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ABSTRACT 

This paper deals with the complete shaking force and shaking moment balancing of planar 

parallel manipulators with prismatic pairs. The cancellation of the dynamic loads transmitted to 

the ground is a challenge for these types of manipulators.  
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It is obvious that the classical methods based on the optimal redistribution of movable masses 

and additional counter-rotations can be used to cancel shaking force and shaking moment. 

However, such a balancing of parallel manipulators with prismatic pairs is only attained via a 

considerably complicated design. This paper shows that it is possible to balance planar parallel 

mechanisms using Scott-Russell mechanisms. Such an approach enables a division of the number 

of counter-rotations by two. Numerical simulations carried out using ADAMS software validate 

the obtained results and illustrate that the suggested balancing enables the creation of a parallel 

manipulator transmitting no inertia load to its base. 

Index terms – Shaking force, shaking moment, balancing, planar parallel robots with prismatic 

pairs.  

 

1. INTRODUCTION 

Shaking force balancing is mostly obtained via an optimal redistribution of movable masses [1-

10] or adjustment of kinematic parameters [11]. The cancellation of the shaking moment is a 

more complicated task and can be obtained using three main different methods: (i) shaking 

moment balancing using counter-rotations [12-17] (Fig. 1a) (ii) shaking moment balancing by 

adding four bar linkages [18-22] (Fig.1b) and (iii) shaking moment balancing by optimal 

trajectory planning [17, 23, 24]. 

Previous works have been devoted to the study of parallel manipulators with revolute joints and 

until now, to our knowledge, no study has been carried out on complete shaking force and 

shaking moment balancing of parallel manipulators with prismatic pairs.   
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(a) balancing by adding counter-rotations [17] (b) balancing by adding four-bar linkages [18] 

Figure 1. Complete shaking force and shaking moment balanced 3-RRR planar parallel 

manipulators. 

 

In this paper, for the first time, we propose solutions for complete shaking force and shaking 

moment balancing of planar parallel manipulators with prismatic pairs. We illustrate these 

solutions via the 3-RPR parallel manipulator. All obtained results are validated using ADAMS 

software simulations.  

 

2. COMPLETE SHAKING MOMENT AND SHAKING FORCE BALANCING BY 

ADDING AN IDLER LOOP BETWEEN THE BASE AND THE PLATFORM 

Inertia force balancing by adding an idler loop is known to be used for 1-degree-of-freedom 

(DOF) mechanisms [25-29]. With regard to planar manipulators, such an approach has only been 

used in the balancing of gravitational and inertia forces [9, 10, 30, 31].   
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In this section, the complete shaking force and shaking moment balancing of planar 

manipulators by adding an idler loop is discussed. The added balancing loop is mounted between 

the base and the platform of the mechanism. We illustrate the suggested balancing technique on a 

3-RPR mechanism (Fig. 2). Please note that we do not mention the type of actuation of the 

mechanism as it has no influence on the balancing. 

Firstly, let us analyze the cancellation of the dynamic reactions of the 3-RPR planar parallel 

mechanism (Fig. 2a). Such a mechanism has 3 DOF (two translations in the Oxy plane and one 

rotation of the moving platform around an axis perpendicular to Oxy) and is composed of three 

identical legs, each being composed of a revolute joint attached to the base at point Ai (in the 

remainder of this report, i = 1, 2, 3), one moving prismatic guide, located at point Bi, and another 

revolute joint attached to the platform at Ci. The base and platform triangles, denoted A1A2A3 and 

C1C2C3, are equilateral. On this manipulator, typically, the actuated joints are the first revolute 

joint at Ai or the linear guide at Bi. 

 

 

 

(a) Schematics of the 3-RPR mechanism. (b) Schematics of the added idler loop (RRR 

chain). 

Figure 2. Schematic of the 3-RPR robot under study. 
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Considering that the x axis is directed along the line A1A2, the y axis being perpendicular to the 

x axis and the origin of the base frame located at point O, the centre of the circumcircle of 

triangle A1A2A3, one can define the coordinate x, y and  of the platform, as being respectively the 

coordinates of point P along the x and y axes and the angle between the line C1C2 and A1A2. 

The length BiCi is denoted L1. Let us also denote as Sji the centre of mass of link ij  (j = 1, 2), 

which has a mass mj and an axial moment of inertia Ij. The centre of the mass of the platform is 

located at point P. The mass of the platform is mp and its axial moment of inertia Ip. 

In order to cancel the shaking forces and shaking moment of the manipulator, an idler loop is 

added between the base and the platform (Fig. 2b). The lengths EF and FP are denoted L5 and L6 

respectively. The centre of mass of elements 5 and 6 of the idler loop are denoted S3 and S4 with 

masses m5 and m6 and axial moments of inertia I5 and I6, respectively. The positions of the centre 

of masses are dAiS1i = r1 L1 ui, dCiS2i = (r2–1) L1 ui, dES5 = r5 dEF, and dFS6 = r6 dFP, r1, r2, r5, and r6 

being dimensionless coefficients, and ui a unit vector directed along BiCi. 

Thus, considering the shaking force F of leg 1, its expression is: 

6655

3

1

2

1

SSPp

i j

Sjij mmmm ddddF  
 

 (1) 

where Sjid , Pd , 5Sd  and 6Sd  are the acceleration of the centre of mass Sij, of P, of S5 and of S6 

respectively. 

After a simple development of expression (1), it can be seen that the shaking force F can be 

expressed as: 
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with 
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and Fd  is the acceleration of point F. 

At this step, only five counterweights are needed in the cancellation of the shaking force, but it 

could be seen after more derivations that three others are necessary for the cancellation of the 

shaking moment. Therefore, we propose directly adding three supplementary counterweights 

(Fig. 3). The positions of the eight masses are dAiMcp1i = rcp1 L1 ui, dBiMcp2i = rcp2 L1 ui, dEMcp5 = rcp5 

dEF, and dFMcp6 = rcp dFP, rcp1, rcp2, rcp5, and rcp6 being dimensionless coefficients. Their masses 

are respectively denoted mcp1, mcp2, mcp5 and mcp6. With the addition of the counterweights, the 

shaking force becomes: 
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Thus, the shaking force is cancelled if: 
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The expression of the shaking moment MO of the modified structure (expressed at point O) can 

be written as: 

dt

dH
M O

O  , (6) 

where HO is the angular momentum of the leg (expressed at point O). Thus, in order to cancel the 

shaking moment, the angular momentum is held constant over time. 

The expression of the angular momentum HO is: 
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where xOQ, yOQ, OQx  and OQy  are the position and velocities of any point Q along x and y axes, 

respectively, Q being either point Sji, Mji, (j = 1, 2), Sj or Mj (j = 5, 6). 

Developing and introducing (5) into (7) yields 
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 (8) 

After such modifications of the RRR chain, the angular momentum of the legs of the 

mechanism and of the RRR chain can be balanced using six counter-rotations (Fig. 3), which have 

an axial moment of inertia equal to: 
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Figure 3. Schematics of the 3-RPR mechanism with the added RRR chain used for the 

cancellation of the shaking force and shaking moment. 

 

Numerical application 

Let us illustrate the suggested balancing approach using numerical simulations carried out with 

ADAMS software. For this purpose, non balanced and balanced 3-RPR parallel manipulators will 

be compared. 

The chosen trajectory for simulations is a straight line of the controlled point of the platform, 

achieved in tf = 0.25 s, between P0 = (x0, y0) = (–0.05 m, 0) and Pf = (xf, yf) = (–0.2 m, 0) with a 
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rotation of the platform from 0 = 0° to f = 30°. For the displacement of the mechanism, fifth 

order polynomial laws are used and therefore the trajectory is defined by the following 

expressions: 

          543

00 /6/15/10 ffff ttttttxxxtx  , (10a) 

  0ty , (10b) 

          543

00 /6/15/10 ffff ttttttt   . (10c) 

The parameters used for the simulations are the following: 

- radii of the circumcircles of the base triangle A1A2A3 and the platform triangle C1C2C3 ,Rb 

= 0.35 m, Rp = 0.1 m; 

- L1 = 0.05 m; L5 = 0.15 m; L6 = 0.1581 m; 

- r2 = r5 = r6 = 0.5; r1 = 2; 

- m1 = 0.75 kg; m2 = 0.37 kg; m5 = 0.42 kg; m6 = 0.47 kg; mp = 1 kg; 

- I1 = 0.00344 kg.m²; I2 = 0.00025 kg.m²; I5 = 0.00122 kg.m²; I6 = 0.00146 kg.m²; Ip = 

0.00436 kg.m²; 

- point E is located at point O. 

For such parameters and such a trajectory, the shaking force and shaking moment are computed 

using ADAMS software and are presented in Fig. 4 (solid line). Then, we add the counterweights 

and the idler loop EFP to the mechanism. The position coefficients of the counterweights are all 

equal to rcpj = 0.5 (j = 1, 2, 5, 6). Therefore, the added masses are equal to mcp1 = 0.75 kg, mcp2 = 

0.37 kg, mcp5 = 6.92 kg, mcp6 = 21.66 kg. The new values of the shaking force and moment are 

presented in Fig. 4 (dashed line). It is possible to see that with the added counterweights the 
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shaking efforts are cancelled, while the maximal value of shaking moment is increased by a 

factor 17. Finally, we add the counter-rotations. Their values are equal to Icr1 = 0.01917 kg.m², 

Icr2 = 0.02665 kg.m², Icr3 = 0.18169 kg.m², Icr4 = 0.72781 kg.m². With such counter-rotations, the 

shaking moment is balanced (in gray line in Fig. 4c). 

 

  

(a) shaking force along x-axis (b) shaking force along y-axis 

 

(c) shaking moment along z-axis 

Figure 4. Shaking force and shaking moment before (solid line) and after (dashed line) the 

addition of the counterweights, and after the addition of the counter-rotations (gray line). 
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3. COMPLETE SHAKING FORCE AND SHAKING MOMENT BALANCING VIA 

SCOTT-RUSSELL MECHANISM 

In this section another approach for complete shaking force and shaking moment balancing is 

developed, which consists of adding Scott-Russell mechanisms to the initial architecture of a 

manipulator. This approach enables a reduction in the number of counter-rotations.  

 

3.1. Properties of the Scott-Russell mechanism.  

Firstly, let us observe a simple slider-crank mechanism (Fig. 5). Let us denote the lengths AB 

and BC as respectively L1 and L2, and the centre of masses of link i (i = 1, 2, 3) as Si, which has a 

mass mi and an axial moment of inertia Ii. The positions of the centres of mass are dAS1 = r1 dAB, 

dAS2 = dAB + r2 dBC, dAS3 = dAC + dCS3, r1 and r2 being dimensionless coefficients, dCS3 = L3 r3 x, 

(L3 is a constant). 

 

Figure 5. A general slider-crank mechanism. 

 

It is known that the compete shaking force and shaking moment balancing of a general slider-

crank mechanism can be obtained by adding two counterweights mounted on the links and two 

pairs counter-rotation inertia-counterweights. However, it is possible to balance this mechanism 
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without counter-rotation inertia-counterweights if it has specific geometrical parameters, as in 

Scott-Russell mechanisms (a=0, L1=L2). 

Let us consider the balancing of this mechanism. The expression of the shaking force F of a 

slider-crank mechanism can be written as: 





3

1i

Siim dF   (11) 

where Sid  is the acceleration of the centre of mass Si. 

Developing (11), the expression of F becomes: 
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Bd is the acceleration of point B. 

The constant terms of eq. (12) can be cancelled by the addition of two counterweights Mj, (j = 

1, 2) (Fig. 5), of which the masses are mcpj. Their positions are: dAMcp1 = rcp1 dAB, dBMcp2 = rcp2 dBC, 

rcp1 and rcp2 being dimensionless coefficients. With the addition of the counterweights, the 

shaking force becomes: 
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The expression of the angular momentum HA (expressed at point A) is: 
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where xAQ, yAQ, AQx  and AQy  are the position and velocities of any point Q along x and y axes, 

respectively, Q being either point Sj or Mj (j = 1, 2, 3). 

Developing and introducing (15) into (16), 
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where xAC, xAB, yAB are the coordinates of points C and B, respectively, and ACx , ABx , ABy  their 

velocities. 

In order to cancel the shaking moment MA, the angular momentum has to be constant or null. 

Developing (18), one notices that this can be obtained if: 

a = 0 and L1 = L2. (19) 

In such a case, 21    . Therefore, the shaking moment is cancelled if: 
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3.2. Balancing of a manipulator’s leg using a Scott-Russell mechanism.  

Now let us consider a manipulator’s leg with an added Scott-Russell mechanism (Fig. 6). Let us 

denote as S4 the centre of mass of link 4, which has a mass m4 and an axial moment of inertia I4. 

The position of S4 is: dCS4 = L3 r4 u, r4 being a dimensionless coefficient and u a unit vector along 

dCS3. 

 

Figure 6. A manipulator leg with added Scott-Russell mechanism. 

 

Now the shaking force becomes: 
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At this step, only one counterweight is needed for the cancellation of the shaking force, but it 

could be seen after more derivations that another is necessary for the cancellation of the shaking 

moment. Therefore, we propose adding this supplementary counterweight directly. The positions 
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of the two masses are: dAMcp3 = rcp3 L3 u, dCMcp4 = rcp4 L3 u, rcp3 and rcp4 being dimensionless 

coefficients. Their masses are respectively denoted mcp3 and mcp4. With the addition of the 

counterweights, the shaking force becomes: 
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Developing and simplifying, the expression of the angular momentum is: 
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From (20), Ieq2 = 0. Therefore, the shaking moment of the slider-crank can be cancelled using a 

simple counter-rotation Icr with an axial moment of inertia equal to Ieq1. 

 

3.3. Shaking moment and shaking force balancing of the 3-RPR manipulator 

Now, let us apply such an approach to the 3-RPR mechanism. First of all, let us substitute the 

platform mass by three points masses located at C1, C2 and C3, with the values of mass equal to 

mp1, mp2 and mp3 respectively [13, 31, 32]. Such a condition can be obtained if: 

3/ppi mm   and 
23 ppip RmI  . (29) 

where Rp is the radius of the circumcircle of C1C2C3. Such a decomposition of the platform 

enables us to consider the shaking force and shaking moment balancing of each leg of the 

mechanism. Then, modifying each leg in order to obtain a mechanism similar to a slider-crank 

linkage, (i.e., by adding an idler loop to each leg), the shaking force and shaking moment are 

cancelled if: 
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and  
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taking into account that Icr is the axial moment of inertia of the counter-rotations (Fig. 7). 

Thus, with this approach it is possible to create a fully-balanced shaking force and shaking 

moment 3-RPR mechanism with only three counter-rotations (Fig. 7), i.e., this method enables a 

reduction in the number of counter-rotations by a factor of two.  

 

Figure 7. Schematics of a shaking force and shaking moment balanced 3-RPR mechanism. 

 

3.4. Numerical application 

The parameters used for the simulations are the followings: 

- radii of the circumcircles of the base triangle A1A2A3 and the platform triangle C1C2C3 Rb 

= 0.35 m, Rp = 0.1 m; 

- L1 = L2 = 0.25 m; L3 = 0.025 m 
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- r1 = r2 = 0.5; r3 = 0; r4 = 4; 

- m1 = 1.09 kg; m2 = 1.1 kg; m3 = 0.37 kg; m4 = 0.75 kg; mp = 1 kg; 

- I1 = 0.00738 kg.m²; I2 = 0.58389 kg.m²; I3 = 0.00344 kg.m²; I6 = 0.00025 kg.m²; Ip = 0.01 

kg.m². 

For these new parameters and for the trajectory used previously, taking into account that the 

position coefficients of the counterweights are equal to rcpj = -0.5 (j = 1, 3, 4), rcp2 = -1, the new 

values of the counterweights are: mcp1 = 3.17 kg, mcp2 = 11.71 kg, mcp3 = 0.33 kg, mcp4 = 0.75 kg. 

The shaking force and shaking moment are then computed (dashed line in Fig. 8). It is possible to 

see that, with the counterweights, the shaking efforts are cancelled, while the maximal value of 

the shaking moment is increased by a factor 28. Finally, we add the counter-rotations. Their 

values are equal to Icr = 1.56907 kg.m². With such counter-rotations, the shaking moment is 

balanced (gray line in Fig. 8c). 

Finally, it should be noted that the combination of the proposed two techniques of balancing 

enables the creation of fully balanced parallel manipulators with modified legs. As examples, 

different structures of balanced manipulators are presented in Fig. 9 (3-RPR, 3-PRR and 3-PRP) 

in which one leg with a prismatic pair is replaced by a leg with only revolute joints. Such a 

modification allows displacing the centre of mass of the manipulator to C3 and then to balance 

the manipulator via the modified leg C3 B3 A3. 

In the same way, it is possible to balance a parallel manipulator with prismatic pairs by adding 

fewer Scott-Russell mechanisms. The balancing schemes for several parallel manipulators are 

presented in Fig. 10. 
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(a) shaking force along x-axis (b) shaking force along y-axis 

 

(c) shaking moment along z-axis 

Figure 8. Shaking force and shaking moment, before (solid line) and after (dashed line) the 

addition of the counterweights, and after the addition of the counter-rotations (gray line). 
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a) Modified 3-RPR parallel manipulator b) Modified 3-PRR parallel manipulator 

 

c) Modified 3-PRP parallel manipulator 

Figure 9. Complete shaking force and shaking moment balancing of planar manipulators with 

prismatic pairs via structural modification of one leg. 
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a) Balancing of 3-RPR parallel manipulator b) Balancing of 3-PRR parallel manipulator 

 

c) Balancing of 3-PRP parallel manipulator 

Figure 10. Complete shaking force and shaking moment balancing of planar manipulators with 

prismatic with reduced number of Scott-Russell mechanisms. 
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4. CONCLUSIONS 

This paper presents the complete shaking force and shaking moment balancing of planar 

parallel manipulators with prismatic pairs. Two approaches are discussed: balancing via adding 

an idler loop mounted between the platform and the base of the manipulator and balancing via the 

Scott-Russell mechanism, which enables a reduction in the number of counter-rotations by a 

factor of two. All studied balancing techniques are validated by simulations carried out using 

ADAMS software. The obtained results show that parallel manipulators balanced using the 

suggested methods transmit no inertia loads to their bases, i.e., the sum of all ground forces and 

their moments are zero.  

Finally, we would like to mention that using Scott-Russel mechanisms remains using some 

modified 3-RRR manipulator. Thus, if we do not consider the type of actuation, the prismatic 

guides could be suppressed and our work could be of no interest. But the goal of our study is to 

propose the complete shaking force and shaking moment balancing of manipulators for 

applications where an actuation via a prismatic motor is needed, such as in high load carrying 

(using hydraulic devices). Therefore, we think the proposed solutions are of great interest to the 

scientific community. 
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