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Abstract:

Most real life signals are of non-stationary natub@
efficient acquisition of such signals can be achiby
adapting the acquisition rate according to the tirgignal
local characteristics. In this context, an ARADC
(Adaptive Rate Analog to Digital Converter), basad
the level crossing sampling is proposed. The ADC
effective resolution is a classical parameter to
characterize its performance. In this context, aeho
method is devised to measure the ARADC resolutfon.
criterion for properly choosing the different syste
parameters in the aim of acquiring the desiredcéffe
resolution is also described.

1. Introduction

The signal acquisition process dictates the peidoa
of the complete signal processing chain. A smaitgral
acquisition results into an efficient system antbwersa
[1]. The classical ADCs are time-invariant, hence a
parameterized by taking into account the worst iptess
case for the considered application. They capthee t
input signal at a constant rate. It causes an asem
number of samples to be processed, especiallyeindke
of low activity sporadic signals [2-4, 7-9].

This shortcoming is resolved up to a certain extant
employing the ARADC in various applications [7-9].
The motivation behind the ARADC is to achieve a gma
A/D conversion. The idea is to acquire only theevaht
signal parts and to adapt the sampling rate acogriti
the input signal local variations. An efficient gtbn is
proposed by smartly combining the features of bbth
uniform and the non-uniform signal processing tools

2. TheARADC

The block diagram of the ARADC is shown in Figure 1
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Figure 1: The block diagram of the ARADC.

In the ARADC, a band-limited input signal is aceuair
by a LCADC (Level Crossing based ADC) [3, 4].
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According to [2], the sampling instants of a non-
uniformly sampled signal obtained with the LCAD& ar
defined by Equation 1. Whetgis the current sampling
instant,t,; is the previous one ardt, is the time delay
between the current and the previous samplingrtsta

t =t _ +dt Eq. 1
LCADCs drastically reduce the activity of the post
processing chain, because they only capture tleeaet
information [3, 4, 7-9]. LettV;, and4x(t) be the LCADC
and the input signal x(t) amplitude dynamics
respectively. In order to avail the complete LCADC
resolution in the studied cas#x(t) is always adapted to
match4V;,. For aM-bit LCADC, the maximum and the
minimum sampling frequencies are defined by Equatio
2 and 3 respectively [7]. WherEs,.x andFs,, are the
maximum and the minimum sampling frequencfgs.is
the highest and,;, is the lowest frequency aft).

FSye = 2.F 0 2% -1) Eq. 2

Fs,,=2.f . .(2M —1) Eqg. 3
LCADCs deliver a non-uniform time repartitioned
output. The non-uniformly sampled signal obtaingthw
LCADCs can be used for further non-uniform digital
processing [7]. However in the studied case, the-n
uniformity of the sampling process, which vyields
information on the signal local features, is emplbyo
select only the relevant signal parts. Furthermadhe,
characteristics of each signal selected part astyzed
and are employed later on to adapt the system gdeasn
accordingly. This selection and local-features aotion
process is performed by the ASA (Activity Selection
Algorithm) or the EASA (Enhanced Activity Selection
Algorithm). They split the signal into a series agftive
windows. A detailed description of these algorithims
given in [8, 9]. The ASA and the EASA display
interesting features with the LCSS, which are not
available in the classical case. They select dmyaictive
parts of the non-uniformly sampled signal, obtainéth
the LCADC. Moreover, they correlate the length loé t
selected window with the signal local charactessstin
addition, they provide an efficient reduction ofeth
spectral leakage phenomenon [8, 9].
Finally, the selected signal obtained with the \digti
selection algorithm is resampled uniformly. The
resampling frequencirs of thei™ selected windowV
can be specific. According to [8, 9Frs can be
computed by employing the following Equations.

L'=tmaX -tmin'  Eq. 4



Where,tmax andtmin’ are the final and the initial times
of W. L' is the length in seconds ahtlis the number of
samples laying iW. The upper and the lower bounds on
Frs' areFsya andFsy,respectively.

3. The ARADC Resolution

Each stage has its impact on the overall effective
resolution. In order to quantify the impact of eathge,
the error sources of each stage are discussed and
method to compute thBNR(Signal to Noise Ratio) at
each step is devised in the following subsections.

3.1 TheLCADC SNR

Classically during an ideal A/D conversion procdbs,
sampling instants are exactly known, where as sesnpl
amplitudes are quantized at the ADC resolution 1,
which is defined by the ADC number of bits. Thisoer
is characterized by th8NR which can be expressed by
Equation 6.

SNRdB)=602.M +176 Eq.6

Here,M is the ADC number of bits. It follows that the
SNRof an ideal ADC depends only upbhand it can be
improved by 6.02 dB for each incremeniMn

The A/D conversion process, which occurs in LCADCs,
is dual in nature. Ideally in this case, sampleplautes
are exactly known, while the sampling instants are
guantized at the timer resolutidgme. According to [3,

4], theSNRIin this case is given by Equation 7.

SNRdB) =-1119-20lod f,, Tyne:) EQ. 7

sig" "timer
Here, fyq is the input signal frequency. It shows that in
this case, th&NRdoes not depend dvl any more, but
on x(t) characteristics ant@ye. An improvement of 6.02
dB in theSNRcan be achieved by simply halvifighe,.
Equations 6 and 7 respectively give the theoref®diR
of the classical and the level crossing converters.
Practically, the A/D converters introduce furtheroes
like the time jitter, the comparator ambiguity, €tt
addition to the quantization phenomenon [11]. Usual
the converter practicabNR.y is measured from the

spectrum of a windowed sequence of the ADC output

samplesA method of calculating the converter practical
SNRis detailed in [12]. By knowing th&NR., of an
ADC, its ENOB (Effective Number of Bits) can be
calculated by employing the following Equation [1Q].

ENOB= SNR (dB) ~ 176

6.02

Theoretically, the LCADCSNRcan be improved as far
as it is required by reducing,.,. But practically there is

a limit, which is imposed by the analog blocks aecy

[3, 4]. In fact, the analog blocks determine theeshold
levels precision. If these levels are known with
uncertaintyAa, then this error must be taken into account
and it will result intoSNRdegradation. Usually, the ADC
SNReq is computed by employing the spectral analysis
[12]. The LCADC output is non-uniformly distributed
time. Hence, its spectrum can not be properly cdatpu

Eq. 8

with the classical tools. Several methods have been
developed for the spectral analysis of the noneumify
sampled. In [8], performances of the GDFT (General
Discrete Fourier Transform) and the Lomb’s algarnth
are studied for the case of level crossing samgiigail.

It is shown that these methods are erroneous beazfus
the presence of wideband spectral noise. Hence cdme
not provide a proper calculation of the LCASBBIR.,.

In context of the above discussion, a novel apgrasac
proposed for the LCADGNR,, measurement. It does
not require frequency domain transformation and
calculates th&NRdirectly in time domain. The practical
ADC is characterized by employing a monotone siitiso
[10, 11]. Therefore a similar signal given by Edomat9

is employed in this case.

x(t)=Asin(2zf, t+8)  Eq.9

Here, A, fg andg are the amplitude, the frequency and
the initial phase. For the ease of process undetistg

© =0 is considered in the studied case. In the case of
mono harmonic signal it is possible to analytically
calculate the level crossing instants [6]. Thughia case

t, can be calculated by employing Equation 10.

t, :#.arcsir{levet”j
2ty

Here, level, is the m" level crossing threshold.
Amplitude of then™ level crossing sample, can be
calculated as:x,=level,. Hence, by employing this
method, firstly an ideal LCSS is implemented ),
which provides an exact knowledge of both time-
amplitude values of the level crossing samples.

The only error occurs in the ideal LCADC is the éim
quantization [3, 4]. By assuming that the time e#itois
uncorrelated to the input signal, it is modeledaashite
noise. Ifét, is the time quantization occurs fir then it
can randomly takes a value betwe®and Tyne. Thus,
tg, (the quantized version df) can be obtained by
employing Equation 11. The time quantization also
affects the amplitude value of the correspondinglle
crossing sample. The erroneous sample amplitudesval
is calculated by using Equation 12.

tq, =t, + &, Eq.11

Xq, = Asir(Zn. fsig.tq) Eq.12
Now the ideal LCADC conversion error per samplenpoi
Cq, is given by the absolute difference betwegrand
Xth. The RMS (root mean square) valueGaffor N level
crossing samples can be calculated by employing

Equation 13. Finally th&NRof an ideal LCADC can be
calculated by employing Equation 14.

Eq. 10

w1 Fce  Ee13
n=1

RMSSigna
SNrdg)= E5 00 SS( gq) ) Eq.14

In the case of a real LCADC, there also existsredue
to the threshold levels ambiguity [3, 4]. L&&, is the
error introduced due to the quantization levels igonky
into xgn. Then, then™ erroneous level crossing sample
amplitudexe,, contains effect of botht, andAa, and it
can be calculated by employing Equation 15. The rea



LCADC conversion error per sample poiDg, is given between SNRcapc.th and the obtained SNR  which
by the absolute difference betwegrandxe,. The RMS  verifies the authenticity of the proposed LCAENR
(Ce) for N level crossing samples can be calculated bymeasurement method.

employing a similar relation, shown by Equation 13. Although the LCADCSNRIis independent o, yet an
Finally, the LCADCSNRe, can be computed as a ratio appropriate value oM should be chosen in order to

between the RMS (signal) and the RMS (Ce). ensure a proper reconstruction of the acquiredasigh
xe, = Xq, +Aa, Eq. 15 4, 7-9]. _
In the case of a practical LCADC, the thresholdelsv
3.2 The Activity Selection SNR ambiguity errorAa also occurs along with the time

. . o . . quantization errodt. The modeling ofa is not straight
For a monotone sinusoid, the act|V|ty_ selec_:tlomaig_m forward and it depends upon the circuit architeztand
(ASA/EASA) parameters can be easily adjusted tadavo  technology employed for its implementation. A study
the signal truncation. In this case, the windowisg  Ag for different LCADC implementations is out of the
performed with the adaptive length rectangular fiom  gcqpe of this article. Here, the example of the AAR],
[9]. Since, the employed window shape is rectangifia s taken into account. In this case, the threskeldls are
has no impact on the ARADC output resolution. Ktju generated with the DAC (D/A Converter). Hence, a 3-
selects the relevant parts of the LCADC output andpjts pAC is implemented in the Cadence circuit desi
passes them to the resampler block (cf. Figure 1). tool using the STMicroelectronics 0.1 CMOS

3.3 The Resampler SNR technology.
Aa mainly occurs because of the process and the

The resampling process requires interpolation, Whic mismatch variations, introduced during the circuit
changes properties of the resampled signal compared faprication. The effect of the process and the ratsim
the original one [5]. For the practical LCADC, thexist  variations onvg, (threshold level) is studied for different
uncertainties in the time-amplitude pairs of theele input combinations by employing Monte Carlo
crossing samples (cf. Section 3.1). These uncéigain simuylations. It is found that due to the effectpobcess
accumulate in the interpolation process and delitier variationsvy, varies within the range af0.21% of .
overall error at the ARADC output. . Similarly, due to the mismatch variations,; varies
If (try, X;) represents the time-amplitude pair of tife  within the range of 0.11% of v Finally, the variation
interpolated sample. Then the" reference sample of v, due to the combined effect of process and
amplitude xo,, which should be obtained by sampling mismatch variations is calculated and it+9.23% of
X(t) attry, can be calculated by employing the following v, Following this,Aa is chosen equal t60.23% of ¥
Equation. and xe, is computed by employing Equation 15. The
X0, = A.Sin(Z.ﬂ. fog .trn) Eq. 16 practical LCADCSNR., is computed by employing the
method discussed in Section 3.1.
The simulation is performed for the same parameters
employed in the case of ideal LCADC. The obtained
results are summarized in Table 2.

The resampling error per interpolated observateyns
given by the absolute difference between and xr,.
The RMS (e) for N resampled observations can be
calculated by employing a similar relation to Eduoat

13. Finally, the ARADCSNR.y can be computed as a Timer | SNR.capc-mh SNReq ENOB
: : (ns) (dB) (dB) (dB)

ration between the RMS (signal) and the RNVE). ( 0 2158 4116 6.54

) _ 2t 47.60 47.05 7.52

4. The Simulation Results 27 53.62 52.88 8.49

2° 59.64 56.71 9.13

In order to illustrate the proposed method, a satioh is 2"51 65.66 58.93 9.50

performed. In this casex(t)=Vma.sin(2z.2300.t) is z 71.66 59.45 9.58
employed as iNpu¥/ma,= 0.9 v is chosen. Table 2: The real LCADC SNR for fixed=3 and

Equation 7 shows that for a fixdg, the ideal LCADC
SNRvaries as a function ;.. In order to demonstrate
this statement, the simulations are performed foedf ~ Here, ENOB values are calculated by employing
M=3 and by varyinglme:betweer]2% 22 us. The ideal ~ Equation 8. In a practical LCADC, the conversioroer
LCADC SNRis measured by employing Equation 14. mainly consists obt andAa. Table 2 demonstrates that

varying Tymer.

The obtained results are summarized in Table 1. how Aa is limiting the ENOB In the studied case, for
Timer 1S) | SNRcapc.h (dB) SNR(dB) higher Tymer values [2; 27 us, the major error occurs

2° 41.58 41.21 because obt and the employed value afa has minor
2! 47.60 47.44 impact on theSNR.,. Contrary, with a further reduction

272 53.62 53.44 of Tumer the error occurs because afa is getting

significant compared to the error introduced bty

Hence, for loweme, Aa is the main limiting factor on
the SNRe, improvement. For the employéda, the limit

In Table 1, SNRcapcn represents the LCADC on the achievabl&NR.y is around 59 dB foffme=2"

theoretical SNR, computed for the given paramebgrs ps. Further reduction inTyme, Will not introduce
employing Equation 7. These results show accordance

Table 1: The ideal LCADC SNR for fixed=3 and
varying Tiimer-



noteworthy gain in th&SNR.,, except by achieving an
appropriate reduction ina.

The selected signal obtained at the ASA/EASA ouiput
resampled uniformly (cf. Figure 1). A large rangk o
interpolation functions is available. Computatidyal
efficient solutions, such as the NNR (Nearest Neggh
Resampling) and the linear interpolations are eggilo
for the resampling purpose.

For a fixedTimen the resampled daBNRincreases with
the increase iM. The reason behind is that for any kind
of employed interpolation, the upper bound leq is
imposed byq [8]. Here,q is the LCADC quantum and is
given asig=2Vma!l(2V-1). Here Via is the LCADC half
amplitude range. It follows that an increasd/iicauses a

in the studied case, for each valudvbthe SNRrapc-nNR
and the SNRgrapciinear remain higher than the
corresponding classical one. It shows that for an
appropriate choice offyn, Aa and the interpolation
order, a higher ENOB can be achieved for a givenn

the case of ARADC compared to the classical ADC.

5. Conclusion

The ARADC is well suited for low activity sporadic
signals. For such signals, it leads towards a idrast
computational gain compared to the counter claksica
approaches [7-9]. A novel method to compute the
ARADC SNR has been devised. It is shown that result
obtained with the proposed method are in coheraiitte

reduction ing, which consequently results into a reduced the theoretical ones, which verifies the proposed

le,.
The SNR of the uniformly sampled data, obtained in

approach correctness. The ARADC SNR dependsion
Timerr A and the interpolation order. For a targeted

calculated by employing the method discussed itiGec
3.3. It is performed by varying/ and Tymer between
[3; 8] and P% 2°] u seconds respectively.

The ARADC conversion error mainly consistsdbf Aa
and le. Once the threshold levels are establishedl,
remains constant [3]. For giveva onceTy,, IS decided,
then the next step is an appropriate choictaind the
interpolation order. From simulation results itf@ind
that while employing the linear interpolatioN=8 is
sufficient to approach the upp8NR., bound of 59 dB.
On the other hand, in the NNR interpolation cade 10
bits is required to achieve the upp@NR.; bound. It
follows that for certainit andAa, the upper achievable
SNR.a bound can be obtained for lowét with the
increase in interpolation order. As an example,ddme
SNR.y bound can be achieved fM=4 andTyme=2" n
seconds, while performing the resampling with artfou
order interpolator. Note that higher order integtois

provide better results at the cost of an increase
computation per resampled observation. Therefore, a
appropriate interpolation order should be employed,

which keeps the system computationally efficiertjlev
not much affects th8NR,, for the chosen parameters.

In order to compare the ARADC performance with the

classical ADC, their SNR curves are plotted on Fag2L
The SNR values for the classical case are obtdiyed
employing Equation 6.

60
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Figure 2: The SNR curves for the ADC and the ARADC.

In Figure 2, SNRgrapcnnr and  the SNRgapc-Linear

represenBNRrapc Obtained in the case of the NNR and

the linear interpolations respectively. Figure 2wk that

be found, which provides an attractive trade offneen
the system computational complexity and the dedider
output quality, while ensuring the proper signal
reconstruction.
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