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Abstract 

 

This paper is focused on the study of singularity of planar parallel manipulators taking 

into account the force transmission, i.e. study of singularity of planar manipulator by 

introducing the force transmission factor. Thus the singularity zones in the workspace of the 

manipulator are defined not only by kinematic criterions from the theoretical perfect model of 

the manipulator but also by the quality of force transmission. For this purpose, the pressure 

angle is used as an indicator of force transmission. The optimal control of the pressure angle 

for a given trajectory of the manipulator is realized by means of legs with variable structure. 

The suggested procedure to determination of the optimal structure of the planar parallel 

manipulator 3-RPR is illustrated by two numerical simulations.   

 

Keywords: Parallel manipulator, singularity-free zones, pressure angle, force transmissivity 

analysis  

 

1. Introduction 

 

It is well-known that the closed-loop of parallel manipulators limits the motion of the 

platform and creates special singular zones inside the workspace [1]. The workspace of the 

parallel manipulators which is less than the serial manipulators becomes smaller and limits 

their functional performance. 

One of the most evident solutions of this problem is the introduction in the initial system 

of complementary actuators, which make it possible to eliminate the singular configurations 

of the parallel manipulator by means of optimal control of the motion [2, 3]. However, it is an 

expensive solution to the problem because of the additional actuators and the complicated 

control of the manipulator caused by actuation redundancy. 

In this paper we propose a new solution, which carried out by using mechanisms of 

variable structure, i.e. a mechanism whose structure parameters can be altered. With regard to 

the determination of singularity-free zones inside the workspace we propose a kinetostatic 

approach taking account of the force transmission.    

The physical interpretation of a singularity in kinematics refers to those configurations in 

which the number of degrees of freedom of the mechanical structure changes instantaneously, 

either the manipulator gains some additional, uncontrollable degrees of freedom or loses some 

degrees of freedom. Algebraically, a singularity analysis is based on the properties of the 



Jacobian matrices of the mechanical structure, i.e. when the Jacobian matrices relating the 

input speeds and the output speeds become rank deficient [4-16]. However, it is also well-

known that when the parallel manipulator is close to a singular configuration, it loses the 

stiffness and the quality of motion transmission, as a result, the payload capability. Thus, the 

singularity zones must be avoided and an indicator of the quality of motion transmission close 

to the singular configurations of parallel manipulators must be defined. In the present work 

we use a kinetostatic approach for the evaluation of the quality of motion transmission by 

using the pressure angle, well-known in the mechanism design but not so often applied to the 

parallel mechanisms. One defines the pressure angle as an angle between vectors of force and 

velocity of a point at which the force is applied. Thus for best force transmission it would be 

desirable if the pressure angle will be close to zero. One also knows the transmission angle, 

which is 90° minus pressure angle and accordingly should be desirable if it will be close to 

90°. 

S. Balli and S. Chand [17] considered several examples for determination of transmission 

angle of planar and spatial mechanisms, particularly, for mechanisms with two degrees of 

freedom. G. Sutherland and B. Roth [18] showed that the input link of a spatial mechanism 

tends to move the output link when the transmission wrench is not reciprocal to the output 

link twist. On the base of this consideration a general index of motion transmission for spatial 

mechanisms is proposed. The quality of motion and force transmission was successfully 

summarized in the work of G. Sutherland [19] and C.-C. Lin, W.-T. Chang [20]. The study of 

G. Sutherland and B. Roth [18] was generalized for any spatial single-loop mechanism in the 

recent study C. Chen and J. Angeles [21]. O. Alba-Gomez, P. Wenger and A. Pamanes [22] 

have evaluated the quality of motion in the three degrees of freedom manipulators by means 

of a kinetostatic indicator, which is similar to the pressure angle. Among several works may 

be distinguished also the study of J. Lee, J. Duffy and J. Keler, J. [23].  

The singularity determined from classical approach taking into account only kinematic 

aspects give information about some singular positions in the geometrical sense. However, in 

this case, there is not any information about the zones close to these positions, in which the 

manipulator loses the quality of motion. In this paper the pressure angle are used for 

determination of these zones close to the singular positions, which cannot be reached by 

manipulator.  

The singularity analysis can be executed on the base of velocity equations. The left hand 

side of these equations represents the reciprocal screw products of wrenches acting on the 

moving platform from kinematic chains and the twist of motion of the platform. The right 

hand side represents the reciprocal screw products of the same wrenches and the twists 

corresponding to the actuated kinematic pairs. The singularity of type one exists if all the 

twists of one of the kinematic chains are linear dependent. The singularity of type two exists 

if the wrenches acting on the platform from the kinematic chains are linear dependent. These 

singularities can be detected if the determinants consisting of the Plücker coordinates of 

mentioned twists (the type one singularity) or of mentioned wrenches (the type two 

singularity) are equal to zero [15]. But from the point of view of force transmission invalid 

configuration can appear even when the determinant consisting of the Plücker coordinates of 

the wrenches acting on the moving platform from the kinematic chains is not equal to zero. 

That is why we consider m pressure angles (where m is the degree of freedom) and choose the 

worst of these angles as the criteria of closeness to singularity.  

In the present study, we use the pressure angle as an indicator of the quality of motion 

transmission, and in our opinion such a kinetostatic approach shows the nature of the 

inaccessibility of parallel manipulators’ singular zones better than the kinematic approach. 

 

 



2. The quality of motion transmission and pressure angle  

 

Let us consider a planar parallel manipulator (Figure 1), which consists of the base, the 

output link (the moving platform) and three kinematic chains with two revolute pairs ii BA  ,  

and one prismatic pair iC  )3,...,1( i . Thus, such a manipulator with three actuators (rotating 

or linear) has three degrees of freedom. The moving platform can translate in the xy  plane 

and rotate (angle  ) with respect to an axis perpendicular to the xy  plane. The workspace of 

the manipulator can be defined as the totality of positions that a moving platform can reach. 

However, these accessible positions are limited not only by geometrical parameters and the 

type of actuation of the parallel mechanism but also by force transmission. Especially in the 

configurations close to the singular positions the force transmission becomes unfavorable and 

the transmission of motion can be disrupted, as a result, leads to a breakdown of the parallel 

mechanism or an undesirable motion. The pressure angle is an important criterion for the 

analysis of the inaccessible zone of parallel manipulators.  

However, when the number of links and number of degrees of freedom increase, the 

determination of the pressure angles becomes more complicated. Let us examine the pressure 

angles of the considered manipulator. Let’s consider that the revolute pairs iA  is actuated and 

passive joints are located at iB  and iC . 

 

 
 

Fig. 1. Planar parallel manipulator 3-RPR. 

 

Thus, each kinematic chain includes one actuated and two passive pairs. The wrench 

acting to the output link is reciprocal to the unit vectors situated along the axes of non-

actuated pairs. Let Ei1, Ei2, Ei3 (Figure 2) be the unit vectors of the axes of kinematic pairs, 

where i (i = 1, 2, 3) is the number of the chain.  

Here Ei1 corresponds to rotating actuated pair, Ei2 and Ei3 correspond to sliding and 

rotating passive pairs accordingly (Ei1 and Ei3 directed perpendicular to the plane of the 

mechanism). These unit screws in any position of the mechanism have Plücker coordinates: 

 0100 0

1

0

11 yixii eeE ,  0000 0

2

0

22 yixii eeE ,  0100 0

3

0

33 yixii eeE , 

where Aixi ye 0

1 , Aiyi xe 0

1 , iAiBixi lxxe /)(0

2  , iAiBiyi lyye /)(0

2  , Bixi ye 0

3 , Biyi xe 0

3 , 

xAi, xBi, yAi, yBi are the coordinates of the point Ai and Bi, li is the distance between the points Ai 

and Bi (i = 1, 2, 3). 

 



 
 

Fig. 2. Representation of the planar parallel manipulator 3-RPR in 3D. 

 

For planar mechanisms 3-entries screws can be used [24]. The Plücker coordinates of 

the unit screws can be described in the matrix (E)i (i = 1, 2, 3): 
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The determinant of the matrix (E) vanishes if the axes Ei1 and Ei3 coincide. It means the 

occurrence of singularity when the actuator causes only rotation in the joint Ei3. 

We can obtain the wrenches Ri (i = 1, 2, 3), which are reciprocal to the unit vectors of the 

axes of the passive kinematic pairs [24]. They can be written as:  0000 iziyixi rrrR  (i 

= 1, 2, 3). The conditions of reciprocity are:  
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The equation (1) means that each connecting kinematic chain determines one wrench of 

zero pitch (vector). It is perpendicular to the axis Ei2 and intersects the point Bi. The 

coordinates of wrenches in the form of the matrix (R) is given by: 
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In singular configurations the system of the wrenches Ri degenerates and they intersect in 

the same point or are parallel [25]. It can be shown by the representation of the components of 

this matrix. If all the wrenches are parallel then the first two columns are proportional. If all 

the wrenches intersect in the same point  0WW yxW  then the coordinate 0

izr (i = 1, 2, 3) 

can be written as WyWxiz xryrr 11

0  . In this case in the matrix (R) the third column is a linear 

combination of the first and seconds columns. 

To find the pressure angle we consider the wrenches Ri and the directions of the velocities 

of the points Bi determined by the twists reciprocal to these wrenches. The velocity of the 



point B1 is determined by two wrenches R2 and R3. One can find the twist 

 000 1111 yxz vvwW  reciprocal to the wrenches R2 and R3 using the equations:  

 

00

212121  zzyyxx rwrvrv  ; 00

313131  zzyyxx rwrvrv            (2) 

 

It is obvious that the axis of the twist W1 is situated perpendicular to the plane of the 

mechanism and intersects the center Q1 of velocities of the platform according to the 

wrenches R2 and R3 (Figure 2). Without interruption of generality the twist W1 can be 

expressed as  0100 11 QQ xy  . The velocity VB1 has the coordinates 

111111 BQBzxxB yyywvv  , 111111 BQBzyyB xxxwvv  . If the wrenches R2 and R3 are 

parallel ( xx rr 32  , yy rr 32  , 
0

3

0

2 zz rr  ) then 01 zw  and VB1 is perpendicular to these wrenches 

R2 and R3. Finally, the pressure angle can be written as:  

 

 11111 /arccos RVRV BB                                   (3) 

 

It was noted that in the singular configurations all the pressure angles are equal to 90°. 

Indeed, in this case the axis of the wrench R1 intersects the axes of the wrenches R2 and R3 

and the velocity VB1 is perpendicular to the axis of the wrench R1. 

Thus, the pressure angles can be determined at the joints of each kinematic chain then the 

maximum value of the pressure angles can be compared with their limit values. In this way 

we have mapped whole workspace of the parallel manipulator to detect the inaccessible zones 

with unfavourable values of the pressure angles.    

It should be noted that the singularity analysis can be executed on the base of velocity 

equations. The left hand side of these equations represents the reciprocal screw products of 

wrenches acting on the moving platform from kinematic chains and the twist of motion of the 

platform. The right hand side represents the reciprocal screw products of the same wrenches 

and the twists corresponding to the actuated kinematic pairs. The singularity of type one 

exists if all the twists of one of the kinematic chains are linear dependent. The singularity of 

type two exists if the wrenches acting on the platform from the kinematic chains are linear 

dependent. These singularities can be detected if the determinants consisting of the Plücker 

coordinates of mentioned twists (the type one singularity) or of mentioned wrenches (the type 

two singularity) are equal to zero [15]. But from the point of view of force transmission 

invalid configuration can appear even when the determinant consisting of the Plücker 

coordinates of the wrenches acting on the moving platform from the kinematic chains is not 

equal to zero. That is why we consider m pressure angles (where m is the degree of freedom) 

and choose the worst of these angles as the criteria of closeness to singularity. Thus the 

standard screw method allows the determination of singular positions only in geometrical 

sense. By using the pressure angle we determine the volumes, in which the force transmission 

ability is invalid. 

If the prescribed path of the parallel manipulator intersects any unacceptable zone in 

which the pressure angle has an inadmissible value the transmission of the motion can be 

disrupted. In this case, it is necessary to change the structural parameters of the mechanism, 

i.e. the input motions. It will be shown in the following section. 

 

3. Legs with variable structure 

 

Figure 3 shows a schematic of the modified leg with the added articulated dyad. The 

rotating actuators are mounted on the base and connected by electromagnetic clutches with 



the links ii DA  and iiCA . These two input links cannot actuate simultaneously and the input 

motion can be transmitted either by the link ii DA  or iiCA  (i = 1, 2, 3). In this way we can 

obtain the leg of the mechanisms with different structural parameters, which allow increasing 

the singularity-free zones in the workspace of the considered parallel manipulator. 

 

  

a) b) 

 

Fig. 3. Leg with variable structure: a) input link iiCA ; b) input link ii DA .  

 

By example, one or all of the pairs Ai (Figure 1) can be passive and the prismatic pairs (i = 

1, 2, 3) can be actuated by the chain AiDiCi. In this case, the actuator torque is transmitted to 

the link AiDi, which becomes an input link and moves the prismatic pair.   

It should be noted that the mobility of the modified manipulator is not changed and it is 

always equal to three.  

Let us consider the system of wrenches existing in this case. In the previous case by fixed 

actuator the link BiCi had translation mobility along the axis of the prismatic pair. In this case 

the link BiCi is constrained by two wrenches of zero pitch Ti1 and Ti2. The wrench Ti1 is 

reciprocal to the unit screws of the axes of two kinematic pairs. One of them is rotating and its 

axis intersects the plane of the mechanism in the point Ai. The second of them is prismatic and 

its axis is directed along the line AiBi. The Plücker coordinates of the unit screws of the axes 

of these kinematic pairs are the same as the coordinates of 1iE and 2iE of the previous case. 

Therefore the axis of the wrench Ti1 is perpendicular to the line AiBi and intersects the point 

Ai.  

The wrench Ti2 is reciprocal to the unit screws of the axes of two rotating kinematic pairs 

Ci and Di. Therefore the axis of the wrench Ti2 coincides with the axis of the link CiDi.  

The unit screw  0100' '0

2

'0

22 yixii eeE  of the twist of the link BiCi is reciprocal to 

the wrenches Ti1 and Ti2. This twist is of zero pitch and is perpendicular to the plane of the 

mechanism. Corresponding to this the point of intersection of the wrenches Ti1 and Ti2 

coincides with the point of intersection of the axis E’i2 and the plane of mechanism. If the link 

CiDi is perpendicular to the link BiCi then the wrenches Ti1 and Ti2 are parallel and the 

instantaneous motion of the link BiCi is translational. The wrench  0000 iziyixi rrrR  

(i = 1, 2, 3) can be determined using the equation analogous to (1). The pressure angle can be 

found using the equation (3). 

Thus, in each position we determine m pressure angles corresponding to all m degrees of 

freedom. Then we consider the maximum value of these angles. By such a way, we can 

determine the pressure angles corresponding to the different structures distinguished by 

different input links and obtain all possible workspace with singularity-free zones. It is 

examined in the next section. 

 

 



4. Numerical plotting of singularity-free zones taking account of pressure angle  

 

In this section we would like to show the singularity-free zones in the workspace of 3-

RPR parallel manipulator with modified legs. These zones have been determined by using the 

maximum values of the pressure angles.  

For numerical simulation we consider 3-RPR parallel manipulator in which the basic 

triangle 321 AAA  is equilateral with radius 0.35 m (Fig. 1) and the platform also represents an 

equilateral triangle with radius 0.1 m. In other words the centers of the joints mounted on the 

frame are disposed on the circle with radius 0.1m. The rotation of the revolute joints iA  is 

limited to  90  respect to the orientation of links AiDi with the mechanism in the central 

symmetric configuration. For added dyads mDCDA iiii 25.0 , the articulated dyads are 

always located on the left of the prismatic pairs as it is shown in Figure 3 and the translation 

of the prismatic pairs are limited relative to the joints iA  and iC  by values  

  mCBCA iiii 05.0)(
minmin  . 

Taking into account that the manipulator can be actuated either by links ii DA  or by links 

ii BA , for given output parameters T),,( yxx  of the platform, we have 8 different 

combinations of actuation, i.e. we have 8 different combinations of input parameters 

presented below (underlined letters show the input pairs, “R” for input links ii BA  with input 

angles i  and “P” for input links ii DA  with input displacements i ): 
 

 T),,( yxx  

RRR : RPR- RPR- RPR : 
T

32)1( ),,( 1q   

RRP : RPR- RPR- RPR : 
T

32)2( ),,( 1q   

RPR : RPR- RPR- RPR : 
T

32)3( ),,( 1q   

RPP : RPR- RPR- RPR : 
T

32)4( ),,( 1q   

PRR : RPR- RPR- RPR : 
T

32)5( ),,( 1q p  

PRP : RPR- RPR- RPR : 
T

32)6( ),,( 1q   

PPR : RPR- RPR- RPR : 
T

32)7( ),,( 1q p  

PPP : RPR- RPR- RPR : 
T

32)8( ),,( 1q p  

 

Tables 1 and 2 show the workspaces of each case of actuation with 0° and 45° orientation 

angles (the origin of the fixed base frame is located at the centre of the equilateral triangle 

321 AAA ). In these figures, several zones can be seen, which correspond to the variations of 

the maximum values of the pressure angle for given position of the platform. The contrast 

intensity shows the variations of the pressure angle (see Figure 4). 

 

 
 

Fig. 4. The contrast intensity corresponding to the pressure angle.  



Thus, the black zones are the surfaces where the pressure angle has inadmissible values, 

and as a result, these are the zones, which cannot be reached by the parallel mechanism.  



Table 1 

Maximum values of the pressure angles (  0 ) 

  
(a) Actuators: RRR (b) Actuators: PPP 

  
(c) Actuators: PRR (d) Actuators: RPP 

  
(e) Actuators: RPR (f) Actuators: PRP 

  
(g) Actuators: RRP (h) Actuators: PPR 



Table 2 

Maximum values of the pressure angles (  45 ) 

  
(a) Actuators: RRR (b) Actuators: PPP 

  
(c) Actuators: PRR (d) Actuators: RPP 

  
(e) Actuators: RPR (f) Actuators: PRP 

  
(g) Actuators: RRP (h) Actuators: PPR 



The table 3 shows the ratio between the total value of singularity-free volumes and the 

total workspace for each case of actuation (for two examined cases:  0  and  45 ).     

 

Table 3 

Total value of singularity-free volumes for each case of actuation 
 

Type of 

actuatio

n 

= 0 deg (workspace surface: 0.21 m²)  = 45 deg (workspace surface: 0.2 m²) 

Singularity-free 

zones (m²) 

Singularity-free 

zones relative to 

the whole 

workspace 

Singularity-free 

zones (m²) 

Singularity-free 

zones relative to the 

whole workspace 

RRR 0.137 65% 0.147 74% 

PPP 0.181 86% 0.152 76% 

PRR 0.152 72% 0.158 79% 

RPR 0.152 72% 0.158 79% 

RRP 0.152 72% 0.158 79% 

RPP 0.155 74% 0.165 83% 

PRP 0.155 74% 0.165 83% 

PPR 0.155 74% 0.165 83% 

 

Figure 5 shows the reachable workspace of the modified parallel mechanism with legs of 

variable structure. We can see that the workspace of the modified manipulator is only 

composed of singularity-free zones and the whole workspace of the manipulator is reachable 

(increase until 100%).      

 

  
(a)  = 0 deg (b) f  = 45 deg 

 

Fig. 5. The reachable workspace of the parallel manipulator with modified legs.  

 

5. Trajectory planning and design procedure for determination of optimal leg structure   

 

In order to obtain the best structural architecture of the manipulator for a given trajectory, 

in this section we describe a procedure, which allows determining the optimal system of 

actuation. This algorithm is based on the control of the pressure angles in the joints of the 

manipulator along the given trajectory (Fig. 6). 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Procedure to determination of the optimal structure of the parallel manipulator 

taking into account the limit pressure angle. 

 

Two numerical examples are considered below in order to illustrate the application of 

the suggested design procedure.    

Problem No. 1. For given parallel manipulator (Fig. 1) with legs of variable structure 

(Fig. 3) generate the trajectory by straight line from the initial position 

)0 ,0 ,0( 1111  yxP  to the final position  )0 ,0 ,25.0( 2222  ymxP .    

The estimation of the pressure angle along the given trajectory shows that the best 

structural solution for generation of motion is the RPR- RPR- RPR mechanism, i.e. when the 

first actuator is connected with the link 11CA  and two others with the links 22 DA  and 33DA . 

In this case the maximum values of the pressure angles in the joints are always less than the 

limit value.   

In order to illustrate the variations of torques for examined case we develop a model of 

the manipulator with the given trajectory using the ADAMS software. A force parallel to the 

x-axis and equal to 100 N was applied to the platform and the friction coefficients in the 

prismatic pairs were equal to 0.01. The obtained torques are shown in Figure 7. We can note 

that the torques have admissible values along the trajectory. 

YES 

 

Input data: the geometrical parameters of the 

parallel mechanism, the given trajectory and 

the limit value of the pressure angle  
 

Estimation of the pressure angles in the joints 

along the trajectory for all possible structures 

of the parallel mechanism with variable 

architecture  

(pressure angles are less than the limit value) 

This parallel manipulator 

cannot carry out the given 

trajectory 

The possibility of the motion generation by one 

structure for which the maximum value of the 

pressure angle along the trajectory is always 

less than the limit value   

 
     Trajectory planning 

Decomposition of the given trajectory in 

several parts and generation of the motion by 

different structures (it would be desirable if the 

trajectory can be realized by minimal structural 

changes)    

NO 

YES 

NO 



   

(a) Actuator 1 (a) Actuator 2 (a) Actuator 3 

 

Fig. 7. Torques of the actuators. 

 

Problem No. 2. For given parallel manipulator (Fig. 1) with legs of variable structure 

(Fig. 3) generate the trajectory by straight lines from the initial position 

)0 ,0 ,0( 1111  yxP  to the second position  )0 ,25.0 ,1.0( 2222  mymxP  and then 

to the final position )0 ,25.0 ,1.0( 3333  mymxP .  

In this case, the estimation of pressure angle shows that it is impossible to carry out the 

given trajectory by one structural system. In a first time, the trajectory from initial position 

)0 ,0 ,0( 1111  yxP  to the second position  )0 ,25.0 ,1.0( 2222  mymxP  must be 

carried out by the RPR-RPR-RPR mechanism then from the second position 

)0 ,25.0 ,1.0( 2222  mymxP  to the final position )0 ,25.0 ,1.0( 3333  mymxP  

by the RPR-RPR-RPR mechanism. Thus the suggested solution based on these structural 

architectures allows obtaining the optimal actuation system of the manipulator considering the 

pressure angle.  

The obtained torques are shown in Figure 8. We can note that the torques have 

admissible values along the trajectory but there is a discontinuity in the point 
2P  caused by 

the structural change of the parallel mechanism. 

 

   

(a) Actuator 1 (a) Actuator 2 (a) Actuator 3 

 

Fig. 8. Torques of the actuators. 

 

It should be noted that the mechanism of variable structure shown above was developed 

by means of the added articulated dyads, but, it is obvious that such a mechanism can be 

designed on the base of the screw or cam systems, the rhombic pantographs, etc. 

In a similar way one obtains the increase of singularity-free zones in the workspace of 

parallel manipulators only with revolute pares. In Fig. 9 is illustrated a 3-RRR parallel 

manipulator with the legs of variable structure. 

 



 
 

Fig. 9. Planar parallel manipulator 3-RRR with legs of variable structure. 

 

The rotating actuators are mounted on the base and connected by electromagnetic clutches 

with the links iiCA  and ii DA . These two input links cannot actuated simultaneously and the 

input motion can be transmitted either by the link iiCA  or ii DA  (i = 1, 2, 3). In this way we 

can obtain the leg’s mechanisms with different structural parameters and carry out the given 

trajectory taking into account the limit value of the pressure angle. We shall not treat the 

procedure of resolution that it differs from the previous case only by determination of the 

pressure angle.   

 

6. Conclusions 

 

A procedure for the increase of singularity-free zones in the workspace of planar parallel 

manipulators has been presented in this paper. The procedure is based on the known 

kinematic singularity equations and the control of the pressure angles in the joints of the 

manipulator along the given trajectory of the platform. The zones, which cannot be reached 

by the manipulator, were detected. For increase of the reachable workspace of the manipulator 

the legs of variable structure were proposed. Such a solution allows obtaining the best 

structural architecture of the manipulator for any trajectory. The design of the optimal 

structure of the planar parallel manipulator 3-RPR was illustrated by two numerical 

simulations. We believe that the suggested method is a useful tool for the improvement of the 

functional performance of parallel manipulators with singular zones.      

Finally, it should be noted that the same problem for spatial parallel manipulators was 

studied in [26]. 
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