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Pantopteron: a New Fully-
Decoupled 3-DOF Transla-
tional Parallel Robot 
for Pick-and-Place Applica-
tions 
 
In this paper, a novel 3-DOF fully decoupled translational parallel robot, called the Pan-
topteron, is presented. This manipulator is similar to the Tripteron Cartesian parallel 
manipulator, but due to the use of three pantograph linkages, an amplification of the ac-
tuators displacements is achieved. Therefore, equipped with the same actuators, the mo-
bile platform of the Pantopteron moves many-times faster than that of the Tripteron. This 
amplification is defined by the magnification factor of the pantograph linkages. The 
kinematics, workspace and constraint singularities of the proposed parallel robot are 
studied in detail. Design considerations are also discussed and a possible prototype is il-
lustrated. 
.  

 
1. Introduction 

Less than a decade ago, any known parallel robot with three or 
more degrees of freedom (DOF) was inevitably associated with 
nonlinear highly-coupled kinematics, singularities, and a com-
plex-shaped workspace. In May 2001, a revolutionary simple 3-
DOF translational parallel robot, with fully-decoupled input-
output equations, was disclosed by Gosselin and Kong in a Cana-
dian provisional patent application. Its simplest design, illustrated 
in Fig. 1(a), is basically a Cartesian robot and is therefore iso-
tropic (its Jacobian matrix is diagonal and constant). After careful 
investigation, Kong and Gosselin, helped by the second author of 
this paper, drafted a patent application that covers all possible de-
sign variations. Each of these variations, named Tripteron, is now 
patent protected in many countries, including USA [1]. 

Later in 2002, Carricato and Parenti-Castelli [2] and Kong and 
Gosselin [3][4] proposed separately a large family of decoupled 
3-DOF translational parallel mechanisms, all covered by the 
above-mentioned patent. At the same time, Kim and Tsai [5] pre-
sented independently the simplest member of this family (the one 
shown in Fig. 1(a)).  

Who among these three groups of researchers was the first to 
invent the 3-DOF isotropic parallel robot is not the subject of this 
paper. In fact, a synthesis of possible legs for the mechanism in 
Fig. 1(a) was presented in [6] as early as in 1991. What is obvi-
ous is that the year 2002 marked the beginning of worldwide 
research activities on isotropic parallel mechanisms. 

The most prolific author on this subject, Gogu, wrote dozens of 
papers and even a 700-page manuscript [7] proposing isotropic 
architectures for nearly all combinations of translational and rota-
tional degrees of freedom. Among these papers, reference [8] 
proposes other variations of the Tripteron family. Specific mem-
bers 
 

 
(a) the directions of the actuators are orthogonal. 

 
(b) the directions of the actuators are parallel. 

Figure 1. Two versions of the Tripteron. 
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from the Tripteron family were studied in detail in many works 
(e.g, [9][10] [11][12][13]). 

The basic Tripteron parallel robot consists of three identical 
legs. Each leg has a base-mounted actuator, allowing translation 
along a fixed direction, and a planar chain. To make the mecha-
nism isotropic, the planes of motion of the three planar chains 
should be orthogonal. Some of the joints of the planar chains may 
actually be replaced with higher-degree pairs, such as a universal 
joint, but this has no effect on the kinematics of the mechanism. 

In the basic Tripteron, the displacement of the mobile platform 
along a given Cartesian axis is directly proportional to the dis-
placement of each linear actuator. When the plane of the planar 
chain in a leg is normal to the direction of the corresponding lin-
ear actuator (as in the mechanism of Fig. 1(a)), there is a one-to-
one relationship, and the Jacobian matrix is the identity matrix. 
Otherwise, larger displacements are needed from the actuators to 
produce smaller motions at the mobile platform (as in the mecha-
nism of Fig. 1b). 

However, as we recently witnessed with the commercialization 
of the Quattro robot by Adept Technology [14], the only way to 
compete the hugely successful Delta pick-and-place robot [15] is 
to offer an even faster design. Hence, it would have been great if 
we could build a Tripteron with an amplification factor. Not only 
would this robot be isotropic, but it may move several times 
faster than its linear actuators. 

This paper is the first to provide such a solution through the 
use of pantographs. Of course, the proposed design is more com-
plicated than the simplest Tripteron of Fig. 1(a), but this seems to 
be a reasonable price to pay. Indeed, the proposed design is the 
result of a large study on the synthesis of parallel manipulator us-
ing pantographs [16]. One such manipulator was already success-
fully built and proves the viability of using pantographs [17]. 

The paper is organized as follows. Next, the kinematics of the 
proposed design, named the Pantopteron, is presented. The struc-
ture is described and its movements are analyzed, as well as their 

singularities. Then, its workspace is studied and various design 
considerations are given. Finally, conclusions are drawn. 

2. Kinematic Analysis 

2.1. Description of the architecture 

The architecture of the Pantopteron is schematized in Fig. 2. It 
is composed of three identical legs which correspond to panto-
graph linkages (Fig. 3).  

The pantograph is a mechanical system with two input points, 
Ai and Bi, and one output point Ci (in the remainder of this paper, 
i = 1, 2, 3). These input points linearly control the displacement 
of the output point Ci. A kinematic analysis shows that a linear 
actuator connected with input point Bi controls the vertical dis-
placement of the output point Ci and another linear actuator with 

 
Figure 2. Schematics of the Pantopteron. 

 
Figure 3. Schematics of a leg of the Pantopteron. 
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an axis parallel to a1i controls the displacements along the same 
axis. Note that these motions are completely decoupled, i.e., they 
can be carried out independently. The input/output relationships 
for displacements are linear and are determined by the magnifica-
tion factor k of the pantograph (k = AiCi/AiBi). These properties of 
the pantograph mechanism are used in the Pantopteron.  

For the Pantopteron, the actuators are located at the linear pairs 
(1i) (Fig. 3). These three pairs are connected to the base so that 
their axes are orthogonal. All other joints are passive. Each pan-
tograph linkage is attached to the platform at point Ci via a Car-
dan joint, the axes each joint (12i) being orthogonal. They also 
are connected to actuator (1i) via a revolute joint, which allows 
the leg to have five DOFs, three translations and two rotations 
about the axes of the Cardan joint located at Ci. Such an architec-
ture allows three fully-decoupled translational DOFs. This will be 
now proved. 

 
2.2. Mobility analysis 

Let x, y, z be the axes of the base frame (Fig. 2). Without loss 
of generality, let us consider the displacements of the platform 
when legs 2 and 3 are disconnected, as well as the actuator M1 lo-
cated at pair (1,1). A simple analysis could show that the platform 
has five passive DOFs, three translations and two rotations (one 
about the axis of pair (11,1) and another about the axis of pair 
(12,1)). Therefore, leg 1 applies one wrench on the platform that 
constrains its displacements. This wrench is the reciprocal screw 
to the twists of each passive displacement of the platform. 

We denote as ej (j = 1 to 5) the unit screw corresponding to the 
passive displacement of the platform. The expression of these 
screws, expressed in the base frame at point C1, can be written as: 
-  for the translations along x, y and z, 

[ ]T00100011 =e , [ ]T01000021 =e  and 

[ ]T10000031 =e ; 
-  for the rotations about the axes of pairs (12,1) and (11,1), 

[ ]T000sinsinsincoscos 1111141 γθγθγ=e  and 

[ ]T000cossin0 1151 θθ−=e , where θ1 is the angle 
between a11 and y axes, and γ1 represents the rotation between 
vector a31 and the axis of pair (12,1). 
The Plücker coordinates of the unit screws can be described in 

matrix E1 as 
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The wrench r11, transmitted to the platform by the leg, is or-
thogonal to the twists composing the lines of matrix E1: 

[ ]Tzyx rrr 000111111=11r  (2) 
with 

111 sin γ−=xr  (3a) 

1111 coscos γθ=yr  (3b) 

1111 cossin γθ=zr  (3c) 
Thus, r11 is a wrench of zero pitch (a pure moment). 

Similarly, it is possible to find that the wrenches r1i transmitted 
to the platform by the legs when all actuators are disconnected 
are all pure moments. Let Q be the matrix composed of these 
wrenches applied on the platform by the legs. The expression of 
Q in the base frame, and expressed at point O, is: 
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The twists defining the passive displacements of the platform 
are orthogonal to this matrix of rank equal to 3. In the general 
case, there are three independent passive displacements, which 
are the three translations about x, y and z axes. Thus, the platform 
is constrained by the legs to have only translational displace-
ments. 

Note that, in some cases where the three wrenches are linearly 
dependant, the platform gains one additional DOF. This case will 
be treated later, in the section about singularities.  

Let us now consider that the actuator M1 located at pair (1,1) is 
fixed. So, due to the decoupling properties of the pantograph link-
ages, the position about x axis of point C1 is fixed. Thus, the plat-
form has now two passive translational DOFs, which are or-
thogonal to the x axis. Therefore, a supplementary constraint is 
applied on the platform, which restrains its displacement. 

Using an approach similar to the previous one, the second 
wrench applied by the leg on the platform, expressed at point C1, 
is [ ]T001000=21r . 

By a similar analysis, is can be seen that, when the three legs 
are connected to the platform and the actuators Mi are fixed, six 
wrenches (r11, r21, r12, r22, r13, r23) are applied on it. Let us de-
note by R the matrix composed of these wrenches applied on the 
platform by the legs. The expression of R in the base frame, and 
expressed at point O, is: 
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In this expression, θ1, θ2 and θ3 are the angles between vectors 
a11, a12 and a13 and y, z and x axes, respectively. Note that, ana-
lyzing the condition of orthogonality on the axes of pairs (12i), it 
could be proven that angles γi are constrained to be equal to 0. 
Therefore, these terms disappear from Eq. (5). 

Without loss of generality, let us consider that actuator M3 is 
disconnected. Thus, the manipulator gains one passive DOF. The 
twist corresponding to this passive DOF is the screw t1 which is 
orthogonal to the five wrenches applied on the platform, 

[ ]Tzyxzyx vvvωωω=1t  (6) 

where ωx, ωy, and ωz correspond to the rotational velocities of the 
platform about x, y and z axes, and vx, vy and vz to its translational 
velocities along x, y and z axes. If t1 is a passive motion, the fol-
lowing relation must hold: 
[ ] 0trrrrr 11322122111 =T  (7) 

As, in Eq. (7), there are five equations for six unknowns (the 
components of t1), the system admits an infinity of solutions. 
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Thus, without loss of generality, let us fix the value of vz to 1. 
Rearranging Eq. (7) yields: 
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from which, if the matrix is non-singular, t1 can be found as 
[ ]T100000=1t  (9) 

We would like to mention that the case where the matrix R’ is 
singular will be studied later, in the section about singularities. 
Thus, throughout the workspace of the mechanism, the permitted 
passive motion of the platform when actuator M3 is disconnected 
is a free translation along the z axis. Thus, actuator M3 controls 
the translation of the platform along the z axis. Moreover, as the 
axis of actuator M3 is also directed along the z axis, it becomes 
obvious that, due to the copying properties of the pantograph 
linkage, a displacement of actuator M3 is transformed on a dis-
placement of the platform along the same direction, but amplified 
by the pantograph linkage. 

By similar analyses, it could be proved that actuator M1 (resp. 
M2) controls the translation of the platform along the x axis (resp. 
the y axis). Moreover, a displacement of actuator M1 (resp. M2) is 
transformed on a displacement of the platform along the same di-
rection, but amplified by the pantograph linkage. 

Thus, the input-output relations for this manipulator are linear, 
and it belongs to the family of the fully-decoupled 3-DOF transla-
tional parallel mechanisms. 

 
2.3. Geometric and kinematic models, and singularity 
analysis 

The origin O of the base frame is fixed such that it coincides 
with point P of the platform when all linear actuators have zero 
length. It is also considered that an increasing actuator’s length 
displaces the platform along the positive part of the correspond-
ing base frame axis. Therefore, the following trivial system of de-
coupled linear equations governs the movement of the Pantop-
teron: 

( ) 111 axkx G −−= ρ  (10) 
( ) 222 byky G −−= ρ  (11) 
( ) 333 czkz G −−= ρ   (12) 

where k is the magnification factor of the pantograph linkages, x, 
y and z are the coordinates of point P of the platform along x, y 
and z axes respectively and ρi is the length of actuator i, xG1, yG2 
and zG3 are coordinates of points Gi of the platform along x, y and 
z axes respectively and a1, b2 and c3 are constant terms defining 
the shape of the platform (see Eq. (22)). 

Since k ≠ 0, the above system of independent equations can be 
inverted to give the trivial solution to the inverse kinematics of 
the Pantopteron. 

Though simple as it is, the system of independent equations 
(10-12) can be rewritten in matrix form as 

cqJx +=  (13) 
where x = [x, y, z]T is the vector of output Cartesian coordinates 
and q = [ρ1, ρ2, ρ3]T is the vector of input coordinates, and: 

 

 
 

Figure 4. Example of leg singularities. 
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[ ]TGGG czkbykaxk 332211 +++−=c  (14b) 
Differentiating Eq. (13) leads to 

qJx && =  (15) 
Hence, J is the Jacobian matrix of the Pantopteron. Recall that 

the terms of the Jacobian matrix of the fastest Tripteron are equal 
to 1. Therefore, the Pantopteron displaces k times faster than the 
Tripteron (where k is obviously greater than 1). It is also clear 
that due to this property, and to the greater number of joints in 
comparison with the Tripteron, the accuracy of the proposed ro-
bot will be lower. However, the purpose of this robot is not to be 
more accurate, but to be much faster. 

One type of singularities occurring in the proposed mechanism 
is due to the degeneracy of the kinematics of the pantograph legs. 
Such singularities appear when: 

- the parallelograms BiDiEiFi degenerates into a line; near 
such case of singularity, the efforts in the revolute joints 
located at Ei, Fi, Di and Bi grow considerably, so it has to 
be avoided by limiting the angle between links (AiEi) and 
(EiCi); 

- points Ai, Bi and Ci are aligned along the same axis (Fig. 
4); in such a case, given one position of the platform, 
there are infinity of orientations for the pantograph link-
age. Moreover, if during a displacement of the mecha-
nism, a leg comes close from this singularity, the angular 
velocity of the pantograph linkage around the axis defined 
by segment (GiBi) becomes very high. Therefore, the 
neighbourhood of such configurations should be avoided 
by limiting the displacement of pair (9i). 

These two kinds of singularity define the boundaries of the 
workspace. They are similar to the singular configurations that 
we can meet in the Tripteron. 

A second case of singularities appears if the system of 
wrenches applied on the platform degenerates, i.e., if the matrix 
R of Eq. (5) becomes singular. Such a singularity is called a con-
straint singularity [18]. This happens if: 

0sinsinsincoscoscos)det( 321321 =+= θθθθθθR  (16) 
In such a case, the three moments applied on the platform are 

linearly dependant, i.e., their axes are parallel or coplanar. Thus, 
the platform becomes unconstrained and it gains one supplemen-
tary DOF. 

 Let us observe the example presented on Fig. 5. The axis a11 is 
parallel to the y axis and axes a12 and a13 are parallel to the x axis. 
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Thus, the gained DOF of the platform is a rotation about an axis 
parallel to the z axis. 

Expressing equation (16) in the Cartesian space, it becomes: 

0)()()(

)()()()det(

321

332211
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=
ΓΓΓ
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=
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where 
2

11
2

111 )()( GCGC zzyy −+−=Γ  (18) 

2
22

2
222 )()( GCGC xxzz −+−=Γ  (19) 

2
33

2
333 )()( GCGC yyxx −+−=Γ  (20) 

In these expressions, xCi, yCi, zCi, xGi, yGi, zGi correspond to the 
coordinates of points Ci and Gi about x, y and z axes, respec-
tively. Disregarding the case where Γi tends to infinity, singulari-
ties appear when: 

0)()()(
)()()(
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=−−−+
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GCGCGC
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xxzzyy

 (21) 

Taking into account that the terms xGi, yGi, zGi appearing in (21) 
are constant and that  

T
iii

T
i cbazyx ],,[],,[ +=OC   (22) 

where ai, bi, ci are constant terms, Eq. (21) can be rewritten under 
the form: 

087654321 =+++++++ pzpypxpzypzxpyxpzyxp   (23) 
where coefficient pi are constant terms depending on the position 
of points Gi and of the shape of the platform. Fixing the altitude z 
of the platform, Eq. (23) is the expression of a hyperbola, whose 
coefficients depend on the altitude of the platform and on the 
geometric parameters of the mechanism. 

Fig. 6 presents an example of the constraint singularities in the 
workspace of a Pantopteron with the following characteristics: 

- z = 0.5 m; 
- OC1 = [-0.2 m, -0.2 m, 0 m]T, OC2 = [0 m, -0.2 m, 0.2 

m]T, OC3 = [-0.2 m, 0 m, 0.2 m]T; 

 
Figure 6. Example of constraint singularity loci. 

 
- yG1 = zG1 = xG2 = zG2 = xG3 = yG3 = 1 m; 
- the parameters of the pantograph linkages are irrelevant, 

but allow a workspace comprised in the interval x, y ∈ [0 
m, 2 m]. 

We would like to mention that our mechanism, contrary to the 
Tripteron, has constraints singularities. This is due to the fact that 
each leg of the Tripteron is attached to the platform by a revolute 
joint, instead of a cardan joint, which overconstrains the dis-
placement of the platform and allows avoiding such singular con-
figurations. However, it will be shown in the following section 
that, even if the Pantopteron has singularities, they can easily be 
removed from its workspace. 

3. Design Considerations 
In this part, we will perform the analysis of the workspace of 

the mechanism, taking into account the geometric limitations and 
singular configurations, and discuss about some other possible 
architectures based on this mechanism. 

 

 
 

Figure 5. Example of a constraint singularity. 
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3.1. Geometric workspace analysis 

Many parameters influence the size of the workspace of the 
Pantopteron. As the main parameters, we can mention: 

- the lengths of the links of the pantograph; 
- on the locations of the axes of the base-mounted revolute 

joints; 
- the shape of the platform; 
- the maximal stroke of the actuators and of the passive lin-

ear guide; 
- the interference between the links; 
- the singular configurations. 
Using the geometric approach, we will compute the workspace 

of the Pantopteron. As the Pantopteron is a translational parallel 
mechanism, its workspace can be found as the intersection of 
three so-called vertex spaces. 

Analyzing the vertex space of the leg i, it only depends on:  
- the lengths of the links of the pantograph; 
- the maximal and minimal strokes of the actuators and of 

the passive linear guide; 
- the interferences between the links; 
- the singular configurations. 
In a first step, let us concentrate on the boundaries of the work-

space due to the interference of the links and of the singular con-
figurations. As mentioned previously, for a leg, there are two 
types of singularities: 

a. when the parallelogram BiDiEiFi degenerates into a line; 
such a singularity can be avoided by limiting the angle αi 
between the links (AiEi) and (EiCi) of the parallelogram, 
which, in the same time, allows limiting some inferences 
between the links. The maximal and minimal angles will 
be denoted (αi)max and (αi)min, respectively. 

b. when points Ai, Bi and Ci are aligned along the same axis; 
such a case can easily be avoided by limiting the stroke of 
the passive prismatic pair (9i). This minimal stroke will 
be denoted (si)min. 

To avoid interference between the links and the base, a maxi-
mal stroke of the actuator has to be fixed at (ρi)max. 

 

 
 

Figure 7. Displacement of Ci when αi is fixed. 

(a) planar projection of the vertex space. 

 

(b) the 3D vertex space of the leg. 

 

(c) the 3D useful vertex space of the leg. 

Figure 8. Schematics of the vertex space of a leg from the Pan-
topteron. 
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(a) with relatively short legs. 

 

(b) with relatively long legs. 

Figure 9. Workspace of the Pantopteron. 
 

Each leg is mounted in rotation around one axis parallel to a3i. 
Thus, the problem of finding the vertex space can be limited to a 
planar analysis of the minimal and maximal displacements of 
point Ci, the entire vertex space being found by symmetry of 
revolution of these displacements. 

Considering case (a), we have to find the boundaries of the leg 
when angle αi is fixed. Fixing angle αi is equivalent to fixing the 
lengths of segments (AiBi) and (AiCi). These lengths are equal to: 

iEiCiAiEiAiEiEiCiAiCi lllll αcos222 −+=   (24) 
kll AiCiAiBi /=   (25) 

Displacing the prismatic guides, segments (AiBi) and (BiCi) de-
scribe Cardanic motions [19][20]. As a result, for a given angle 
αi, the displacement locus of point Ci is an ellipse E (Fig. 7). 
Thus, considering the extremes (αi)max and (αi)min of angle αi, the 
boundaries of the workspace are given by the ellipses Emin and 
Emax (Fig. 8(a)). 

Cases (b) and (c) are much simpler to analyze. The displace-
ment of point Ci when the passive guide (9i) is at its minimal 
stroke (si)min is a vertical line L1 located at (k-1) times the dis-
tance (si)min from the vertical axis (GiBi) (Fig. 8(a)). The dis-
placement of point Ci when the actuator Mi is at its maximal 
stroke (ρi)max is a horizontal line L2 located at k times the distance 
between the maximal position of point Bi and the position of 
point Ai along the axis a3i, from the axis of the horizontal passive 
guide (9i) (Fig. 8(a)). 

The entire vertex space is represented at Fig. 8(b). On all of 
these figures, two boundaries due to two constraints, which are 
the maximal strokes of the actuated and passive linear joints, are 
not represented. These boundaries are vertical and horizontal 
straight lines. However, in a first step, it is preferable to have the 
largest vertex space for the legs and, thus, to remove these two 
boundaries out of our workspace by a proper design of the stroke 
of the linear guides. 

As researchers, the first thing on our mind was to implement in 
Matlab our geometric method in order to be able to optimize the 

workspace of the Pantopteron by minimizing the lengths of the 
pantograph’s links in each leg. This could be done more promptly 
in a commercial CAD system, such as CATIA [21]. Figure 9(a) 
shows an example of the workspace of a Pantopteron with rela-
tively short legs. We can obtain the best ratio between the lengths 
of the links and the volume of the workspace. A relatively large 
increase of the link lengths will result in only a negligible gain in 
the workspace volume.  

Obviously, it would be a mistake to design a Cartesian parallel 
mechanism with a complex workspace. Thus, our decision is to 
keep the links as long as it takes, so that the workspace of the 
mechanism becomes a simple geometric form, namely a rectan-
gular parallelepiped. In other words, the workspace of a Pantop-
teron with sufficiently long legs has to become a box whose sides 
are of length k ∆ρi (∆ρi being the stroke of actuator Mi), as shown 
in Fig. 9(b). 

In order to obtain such a simple volume, when the three vertex 
spaces are intersected, it is the planar caps that limit the work-
space and not the other surfaces. Of course, we still try to mini-
mize the length of the links, by carefully locating the prismatic 
actuators on the base and properly choosing the dimensions of the 
mobile platform and of the stroke of the actuators. Furthermore, if 
the workspace of the mechanism has to be a parallelepiped, the 
shape of the vertex space has not to be so complicated, and can be 
reduced to a hollow cylinder (Fig. 8(c)). This can be accom-
plished by properly constraining the maximal stroke of the active 
and passive linear guides in order to obtain, in the planar projec-
tion of the workspace, a rectangle denoted as the useful vertex 
space (two possible examples of the useful vertex space are pre-
sented in Fig. 8(a)). 

The size of the workspace of the Pantopteron is the other main 
advantage of the proposed robot. Indeed, the maximal volume of 
the workspace of the Tripteron is V = ∆ρ1∆ρ2∆ρ3 while that of the 
Pantopteron is V = k3∆ρ1∆ρ2∆ρ3, i.e., for the same set of given 
actuators, the workspace of the Pantopteron is k3 times bigger 
than that of the Tripteron. 

Moreover, it is well known that the actuators represent at least 
80% of the global cost of for a robot. For creating a fast mecha-
nism with actuated prismatic pairs, it is now preferable to use 
electric linear actuators that reach higher velocities. However, the 
main drawback of such actuators is their price, which is propor-
tional to the length of their stroke. For a given maximal work-
space, the stroke of the actuators of the Tripteron is k times 
greater than that of the motors of the Pantopteron. Therefore, 
even if the Pantopteron is more complicated to design than a 
Tripteron, its manufacturing cost would likely be lower. 

 
 3.2. Singularity-free workspace 

It is impossible to speak about the workspace of a parallel 
mechanism without dealing with singularities. As seen previously 
from Eq. (23), the singular configurations depend on the position 
of the mobile platform, on the locations of the axes of the base-
mounted revolute joints, and on the shape of the platform. Thus, 
analyzing Eq. (23), there are twelve design parameters which are 
yG1, zG1, xG2, zG2, xG3, yG3, b1, c1, a2, c2, a3 and b3 (we do not con-
sider the lengths of the links of the pantograph linkages as they 
do not influence these singular configurations). So, there is too 
much parameter in order to perform a complete analysis of the 
singular configurations. However, it is possible to restrict our 



 8  

analysis to some particular designs, which will decrease the num-
ber of parameters. 

Thus, we will consider in this part a mechanism which will 
have a platform with two axes concurrent (for example for pairs 
(12,1) and (12,3)), and a base of which two axes of actuators are 
also concurrent (for example those of actuators M1 and M2). 
Therefore, considering that the intersection point of the axes of 
actuators M1 and M2 is the origin of the base frame, and that point 
P is at the intersection of the two axes of the platform, only xG3, 
yG3, a3 and b3 stay variable, the other ten parameters being equal 
to zero. 

In such a case, equation (23) becomes: 
( ) ( )( ) 02 3333 =−+−+ GG ybxxayyxz   (26) 

Thus, singular configurations will appear if the platform of the 
mechanism is located in the plane P1 (z = 0), or if it is located on 
a hyperbola H whose expression is: 

( ) ( ) 02 3333 =−+−+ GG ybxxayyx   (27) 
Please note that this expression does not depend on the altitude 

z of the platform. It is well known that such a hyperbola has two 
asymptotes, 

( ) 2/33 byy G −=   (28) 
( ) 2/33 axx G −=   (29) 

which, in 3D, represent two planes P2 and P3. Thus, the Carte-
sian space may be separated into eight regions (Fig. 10). In re-
gions I, III, V and VII, there are no singularities and it will be 
quite easy todevelop a manipulator of which the workspace is lo-
cated in these regions, taking into account the previous geometric 
approach. In regions II, IV, VI and VIII, even if there are singular 
configurations, they are quite close from the planes P2 and P3, 
and thus, it is also quite easy to inscribe a cube representing the 
workspace of the mechanism in these regions. 

Please note that in the special cases where all parameters are 
equal to zero, or a3 = xG3 and b3 = yG3, Eq. (26) becomes 

02 =zyx   (30) 
Thus, the hyperbolas degenerates into two straight lines of 

equations x = 0 and y = 0. Therefore, the eight regions delimited 
by planes Pi have no singularities. 

A possible version of a prototype of a Pantopteron is repre-
sented at Fig. 11. Its geometric parameters are: 

-  lAiEi = 0.2 m, lEiCi = 0.3 m, k = 3; 
-  yG1 = zG1 = xG2 = zG2 = xG3 = yG3 = 0 m, b1 = c1 = a2 = c2 = a3 

= b3 = 0 m; 
-  actuator strokes = 0.06 m ((zi)min = -0.22 m, (zi)max = -0.16 

m) 
-  passive linear guide strokes = 0.14 m ((si)min = 0.01 m, (si)max 

= 0.15 m) ; 
-  (αi)min = 25°, (αi)max = 155° ; 
Its design is achieved such as its workspace is a cube whose 

side is equal to 0.18 m. 

3.3. Other possible architectures 

Finally, we would like to mention that the design of the Pantop-
teron presented here is not the only solution for creating such a 
mechanism. First, as the leg is made up of a pantograph linkage, 
several design are possible, which are presented in [22]. How-
ever, we think the architecture we proposed is the most practical 
one. Moreover, note that the planar RP chain composed of the 

revolute joint (10i) and the prismatic joint (9i) could be removed 
and replaced by any kinematic chain able to perform a planar dis-
placement, as planar RRR, RPR, PPR or PRR chains. Moreover, 
using such chains, points Hi and Gi need not be aligned. 

Note also that other architectures with various DOFs are possi-
ble by modifying our Pantopteron, such as the mechanism with 4 
decoupled DOFs represented it Fig. 12. 

 

 
 

Figure 10. Singularity free workspaces. 
 

 
 

Figure 11. CAD view of the prototype of Pantopteron. 
 
 

 
 

Figure 12. Pantopteron with 4 DOF. 
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4. Conclusions 
In this paper, a novel 3-DOF fully-decoupled isotropic transla-

tional parallel mechanism, named the Pantopteron, was presented. 
This mechanism is very similar to the Tripteron Cartesian parallel 
mechanism, but due to its architecture which is made of three 
pantograph linkages, an amplification of the movements between 
the actuators and the platform displacements is achieved. There-
fore, the Pantopteron displaces k times faster than the Tripteron (k 
being the magnification factor of the pantograph linkages). More-
over, for a given set of actuators, its workspace is k3 times bigger 
than that of the Tripteron. Due to this property, if the size of the 
workspace is given, the stroke of the actuators of the Pantopteron 
is k times smaller than that of the Tripteron, which allows reduc-
ing the manufacturing cost. This novel mechanism is foreseen to 
be used in applications where the velocities and accelerations 
have to be high, such as in pick-and-place. 
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