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Pantopteron: a New Fully-Decoupled 3-DOF Translational Parallel Robot for Pick-and-Place Applications

In this paper, a novel 3-DOF fully decoupled translational parallel robot, called the Pantopteron, is presented. This manipulator is similar to the Tripteron Cartesian parallel manipulator, but due to the use of three pantograph linkages, an amplification of the actuators displacements is achieved. Therefore, equipped with the same actuators, the mobile platform of the Pantopteron moves many-times faster than that of the Tripteron. This amplification is defined by the magnification factor of the pantograph linkages. The kinematics, workspace and constraint singularities of the proposed parallel robot are studied in detail. Design considerations are also discussed and a possible prototype is illustrated. .

Introduction

Less than a decade ago, any known parallel robot with three or more degrees of freedom (DOF) was inevitably associated with nonlinear highly-coupled kinematics, singularities, and a complex-shaped workspace. In May 2001, a revolutionary simple 3-DOF translational parallel robot, with fully-decoupled inputoutput equations, was disclosed by Gosselin and Kong in a Canadian provisional patent application. Its simplest design, illustrated in Fig. 1(a), is basically a Cartesian robot and is therefore isotropic (its Jacobian matrix is diagonal and constant). After careful investigation, Kong and Gosselin, helped by the second author of this paper, drafted a patent application that covers all possible design variations. Each of these variations, named Tripteron, is now patent protected in many countries, including USA [START_REF] Gosselin | Cartesian Parallel Manipulators[END_REF].

Later in 2002, Carricato and Parenti-Castelli [START_REF] Carricato | Singularity-Free Fully-Isotropic Translational Parallel Manipulators[END_REF] and Kong and Gosselin [START_REF] Kong | Type Synthesis of Linear Translational Parallel Manipulators[END_REF] [START_REF] Kong | A Class of 3-DOF Translational Parallel Manipulators with Linear Input-Output Equations[END_REF] proposed separately a large family of decoupled 3-DOF translational parallel mechanisms, all covered by the above-mentioned patent. At the same time, Kim and Tsai [START_REF] Kim | Evaluation of a Cartesian Parallel Manipulator[END_REF] presented independently the simplest member of this family (the one shown in Fig. 1(a)).

Who among these three groups of researchers was the first to invent the 3-DOF isotropic parallel robot is not the subject of this paper. In fact, a synthesis of possible legs for the mechanism in Fig. 1(a) was presented in [START_REF] Hervé | Structural Synthesis of Parallel Robots Generating Spatial Translation[END_REF] as early as in 1991. What is obvious is that the year 2002 marked the beginning of worldwide research activities on isotropic parallel mechanisms.

The most prolific author on this subject, Gogu, wrote dozens of papers and even a 700-page manuscript [START_REF] Gogu | Structural Synthesis of Parallel Robots, Part 1 -Methodology[END_REF] proposing isotropic architectures for nearly all combinations of translational and rotational degrees of freedom. Among these papers, reference [START_REF] Gogu | Structural Synthesis of Fully-Isotropic Translational Parallel Robots via Theory of Linear Transformations[END_REF] proposes other variations of the Tripteron family. Specific members from the Tripteron family were studied in detail in many works (e.g, [START_REF] Carricato | A Novel Fully Decoupled 2-DOF Parallel Wrist[END_REF][10] [START_REF] Ruggiu | Kinematic Analysis of the CUR Translational Manipulator[END_REF][12] [START_REF] Li | P-CUBE, A Decoupled Parallel Robot Only with Prismatic Pairs[END_REF]).

The basic Tripteron parallel robot consists of three identical legs. Each leg has a base-mounted actuator, allowing translation along a fixed direction, and a planar chain. To make the mechanism isotropic, the planes of motion of the three planar chains should be orthogonal. Some of the joints of the planar chains may actually be replaced with higher-degree pairs, such as a universal joint, but this has no effect on the kinematics of the mechanism.

In the basic Tripteron, the displacement of the mobile platform along a given Cartesian axis is directly proportional to the displacement of each linear actuator. When the plane of the planar chain in a leg is normal to the direction of the corresponding linear actuator (as in the mechanism of Fig. 1(a)), there is a one-toone relationship, and the Jacobian matrix is the identity matrix. Otherwise, larger displacements are needed from the actuators to produce smaller motions at the mobile platform (as in the mechanism of Fig. 1b).

However, as we recently witnessed with the commercialization of the Quattro robot by Adept Technology [START_REF] Pierrot | Optimal Design of a 4-dof Parallel Manipulator: From Academia to Industry[END_REF], the only way to compete the hugely successful Delta pick-and-place robot [START_REF] Bonev | Delta Robot -the Story of Success[END_REF] is to offer an even faster design. Hence, it would have been great if we could build a Tripteron with an amplification factor. Not only would this robot be isotropic, but it may move several times faster than its linear actuators.

This paper is the first to provide such a solution through the use of pantographs. Of course, the proposed design is more complicated than the simplest Tripteron of Fig. 1(a), but this seems to be a reasonable price to pay. Indeed, the proposed design is the result of a large study on the synthesis of parallel manipulator using pantographs [START_REF] Briot | PAMINSA: a New Family of Decoupled Parallel Manipulators[END_REF]. One such manipulator was already successfully built and proves the viability of using pantographs [START_REF] Briot | Design and Prototyping of a Partially Decoupled 4-DOF 3T1R Parallel Manipulator with High-Load Carrying Capacity[END_REF].

The paper is organized as follows. Next, the kinematics of the proposed design, named the Pantopteron, is presented. The structure is described and its movements are analyzed, as well as their singularities. Then, its workspace is studied and various design considerations are given. Finally, conclusions are drawn.

Kinematic Analysis

Description of the architecture

The architecture of the Pantopteron is schematized in Fig. 2. It is composed of three identical legs which correspond to pantograph linkages (Fig. 3).

The pantograph is a mechanical system with two input points, A i and B i , and one output point C i (in the remainder of this paper, i = 1, 2, 3). These input points linearly control the displacement of the output point C i . A kinematic analysis shows that a linear actuator connected with input point B i controls the vertical displacement of the output point C i and another linear actuator with an axis parallel to a 1i controls the displacements along the same axis. Note that these motions are completely decoupled, i.e., they can be carried out independently. The input/output relationships for displacements are linear and are determined by the magnification factor k of the pantograph (k = A i C i /A i B i ). These properties of the pantograph mechanism are used in the Pantopteron.

For the Pantopteron, the actuators are located at the linear pairs (1i) (Fig. 3). These three pairs are connected to the base so that their axes are orthogonal. All other joints are passive. Each pantograph linkage is attached to the platform at point C i via a Cardan joint, the axes each joint (12i) being orthogonal. They also are connected to actuator (1i) via a revolute joint, which allows the leg to have five DOFs, three translations and two rotations about the axes of the Cardan joint located at C i . Such an architecture allows three fully-decoupled translational DOFs. This will be now proved.

Mobility analysis

Let x, y, z be the axes of the base frame (Fig. 2). Without loss of generality, let us consider the displacements of the platform when legs 2 and 3 are disconnected, as well as the actuator M 1 located at pair [START_REF] Gosselin | Cartesian Parallel Manipulators[END_REF][START_REF] Gosselin | Cartesian Parallel Manipulators[END_REF]. A simple analysis could show that the platform has five passive DOFs, three translations and two rotations (one about the axis of pair [START_REF] Ruggiu | Kinematic Analysis of the CUR Translational Manipulator[END_REF][START_REF] Gosselin | Cartesian Parallel Manipulators[END_REF] and another about the axis of pair (12,1)). Therefore, leg 1 applies one wrench on the platform that constrains its displacements. This wrench is the reciprocal screw to the twists of each passive displacement of the platform.

We denote as e j (j = 1 to 5) the unit screw corresponding to the passive displacement of the platform. The expression of these screws, expressed in the base frame at point C 1 , can be written as: , where θ 1 is the angle between a 11 and y axes, and γ 1 represents the rotation between vector a 31 and the axis of pair [START_REF] Lee | Cartesian Parallel Manipulators with Pseudoplanar Limbs[END_REF][START_REF] Gosselin | Cartesian Parallel Manipulators[END_REF]. The Plücker coordinates of the unit screws can be described in matrix E 1 as 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ - = ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ = 0 0 0 cos
The wrench r 11 , transmitted to the platform by the leg, is orthogonal to the twists composing the lines of matrix (2) with Similarly, it is possible to find that the wrenches r 1i transmitted to the platform by the legs when all actuators are disconnected are all pure moments. Let Q be the matrix composed of these wrenches applied on the platform by the legs. The expression of Q in the base frame, and expressed at point O, is: 

⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎣ ⎡ = ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎣ ⎡ = 0 0 0 0 0 0 0 0 0 13 13 13
The twists defining the passive displacements of the platform are orthogonal to this matrix of rank equal to 3. In the general case, there are three independent passive displacements, which are the three translations about x, y and z axes. Thus, the platform is constrained by the legs to have only translational displacements.

Note that, in some cases where the three wrenches are linearly dependant, the platform gains one additional DOF. This case will be treated later, in the section about singularities.

Let us now consider that the actuator M 1 located at pair (1,1) is fixed. So, due to the decoupling properties of the pantograph linkages, the position about x axis of point C 1 is fixed. Thus, the platform has now two passive translational DOFs, which are orthogonal to the x axis. Therefore, a supplementary constraint is applied on the platform, which restrains its displacement.

Using an approach similar to the previous one, the second wrench applied by the leg on the platform, expressed at point

C 1 , is [ ] T 0 0 1 0 0 0 = 21 r
. By a similar analysis, is can be seen that, when the three legs are connected to the platform and the actuators M i are fixed, six wrenches (r 11 , r 21 , r 12 , r 22 , r 13 , r 23 ) are applied on it. Let us denote by R the matrix composed of these wrenches applied on the platform by the legs. The expression of R in the base frame, and expressed at point O, is: 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ - - - = ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ = 1 0 0 0 0 0 0 0 sin
In this expression, θ 1 , θ 2 and θ 3 are the angles between vectors a 11 , a 12 and a 13 and y, z and x axes, respectively. Note that, analyzing the condition of orthogonality on the axes of pairs (12i), it could be proven that angles γ i are constrained to be equal to 0.

Therefore, these terms disappear from Eq. ( 5). Without loss of generality, let us consider that actuator M 3 is disconnected. Thus, the manipulator gains one passive DOF. The twist corresponding to this passive DOF is the screw t 1 which is orthogonal to the five wrenches applied on the platform,

[ ] T z y x z y x v v v ω ω ω = 1 t (6) 
where ω x , ω y , and ω z correspond to the rotational velocities of the platform about x, y and z axes, and v x , v y and v z to its translational velocities along x, y and z axes. = T [START_REF] Gogu | Structural Synthesis of Parallel Robots, Part 1 -Methodology[END_REF] As, in Eq. ( 7), there are five equations for six unknowns (the components of t 1 ), the system admits an infinity of solutions.

If
Thus, without loss of generality, let us fix the value of v z to 1. Rearranging Eq. ( 7) yields: [START_REF] Gogu | Structural Synthesis of Fully-Isotropic Translational Parallel Robots via Theory of Linear Transformations[END_REF] from which, if the matrix is non-singular, t 1 can be found as
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[ ] T 1 0 0 0 0 0 = 1 t (9)
We would like to mention that the case where the matrix R' is singular will be studied later, in the section about singularities. Thus, throughout the workspace of the mechanism, the permitted passive motion of the platform when actuator M 3 is disconnected is a free translation along the z axis. Thus, actuator M 3 controls the translation of the platform along the z axis. Moreover, as the axis of actuator M 3 is also directed along the z axis, it becomes obvious that, due to the copying properties of the pantograph linkage, a displacement of actuator M 3 is transformed on a displacement of the platform along the same direction, but amplified by the pantograph linkage.

By similar analyses, it could be proved that actuator M 1 (resp. M 2 ) controls the translation of the platform along the x axis (resp. the y axis). Moreover, a displacement of actuator M 1 (resp. M 2 ) is transformed on a displacement of the platform along the same direction, but amplified by the pantograph linkage.

Thus, the input-output relations for this manipulator are linear, and it belongs to the family of the fully-decoupled 3-DOF translational parallel mechanisms.

Geometric and kinematic models, and singularity analysis

The origin O of the base frame is fixed such that it coincides with point P of the platform when all linear actuators have zero length. It is also considered that an increasing actuator's length displaces the platform along the positive part of the corresponding base frame axis. Therefore, the following trivial system of decoupled linear equations governs the movement of the Pantopteron: (

)

1 1 1 a x k x G - - = ρ (10) ( ) 2 2 2 b y k y G - - = ρ (11) ( ) 3 3 3 c z k z G - - = ρ (12)
where k is the magnification factor of the pantograph linkages, x, y and z are the coordinates of point P of the platform along x, y and z axes respectively and ρ i is the length of actuator i, x G1 , y G2 and z G3 are coordinates of points G i of the platform along x, y and z axes respectively and a 1 , b 2 and c 3 are constant terms defining the shape of the platform (see Eq. ( 22)).

Since k ≠ 0, the above system of independent equations can be inverted to give the trivial solution to the inverse kinematics of the Pantopteron.

Though simple as it is, the system of independent equations (10-12) can be rewritten in matrix form as c q J x + = (13) where x = [x, y, z] T is the vector of output Cartesian coordinates and q = [ρ 1 , ρ 2 , ρ 3 ] T is the vector of input coordinates, and: 

J (14a) [ ] T G G G c z k b y k a x k 3 3 2 2 1 1 + + + - = c
(14b) Differentiating Eq. ( 13) leads to

q J x & & =
(15) Hence, J is the Jacobian matrix of the Pantopteron. Recall that the terms of the Jacobian matrix of the fastest Tripteron are equal to 1. Therefore, the Pantopteron displaces k times faster than the Tripteron (where k is obviously greater than 1). It is also clear that due to this property, and to the greater number of joints in comparison with the Tripteron, the accuracy of the proposed robot will be lower. However, the purpose of this robot is not to be more accurate, but to be much faster.

One type of singularities occurring in the proposed mechanism is due to the degeneracy of the kinematics of the pantograph legs. Such singularities appear when:

the parallelograms B i D i E i F i degenerates into a line; near such case of singularity, the efforts in the revolute joints located at E i , F i , D i and B i grow considerably, so it has to be avoided by limiting the angle between links (A i E i ) and (E i C i ); -points A i , B i and C i are aligned along the same axis (Fig. 4); in such a case, given one position of the platform, there are infinity of orientations for the pantograph linkage. Moreover, if during a displacement of the mechanism, a leg comes close from this singularity, the angular velocity of the pantograph linkage around the axis defined by segment (G i B i ) becomes very high. Therefore, the neighbourhood of such configurations should be avoided by limiting the displacement of pair (9i). These two kinds of singularity define the boundaries of the workspace. They are similar to the singular configurations that we can meet in the Tripteron.

A second case of singularities appears if the system of wrenches applied on the platform degenerates, i.e., if the matrix R of Eq. ( 5) becomes singular. Such a singularity is called a constraint singularity [START_REF] Zlatanov | Constraint Singularities of Parallel Mechanisms[END_REF]. This happens if: 0 sin sin sin cos cos cos ) det( R [START_REF] Briot | PAMINSA: a New Family of Decoupled Parallel Manipulators[END_REF] In such a case, the three moments applied on the platform are linearly dependant, i.e., their axes are parallel or coplanar. Thus, the platform becomes unconstrained and it gains one supplementary DOF. Let us observe the example presented on Fig. 5. The axis a 11 is parallel to the y axis and axes a 12 and a 13 are parallel to the x axis. Thus, the gained DOF of the platform is a rotation about an axis parallel to the z axis.

Expressing equation ( 16) in the Cartesian space, it becomes:
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In these expressions, x Ci , y Ci , z Ci , x Gi , y Gi , z Gi correspond to the coordinates of points C i and G i about x, y and z axes, respectively. Disregarding the case where Γ i tends to infinity, singularities appear when:

0 ) ( ) ( ) ( ) ( ) ( ) ( 3 3 2 2 1 1 3 3 2 2 1 1 = - - - + - - - G C G C G C G C G C G C y y x x z z x x z z y y ( 21 
)
Taking into account that the terms x Gi , y Gi , z Gi appearing in ( 21) are constant and that where coefficient p i are constant terms depending on the position of points G i and of the shape of the platform. Fixing the altitude z of the platform, Eq. ( 23) is the expression of a hyperbola, whose coefficients depend on the altitude of the platform and on the geometric parameters of the mechanism. -

T i i i T i c b a z y x ] , , [ ] , , [ + = OC ( 
y G1 = z G1 = x G2 = z G2 = x G3 = y G3 = 1 m; -
the parameters of the pantograph linkages are irrelevant, but allow a workspace comprised in the interval x, y ∈ [0 m, 2 m]. We would like to mention that our mechanism, contrary to the Tripteron, has constraints singularities. This is due to the fact that each leg of the Tripteron is attached to the platform by a revolute joint, instead of a cardan joint, which overconstrains the displacement of the platform and allows avoiding such singular configurations. However, it will be shown in the following section that, even if the Pantopteron has singularities, they can easily be removed from its workspace.

Design Considerations

In this part, we will perform the analysis of the workspace of the mechanism, taking into account the geometric limitations and singular configurations, and discuss about some other possible architectures based on this mechanism. 

Geometric workspace analysis

Many parameters influence the size of the workspace of the Pantopteron. As the main parameters, we can mention:

the lengths of the links of the pantograph; -on the locations of the axes of the base-mounted revolute joints; -the shape of the platform; -the maximal stroke of the actuators and of the passive linear guide; -the interference between the links; -the singular configurations. Using the geometric approach, we will compute the workspace of the Pantopteron. As the Pantopteron is a translational parallel mechanism, its workspace can be found as the intersection of three so-called vertex spaces.

Analyzing the vertex space of the leg i, it only depends on: -the lengths of the links of the pantograph; -the maximal and minimal strokes of the actuators and of the passive linear guide; -the interferences between the links; -the singular configurations. In a first step, let us concentrate on the boundaries of the workspace due to the interference of the links and of the singular configurations. As mentioned previously, for a leg, there are two types of singularities: a. when the parallelogram B i D i E i F i degenerates into a line; such a singularity can be avoided by limiting the angle α i between the links (A i E i ) and (E i C i ) of the parallelogram, which, in the same time, allows limiting some inferences between the links. The maximal and minimal angles will be denoted (α i ) max and (α i ) min , respectively. b. when points A i , B i and C i are aligned along the same axis; such a case can easily be avoided by limiting the stroke of the passive prismatic pair (9i). This minimal stroke will be denoted (s i ) min . To avoid interference between the links and the base, a maximal stroke of the actuator has to be fixed at (ρ i ) max . Each leg is mounted in rotation around one axis parallel to a 3i . Thus, the problem of finding the vertex space can be limited to a planar analysis of the minimal and maximal displacements of point C i , the entire vertex space being found by symmetry of revolution of these displacements.

Considering case (a), we have to find the boundaries of the leg when angle α i is fixed. Fixing angle α i is equivalent to fixing the lengths of segments (A i B i ) and (A i C i ). These lengths are equal to:

i EiCi AiEi AiEi EiCi AiCi l l l l l α cos 2 2 2 - + = (24) 
k l l AiCi AiBi / =
(25) Displacing the prismatic guides, segments (A i B i ) and (B i C i ) describe Cardanic motions [START_REF] Sekulie | Method of synthesis of Cardanic motion[END_REF] [START_REF] Tischler | A Spatial Extension of Cardanic Movement: Its Geometry and Some Derived Mechanisms[END_REF]. As a result, for a given angle α i , the displacement locus of point C i is an ellipse E (Fig. 7).

Thus, considering the extremes (α i ) max and (α i ) min of angle α i , the boundaries of the workspace are given by the ellipses E min and E max (Fig. 8(a)).

Cases (b) and (c) are much simpler to analyze. The displacement of point C i when the passive guide (9i) is at its minimal stroke (s i ) min is a vertical line L 1 located at (k-1) times the distance (s i ) min from the vertical axis (G i B i ) (Fig. 8(a)). The displacement of point C i when the actuator M i is at its maximal stroke (ρ i ) max is a horizontal line L 2 located at k times the distance between the maximal position of point B i and the position of point A i along the axis a 3i , from the axis of the horizontal passive guide (9i) (Fig. 8(a)).

The entire vertex space is represented at Fig. 8(b). On all of these figures, two boundaries due to two constraints, which are the maximal strokes of the actuated and passive linear joints, are not represented. These boundaries are vertical and horizontal straight lines. However, in a first step, it is preferable to have the largest vertex space for the legs and, thus, to remove these two boundaries out of our workspace by a proper design of the stroke of the linear guides.

As researchers, the first thing on our mind was to implement in Matlab our geometric method in order to be able to optimize the workspace of the Pantopteron by minimizing the lengths of the pantograph's links in each leg. This could be done more promptly in a commercial CAD system, such as CATIA [START_REF] Bonev | A Geometrical Method for Computing the Constant-Orientation Workspace of 6-PRRS Parallel Manipulators[END_REF]. Figure 9(a) shows an example of the workspace of a Pantopteron with relatively short legs. We can obtain the best ratio between the lengths of the links and the volume of the workspace. A relatively large increase of the link lengths will result in only a negligible gain in the workspace volume.

Obviously, it would be a mistake to design a Cartesian parallel mechanism with a complex workspace. Thus, our decision is to keep the links as long as it takes, so that the workspace of the mechanism becomes a simple geometric form, namely a rectangular parallelepiped. In other words, the workspace of a Pantopteron with sufficiently long legs has to become a box whose sides are of length k ∆ρ i (∆ρ i being the stroke of actuator M i ), as shown in Fig. 9(b).

In order to obtain such a simple volume, when the three vertex spaces are intersected, it is the planar caps that limit the workspace and not the other surfaces. Of course, we still try to minimize the length of the links, by carefully locating the prismatic actuators on the base and properly choosing the dimensions of the mobile platform and of the stroke of the actuators. Furthermore, if the workspace of the mechanism has to be a parallelepiped, the shape of the vertex space has not to be so complicated, and can be reduced to a hollow cylinder (Fig. 8(c)). This can be accomplished by properly constraining the maximal stroke of the active and passive linear guides in order to obtain, in the planar projection of the workspace, a rectangle denoted as the useful vertex space (two possible examples of the useful vertex space are presented in Fig. 8(a)).

The size of the workspace of the Pantopteron is the other main advantage of the proposed robot. Indeed, the maximal volume of the workspace of the Tripteron is V = ∆ρ 1 ∆ρ 2 ∆ρ 3 while that of the Pantopteron is V = k 3 ∆ρ 1 ∆ρ 2 ∆ρ 3 , i.e., for the same set of given actuators, the workspace of the Pantopteron is k 3 times bigger than that of the Tripteron.

Moreover, it is well known that the actuators represent at least 80% of the global cost of for a robot. For creating a fast mechanism with actuated prismatic pairs, it is now preferable to use electric linear actuators that reach higher velocities. However, the main drawback of such actuators is their price, which is proportional to the length of their stroke. For a given maximal workspace, the stroke of the actuators of the Tripteron is k times greater than that of the motors of the Pantopteron. Therefore, even if the Pantopteron is more complicated to design than a Tripteron, its manufacturing cost would likely be lower.

Singularity-free workspace

It is impossible to speak about the workspace of a parallel mechanism without dealing with singularities. As seen previously from Eq. ( 23), the singular configurations depend on the position of the mobile platform, on the locations of the axes of the basemounted revolute joints, and on the shape of the platform. Thus, analyzing Eq. ( 23), there are twelve design parameters which are y G1 , z G1 , x G2 , z G2 , x G3 , y G3 , b 1 , c 1 , a 2 , c 2 , a 3 and b 3 (we do not consider the lengths of the links of the pantograph linkages as they do not influence these singular configurations). So, there is too much parameter in order to perform a complete analysis of the singular configurations. However, it is possible to restrict our analysis to some particular designs, which will decrease the number of parameters.

Thus, we will consider in this part a mechanism which will have a platform with two axes concurrent (for example for pairs (12,1) and (12,3)), and a base of which two axes of actuators are also concurrent (for example those of actuators M 1 and M 2 ). Therefore, considering that the intersection point of the axes of actuators M 1 and M 2 is the origin of the base frame, and that point P is at the intersection of the two axes of the platform, only x G3 , y G3 , a 3 and b 3 stay variable, the other ten parameters being equal to zero.

In such a case, equation (23) becomes:

( ) ( ) ( ) 0 2 3 3 3 3 = - + - + G G y b x x a y y x z
(26) Thus, singular configurations will appear if the platform of the mechanism is located in the plane P 1 (z = 0), or if it is located on a hyperbola H whose expression is: which, in 3D, represent two planes P 2 and P 3 . Thus, the Cartesian space may be separated into eight regions (Fig. 10). In regions I, III, V and VII, there are no singularities and it will be quite easy todevelop a manipulator of which the workspace is located in these regions, taking into account the previous geometric approach. In regions II, IV, VI and VIII, even if there are singular configurations, they are quite close from the planes P 2 and P 3 , and thus, it is also quite easy to inscribe a cube representing the workspace of the mechanism in these regions. Please note that in the special cases where all parameters are equal to zero, or a 

Other possible architectures

Finally, we would like to mention that the design of the Pantopteron presented here is not the only solution for creating such a mechanism. First, as the leg is made up of a pantograph linkage, several design are possible, which are presented in [START_REF] Lu | Synthesis of Planar Five-Bar Pantograph Configurations by a Geometric Method[END_REF]. However, we think the architecture we proposed is the most practical one. Moreover, note that the planar RP chain composed of the revolute joint (10i) and the prismatic joint (9i) could be removed and replaced by any kinematic chain able to perform a planar displacement, as planar RRR, RPR, PPR or PRR chains. Moreover, using such chains, points H i and G i need not be aligned.

Note also that other architectures with various DOFs are possible by modifying our Pantopteron, such as the mechanism with 4 decoupled DOFs represented it Fig. 12. 

Conclusions

In this paper, a novel 3-DOF fully-decoupled isotropic translational parallel mechanism, named the Pantopteron, was presented. This mechanism is very similar to the Tripteron Cartesian parallel mechanism, but due to its architecture which is made of three pantograph linkages, an amplification of the movements between the actuators and the platform displacements is achieved. Therefore, the Pantopteron displaces k times faster than the Tripteron (k being the magnification factor of the pantograph linkages). Moreover, for a given set of actuators, its workspace is k 3 times bigger than that of the Tripteron. Due to this property, if the size of the workspace is given, the stroke of the actuators of the Pantopteron is k times smaller than that of the Tripteron, which allows reducing the manufacturing cost. This novel mechanism is foreseen to be used in applications where the velocities and accelerations have to be high, such as in pick-and-place.
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  rotations about the axes of pairs (12,1) and (11,1),

  Thus, r 11 is a wrench of zero pitch (a pure moment).

Figure 4 .

 4 Figure 4. Example of leg singularities.

Fig. 6 Figure 6 .

 66 Figure 6. Example of constraint singularity loci.

Figure 5 .

 5 Figure 5. Example of a constraint singularity.

Figure 7 .

 7 Figure 7. Displacement of C i when α i is fixed.

Figure 8 .

 8 Figure 8. Schematics of the vertex space of a leg from the Pantopteron.

Figure 9 .

 9 Figure 9. Workspace of the Pantopteron.

  Please note that this expression does not depend on the altitude z of the platform. It is well known that such a hyperbola has two asymptotes,

  3 = x G3 and b 3 = y G3 , Eq. (26hyperbolas degenerates into two straight lines of equations x = 0 and y = 0. Therefore, the eight regions delimited by planes P i have no singularities. A possible version of a prototype of a Pantopteron is represented at Fig. 11. Its geometric parameters are: -l AiEi = 0.2 m, l EiCi = 0.3 m, k = 3; -y G1 = z G1 = x G2 = z G2 = x G3 = y G3 = 0 m, b 1 = c 1 = a 2 = c 2 = a 3 = b 3 = 0 m; -actuator strokes = 0.06 m ((z i ) min = -0.22 m, (z i ) max = -0.16 m) -passive linear guide strokes = 0.14 m ((s i ) min = 0.01 m, (s i ) max = 0.15 m) ; -(α i ) min = 25°, (α i ) max = 155° ; Its design is achieved such as its workspace is a cube whose side is equal to 0.18 m.

Figure 10 .

 10 Figure 10. Singularity free workspaces.

Figure 11 .

 11 Figure 11. CAD view of the prototype of Pantopteron.

Figure 12 .

 12 Figure 12. Pantopteron with 4 DOF.

  [START_REF] Lu | Synthesis of Planar Five-Bar Pantograph Configurations by a Geometric Method[END_REF] where a i , b i , c i are constant terms, Eq. (21) can be rewritten under the form:

	1 p	x	y	z	+	p	2	x	y	+	p	3	x	z	+	p	4	y	z	+	p	5	x	+	p	6	y	+	p	7	z	+	p	8	=	0	(23)

2 1 1 = Γ Γ Γ ---