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This paper deals with the complete shaking force and shaking moment balancing of planar parallel manipulators with prismatic pairs. The cancellation of the dynamic loads transmitted to the ground is a challenge for these types of manipulators.

2 It is obvious that the classical methods based on the optimal redistribution of movable masses and additional counter-rotations can be used to cancel shaking force and shaking moment.

However, such a balancing of parallel manipulators with prismatic pairs is only attained via a considerably complicated design. This paper shows that it is possible to balance planar parallel mechanisms using Scott-Russell mechanisms. Such an approach enables a division of the number of counter-rotations by two. Numerical simulations carried out using ADAMS software validate the obtained results and illustrate that the suggested balancing enables the creation of a parallel manipulator transmitting no inertia load to its base.

INTRODUCTION

Shaking force balancing is mostly obtained via an optimal redistribution of movable masses [1-10] or adjustment of kinematic parameters [START_REF] Ouyang | Force Balancing of Robotic Mechanisms based on Adjustment of Kinematic Parameters[END_REF]. The cancellation of the shaking moment is a more complicated task and can be obtained using three main different methods: (i) shaking moment balancing using counter-rotations [12-17] (Fig. 1a) (ii) shaking moment balancing by adding four bar linkages [18-22] (Fig. 1b) and (iii) shaking moment balancing by optimal trajectory planning [17, 23, 24].

Previous works have been devoted to the study of parallel manipulators with revolute joints and until now, to our knowledge, no study has been carried out on complete shaking force and shaking moment balancing of parallel manipulators with prismatic pairs. In this paper, for the first time, we propose solutions for complete shaking force and shaking moment balancing of planar parallel manipulators with prismatic pairs. We illustrate these solutions via the 3-RPR parallel manipulator. All obtained results are validated using ADAMS software simulations.

COMPLETE SHAKING MOMENT AND SHAKING FORCE BALANCING BY ADDING AN IDLER LOOP BETWEEN THE BASE AND THE PLATFORM

Inertia force balancing by adding an idler loop is known to be used for 1-degree-of-freedom (DOF) mechanisms [START_REF] Bagci | Complete shaking force and shaking moment balancing of link mechanisms using balancing idler loops[END_REF][START_REF] Frolov | Theory of mechanisms and machines[END_REF][START_REF] Doronin | Balanced slider-crank mechanism[END_REF][START_REF] Hilpert | Weight balancing of precision mechanical instruments[END_REF][START_REF] Arakelian | Equilibrage dynamique complet des mécanismes[END_REF]. With regard to planar manipulators, such an approach has only been used in the balancing of gravitational and inertia forces [9, 10, 30, 31].

In this section, the complete shaking force and shaking moment balancing of planar manipulators by adding an idler loop is discussed. The added balancing loop is mounted between the base and the platform of the mechanism. We illustrate the suggested balancing technique on a 3-RPR mechanism (Fig. 2). Please note that we do not mention the type of actuation of the mechanism as it has no influence on the balancing.

Firstly, let us analyze the cancellation of the dynamic reactions of the 3-RPR planar parallel mechanism (Fig. 2a). Such a mechanism has 3 DOF (two translations in the Oxy plane and one rotation of the moving platform around an axis perpendicular to Oxy) and is composed of three identical legs, each being composed of a revolute joint attached to the base at point A i (in the remainder of this report, i = 1, 2, 3), one moving prismatic guide, located at point B i , and another revolute joint attached to the platform at C i . The base and platform triangles, denoted A 1 A 2 A 3 and Considering that the x axis is directed along the line A 1 A 2 , the y axis being perpendicular to the x axis and the origin of the base frame located at point O, the centre of the circumcircle of triangle A 1 A 2 A 3 , one can define the coordinate x, y and  of the platform, as being respectively the coordinates of point P along the x and y axes and the angle between the line C 1 C 2 and A 1 A 2 .

C 1 C 2 C 3 ,
The length B i C i is denoted L 1 . Let us also denote as S ji the centre of mass of link ij (j = 1, 2), which has a mass m j and an axial moment of inertia I j . The centre of the mass of the platform is located at point P. The mass of the platform is m p and its axial moment of inertia I p .

In order to cancel the shaking forces and shaking moment of the manipulator, an idler loop is added between the base and the platform (Fig. 2b). The lengths EF and FP are denoted L 5 and L 6 respectively. The centre of mass of elements 5 and 6 of the idler loop are denoted S 3 and S 4 with masses m 5 and m 6 and axial moments of inertia I 5 and I 6 , respectively. The positions of the centre of masses are Thus, considering the shaking force F of leg 1, its expression is:

d AiS1i = r 1 L 1 u i , d CiS2i = (r 2 -1) L 1 u i , d ES5 =
6 6 5 5 3 1 2 1 S S P p i j Sji j m m m m d d d d F                (1) 
where respectively.

After a simple development of expression (1), it can be seen that the shaking force F can be expressed as:

        F p p i i m r m m m r m m m r m r m d a a F   6 5 5 2 4 6 6 2 3 1 2 2 1 1 3 3 1             (2) with                       i i i i i i i L       sin cos cos sin 2 1    a , (3a) 
                      6 6 2 6 6 6 6 6 4 sin cos cos sin          L a , (3b) 
and

F d   is the acceleration of point F.
At this step, only five counterweights are needed in the cancellation of the shaking force, but it could be seen after more derivations that three others are necessary for the cancellation of the shaking moment. Therefore, we propose directly adding three supplementary counterweights (Fig. 3). The positions of the eight masses are 

d AiMcp1i = r cp1 L 1 u i , d BiMcp2i = r cp2 L 1 u i , d EMcp5 = r cp5 d EF ,
      F cp cp cp cp cp i i cp cp cp cp bal r m m r m r m r m d a a F F   5 5 6 4 6 6 3 1 2 2 1 1 1          (4)
Thus, the shaking force is cancelled if:

1 1 1 1 cp cp r r m m   , ( 5a 
)   2 2 2 2 1 1 cp cp r r m m     , ( 5b 
)   6 6 6 2 2 6 3 cp p cp cp r m r m m m m      , (5c) and  
 5 5 5 6 6 2 2 5 3 cp cp p cp cp r m r m m m m m m        . ( 5d 
)
The expression of the shaking moment M O of the modified structure (expressed at point O) can be written as:

dt dH M O O  , (6) 
where H O is the angular momentum of the leg (expressed at point O). Thus, in order to cancel the shaking moment, the angular momentum is held constant over time.

The expression of the angular momentum H O is:

                                 6 5 3 1 2 1 3 1 2 1 j j j OMj OMj OMj OMj cpj OSj OSj OSj OSj j p i j OMji OMji OMji OMji cpj i j i j OSji OSji OSji OSji j O I x y y x m x y y x m I x y y x m I x y y x m H               (7) 
where x OQ , y OQ , OQ

x  and OQ y  are the position and velocities of any point Q along x and y axes, respectively, Q being either point S ji , M ji, (j = 1, 2), S j or M j (j = 5, 6).

Developing and introducing ( 5) into (7) yields

                          5 2 5 2 2 5 2 5 6 6 2 5 5 2 5 5 5 6 2 6 2 2 2 6 6 2 6 6 6 2 2 2 3 1 2 1 2 2 2 3 1 2 1 2 2 2 2 1 1 2 1 1 2 1 3 3 3 1 1             L m m L m m m r m r m I L m m m r m r m I R m m I L r m L r m r m r m I I H cp p cp cp cp cp p cp cp p cp p i i cp cp i i cp cp O                              (8)
After such modifications of the RRR chain, the angular momentum of the legs of the mechanism and of the RRR chain can be balanced using six counter-rotations (Fig. 3), which have an axial moment of inertia equal to: 

      2 1 2 2 2 2 2 2 2 1 1 2 1 1 2 1 1 1 1 L r m r m r m r m I I I cp cp cp cp cr         (9a)   2 2 2 2 3 p cp p cr R m m I I    (9b)     6 2

Numerical application

Let us illustrate the suggested balancing approach using numerical simulations carried out with ADAMS software. For this purpose, non balanced and balanced 3-RPR parallel manipulators will be compared.

The chosen trajectory for simulations is a straight line of the controlled point of the platform, achieved in t f = 0.25 s, between P 0 = (x 0 , y 0 ) = (-0.05 m, 0) and P f = (x f , y f ) = (-0.2 m, 0) with a rotation of the platform from  0 = 0° to  f = 30°. For the displacement of the mechanism, fifth order polynomial laws are used and therefore the trajectory is defined by the following expressions:

            5 4 3 0 0 / 6 / 15 / 10 f f f f t t t t t t x x x t x      , ( 10a 
)   0  t y , ( 10b 
)             5 4 3 0 0 / 6 / 15 / 10 f f f f t t t t t t t          . ( 10c 
)
The parameters used for the simulations are the following:

-radii of the circumcircles of the base triangle A 1 A 2 A 3 and the platform triangle 

C 1 C 2 C 3 ,R b = 0.35 m, R p = 0.1 m; -L 1 = 0.

COMPLETE SHAKING FORCE AND SHAKING MOMENT BALANCING VIA

SCOTT-RUSSELL MECHANISM

In this section another approach for complete shaking force and shaking moment balancing is developed, which consists of adding Scott-Russell mechanisms to the initial architecture of a manipulator. This approach enables a reduction in the number of counter-rotations.

Properties of the Scott-Russell mechanism.

Firstly, let us observe a simple slider-crank mechanism (Fig. 5). Let us denote the lengths AB Let us consider the balancing of this mechanism. The expression of the shaking force F of a slider-crank mechanism can be written as:

   3 1 i Si i m d F   (11) 
where Si d   is the acceleration of the centre of mass S i .

Developing [START_REF] Ouyang | Force Balancing of Robotic Mechanisms based on Adjustment of Kinematic Parameters[END_REF], the expression of F becomes:

   a d F 3 2 2 2 1 1 m r m m r m B       (12) 
with

                      2 2 2 2 2 2 2 2 sin cos cos sin          L a . ( 13 
) B d   is the acceleration of point B.
The constant terms of eq. ( 12) can be cancelled by the addition of two counterweights M j , (j = 1, 2) (Fig. 5), of which the masses are m cpj . Their positions are:

d AMcp1 = r cp1 d AB , d BMcp2 = r cp2 d BC ,
r cp1 and r cp2 being dimensionless coefficients. With the addition of the counterweights, the shaking force becomes:

  a d F F 2 2 2 1 1 cp cp B cp cp cp bal r m m r m       (14) 
Thus, the shaking force vanishes if:

2 3 2 2 2 cp cp r m r m m    and 1 3 2 2 1 1 1 cp cp cp r m m m r m m      . ( 15 
)
The expression of the angular momentum H A (expressed at point A) is:

                 2 1 3 1 j MSj MSj MSj MSj cpj j j j ASj ASj ASj ASj j A y x y x m I y x y x m H       (16)
where x AQ , y AQ , AQ

x  and AQ y  are the position and velocities of any point Q along x and y axes, respectively, Q being either point S j or M j (j = 1, 2, 3).

Developing and introducing ( 15) into ( 16),

        2 2 2 3 2 2 2 2 2 2 2 1 2 1 3 2 2 2 1 1 2 1 1 1     L m r m r m I L m m m r m r m I H cp cp cp cp cp A           (17) 
with

     2 2 2 L x x y a x x y AB AC AB AB AC AB            . ( 18 
)
where x AC , x AB , y AB are the coordinates of points C and B, respectively, and AC x  , AB x  , AB y  their velocities.

In order to cancel the shaking moment M A , the angular momentum has to be constant or null.

Developing [START_REF] Gosselin | On the development of reactionless parallel manipulators[END_REF], one notices that this can be obtained if:

a = 0 and L 1 = L 2 . ( 19 
)
In such a case,

2 1       . Therefore, the shaking moment is cancelled if:     0 2 1 2 2 2 2 2 2 2 2 1 2 2 2 1 1 2 1 1 1         L r m r m I L m m r m r m I cp cp cp cp cp (20)

Balancing of a manipulator's leg using a Scott-Russell mechanism.

Now let us consider a manipulator's leg with an added Scott-Russell mechanism (Fig. 6 

      2 3 2 2 2 2 1 4 4 3 3 3 2 2 1 1 1 1 a a d F m r m r m r m r m m m m r m r m cp cp B cp cp cp             (21) 
with [START_REF] Wu | Design of reactionless 3-DOF and 6-DOF parallel manipulators using parallelepiped mechanisms[END_REF] and 

                      03 03 2 03 03 03 03 3 1 sin cos cos sin          L a
                                        
                  L a . ( 23 
)
At this step, only one counterweight is needed for the cancellation of the shaking force, but it could be seen after more derivations that another is necessary for the cancellation of the shaking moment. Therefore, we propose adding this supplementary counterweight directly. The positions of the two masses are: d AMcp3 = r cp3 L 3 u, d CMcp4 = r cp4 L 3 u, r cp3 and r cp4 being dimensionless coefficients. Their masses are respectively denoted m cp3 and m cp4 . With the addition of the counterweights, the shaking force becomes:

  2 4 4 3 3 1 3 3 a a d F F cp cp cp cp cp B cp bal r m r m m m        . (24) 
Thus, the shaking force is cancelled if:

4 4 4 4 cp cp r r m m   , ( 25a 
) 3 3 3 3 cp cp r r m m   , ( 25b 
) 2 3 3 2 2 2 cp cp cp r m m r m m     (25c) 
and

1 3 3 2 2 1 1 1 cp cp cp cp r m m m m r m m       . ( 25d 
)
Developing and simplifying, the expression of the angular momentum is:

41 2 03 1     eq eq A I I H   (26) 
with

        2 3 2 4 4 2 4 4 2 3 3 2 3 3 4 3 2 1 2 1 2 2 2 2 2 2 2 1 1 2 1 1 1 1 1 L r m r m r m r m I I I I L r m r m r m r m I cp cp cp cp cp cp cp cp eq               (27) 
    2 1 2 2 2 2 2 2 2 2 1 2 2 2 1 2 1 1 1 2 L r m r m I L m m r m r m I I cp cp cp cp cp eq         . (28) 
From [START_REF] Gosselin | Synthesis and design of reactionless three-degree-offreedom parallel mechanisms[END_REF], I eq2 = 0. Therefore, the shaking moment of the slider-crank can be cancelled using a simple counter-rotation I cr with an axial moment of inertia equal to I eq1 .

Shaking moment and shaking force balancing of the 3-RPR manipulator

Now, let us apply such an approach to the 3-RPR mechanism. First of all, let us substitute the platform mass by three points masses located at C 1 , C 2 and C 3 , with the values of mass equal to m p1 , m p2 and m p3 respectively [13, 31, 32]. Such a condition can be obtained if:

3 / p pi m m  and 2 3 p pi p R m I  . ( 29 
)
where R p is the radius of the circumcircle of C 1 C 2 C 3 . Such a decomposition of the platform enables us to consider the shaking force and shaking moment balancing of each leg of the mechanism. Then, modifying each leg in order to obtain a mechanism similar to a slider-crank linkage, (i.e., by adding an idler loop to each leg), the shaking force and shaking moment are cancelled if: 

4 4 4 4 cp cp r r m m   , ( 30a 
) 3 3 3 3 cp pi cp r m r m m    , ( 30b 
) 2 3 3 2 2 2 cp pi cp cp r m m m r m m      , ( 30c 
) 1 3 3 2 2 1 1 1 cp pi cp cp cp r m m m m m r m m        , (30d) 
    2 1 2 2 2 2 2 2 2 2 1 2 2 2 1 1 2 1 1 1 0 L r m r m I L m m r m r m I cp cp cp cp cp         , (30e) 
               (30f)
taking into account that I cr is the axial moment of inertia of the counter-rotations (Fig. 7). Thus, with this approach it is possible to create a fully-balanced shaking force and shaking moment 3-RPR mechanism with only three counter-rotations (Fig. 7), i.e., this method enables a reduction in the number of counter-rotations by a factor of two. 

Numerical application

The parameters used for the simulations are the followings:

-radii of the circumcircles of the base triangle A 1 A 2 A 3 and the platform triangle For these new parameters and for the trajectory used previously, taking into account that the position coefficients of the counterweights are equal to r cpj = -0.5 (j = 1, 3, 4), r cp2 = -1, the new values of the counterweights are: m cp1 = 3.17 kg, m cp2 = 11.71 kg, m cp3 = 0.33 kg, m cp4 = 0.75 kg.

The shaking force and shaking moment are then computed (dashed line in Fig. 8). It is possible to see that, with the counterweights, the shaking efforts are cancelled, while the maximal value of the shaking moment is increased by a factor 28. Finally, we add the counter-rotations. Their values are equal to I cr = 1.56907 kg.m². With such counter-rotations, the shaking moment is balanced (gray line in Fig. 8c). 

CONCLUSIONS

This paper presents the complete shaking force and shaking moment balancing of planar parallel manipulators with prismatic pairs. Two approaches are discussed: balancing via adding an idler loop mounted between the platform and the base of the manipulator and balancing via the Scott-Russell mechanism, which enables a reduction in the number of counter-rotations by a factor of two. All studied balancing techniques are validated by simulations carried out using ADAMS software. The obtained results show that parallel manipulators balanced using the suggested methods transmit no inertia loads to their bases, i.e., the sum of all ground forces and their moments are zero.

Finally, we would like to mention that using Scott-Russel mechanisms remains using some modified 3-RRR manipulator. Thus, if we do not consider the type of actuation, the prismatic guides could be suppressed and our work could be of no interest. But the goal of our study is to propose the complete shaking force and shaking moment balancing of manipulators for applications where an actuation via a prismatic motor is needed, such as in high load carrying (using hydraulic devices). Therefore, we think the proposed solutions are of great interest to the scientific community. 
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