Fig. 7. Values of the scale coefficient µ for the UraneSX robot as a function of min

fk  and max
vk , for (a) min

vk  = 0.2, (b) min
vk  = 0.4 and (c) min

vk  = 0.6. 
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