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Abstract:  

Most real life signals are of non-stationary nature. An 
efficient acquisition of such signals can be achieved by 
adapting the acquisition rate according to the input signal 
local characteristics. In this context, an ARADC 
(Adaptive Rate Analog to Digital Converter), based on 
the level crossing sampling is proposed. The ADC 
effective resolution is a classical parameter to 
characterize its performance. In this context, a novel 
method is devised to measure the ARADC resolution. A 
criterion for properly choosing the different system 
parameters in the aim of acquiring the desired effective 
resolution is also described.    

1. Introduction 

The signal acquisition process dictates the performance 
of the complete signal processing chain. A smarter signal 
acquisition results into an efficient system and vice versa 
[1]. The classical ADCs are time-invariant, hence are 
parameterized by taking into account the worst possible 
case for the considered application. They capture the 
input signal at a constant rate. It causes an increased 
number of samples to be processed, especially in the case 
of low activity sporadic signals [2-4, 7-9].  
This shortcoming is resolved up to a certain extent by 
employing the ARADC in various applications [7-9]. 
The motivation behind the ARADC is to achieve a smart 
A/D conversion. The idea is to acquire only the relevant 
signal parts and to adapt the sampling rate according to 
the input signal local variations. An efficient solution is 
proposed by smartly combining the features of both the 
uniform and the non-uniform signal processing tools.  

2. The ARADC 

The block diagram of the ARADC is shown in Figure 1. 
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Figure 1: The block diagram of the ARADC. 

 
In the ARADC, a band-limited input signal is acquired 
by a LCADC (Level Crossing based ADC) [3, 4]. 

According to [2], the sampling instants of a non-
uniformly sampled signal obtained with the LCADC are 
defined by Equation 1. Where tn is the current sampling 
instant, tn-1 is the previous one and dtn is the time delay 
between the current and the previous sampling instants.  

nnn dttt += −1    Eq. 1 

LCADCs drastically reduce the activity of the post 
processing chain, because they only capture the relevant 
information [3, 4, 7-9]. Let ∆Vin and ∆x(t) be the LCADC 
and the input signal x(t) amplitude dynamics 
respectively. In order to avail the complete LCADC 
resolution in the studied case, ∆x(t) is always adapted to 
match ∆Vin. For a M-bit LCADC, the maximum and the 
minimum sampling frequencies are defined by Equations 
2 and 3 respectively [7]. Where, Fsmax and Fsmin are the 
maximum and the minimum sampling frequencies. fmax is 
the highest and fmin is the lowest frequency of x(t). 

( )12..2 maxmax −= MfFs   Eq. 2 

( )12..2 minmin −= MfFs    Eq. 3 

LCADCs deliver a non-uniform time repartitioned 
output. The non-uniformly sampled signal obtained with 
LCADCs can be used for further non-uniform digital 
processing [7].  However in the studied case, the non-
uniformity of the sampling process, which yields 
information on the signal local features, is employed to 
select only the relevant signal parts. Furthermore, the 
characteristics of each signal selected part are analyzed 
and are employed later on to adapt the system parameters 
accordingly. This selection and local-features extraction 
process is performed by the ASA (Activity Selection 
Algorithm) or the EASA (Enhanced Activity Selection 
Algorithm). They split the signal into a series of active 
windows. A detailed description of these algorithms is 
given in [8, 9]. The ASA and the EASA display 
interesting features with the LCSS, which are not 
available in the classical case. They select only the active 
parts of the non-uniformly sampled signal, obtained with 
the LCADC. Moreover, they correlate the length of the 
selected window with the signal local characteristics. In 
addition, they provide an efficient reduction of the 
spectral leakage phenomenon [8, 9].  
Finally, the selected signal obtained with the activity 
selection algorithm is resampled uniformly. The 
resampling frequency Frsi of the i th selected window Wi 
can be specific. According to [8, 9], Frsi can be 
computed by employing the following Equations.  

iii ttL minmax −=   Eq.   4  
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Where, tmaxi and tmini are the final and the initial times 
of Wi. Li is the length in seconds and Ni is the number of 
samples laying in Wi. The upper and the lower bounds on 
Frsi are Fsmax and Fsmin respectively. 

3. The ARADC Resolution 

Each stage has its impact on the overall effective 
resolution. In order to quantify the impact of each stage, 
the error sources of each stage are discussed and a 
method to compute the SNR (Signal to Noise Ratio) at 
each step is devised in the following subsections.   

3.1 The LCADC SNR 

Classically during an ideal A/D conversion process, the 
sampling instants are exactly known, where as samples 
amplitudes are quantized at the ADC resolution [10, 11], 
which is defined by the ADC number of bits. This error 
is characterized by the SNR, which can be expressed by 
Equation 6.  

76.1.02.6)( += MdBSNR   Eq. 6 

Here, M is the ADC number of bits. It follows that the 
SNR of an ideal ADC depends only upon M and it can be 
improved by 6.02 dB for each increment in M. 
The A/D conversion process, which occurs in LCADCs, 
is dual in nature. Ideally in this case, samples amplitudes 
are exactly known, while the sampling instants are 
quantized at the timer resolution Ttimer. According to [3, 
4], the SNR in this case is given by Equation 7. 

( )timersig TfdBSNR .log2019.11)( −−=   Eq. 7 

Here, fsig is the input signal frequency. It shows that in 
this case, the SNR does not depend on M any more, but 
on x(t) characteristics and Ttimer. An improvement of 6.02 
dB in the SNR can be achieved by simply halving Ttimer. 
Equations 6 and 7 respectively give the theoretical SNR 
of the classical and the level crossing converters. 
Practically, the A/D converters introduce further errors 
like the time jitter, the comparator ambiguity, etc in 
addition to the quantization phenomenon [11]. Usually, 
the converter practical SNRreal is measured from the 
spectrum of a windowed sequence of the ADC output 
samples. A method of calculating the converter practical 
SNR is detailed in [12]. By knowing the SNRreal of an 
ADC, its ENOB (Effective Number of Bits) can be 
calculated by employing the following Equation [10, 11]. 

02.6

76.1)( −= dBSNR
ENOB real    Eq. 8 

Theoretically, the LCADC SNR can be improved as far 
as it is required by reducing Ttimer. But practically there is 
a limit, which is imposed by the analog blocks accuracy 
[3, 4]. In fact, the analog blocks determine the threshold 
levels precision. If these levels are known with 
uncertainty �a, then this error must be taken into account 
and it will result into SNR degradation. Usually, the ADC 
SNRreal is computed by employing the spectral analysis 
[12]. The LCADC output is non-uniformly distributed in 
time. Hence, its spectrum can not be properly computed 

with the classical tools. Several methods have been 
developed for the spectral analysis of the non-uniformly 
sampled. In [8], performances of the GDFT (General 
Discrete Fourier Transform) and the Lomb’s algorithm 
are studied for the case of level crossing sampled signal. 
It is shown that these methods are erroneous because of 
the presence of wideband spectral noise. Hence, they can 
not provide a proper calculation of the LCADC SNRreal.   
In context of the above discussion, a novel approach is 
proposed for the LCADC SNRreal measurement. It does 
not require frequency domain transformation and 
calculates the SNR directly in time domain. The practical 
ADC is characterized by employing a monotone sinusoid 
[10, 11]. Therefore a similar signal given by Equation 9 
is employed in this case. 

( )θπ += tfAtx sig...2sin.)(   Eq. 9 

Here, A, fsig and φ are the amplitude, the frequency and 
the initial phase. For the ease of process understanding   
ϴ = 0 is considered in the studied case. In the case of a 
mono harmonic signal it is possible to analytically 
calculate the level crossing instants [6]. Thus, in this case 
tn can be calculated by employing Equation 10. 
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Here, levelm is the mth level crossing threshold. 
Amplitude of the nth level crossing sample xn can be 
calculated as: xn=levelm. Hence, by employing this 
method, firstly an ideal LCSS is implemented for x(t), 
which provides an exact knowledge of both time-
amplitude values of the level crossing samples. 
The only error occurs in the ideal LCADC is the time 
quantization [3, 4]. By assuming that the time error δt is 
uncorrelated to the input signal, it is modeled as a white 
noise. If δtn is the time quantization occurs for tn, then it 
can randomly takes a value between 0 and Ttimer. Thus, 
tqn (the quantized version of tn) can be obtained by 
employing Equation 11. The time quantization also 
affects the amplitude value of the corresponding level 
crossing sample. The erroneous sample amplitude value 
is calculated by using Equation 12.   

nnn tttq δ+=     Eq.11 

( )nsign tqfAxq ...2sin. π=   Eq.12 

Now the ideal LCADC conversion error per sample point 
Cqn is given by the absolute difference between xn and 
xqn. The RMS (root mean square) value of Cq for N level 
crossing samples can be calculated by employing 
Equation 13. Finally the SNR of an ideal LCADC can be 
calculated by employing Equation 14. 

( ) ∑
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1    Eq.13 
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SignalRMS
dBSNR =    Eq.14 

In the case of a real LCADC, there also exists error due 
to the threshold levels ambiguity [3, 4]. Let �an is the 
error introduced due to the quantization levels ambiguity 
into xqn. Then, the nth erroneous level crossing sample 
amplitude xen, contains effect of both δtn and �an and it 
can be calculated by employing Equation 15. The real 



LCADC conversion error per sample point Cen is given 
by the absolute difference between xn and xen. The RMS 
(Ce) for N level crossing samples can be calculated by 
employing a similar relation, shown by Equation 13. 
Finally, the LCADC SNRreal can be computed as a ratio 
between the RMS (signal) and the RMS (Ce). 

nnn axqxe ∆±=   Eq. 15 

3.2 The Activity Selection SNR 

For a monotone sinusoid, the activity selection algorithm 
(ASA/EASA) parameters can be easily adjusted to avoid 
the signal truncation. In this case, the windowing is 
performed with the adaptive length rectangular function 
[9]. Since, the employed window shape is rectangular, it 
has no impact on the ARADC output resolution. It just 
selects the relevant parts of the LCADC output and 
passes them to the resampler block (cf. Figure 1). 

3.3 The Resampler SNR 

The resampling process requires interpolation, which 
changes properties of the resampled signal compared to 
the original one [5]. For the practical LCADC, there exist 
uncertainties in the time-amplitude pairs of the level-
crossing samples (cf. Section 3.1). These uncertainties 
accumulate in the interpolation process and deliver the 
overall error at the ARADC output.  
If ( trn, xrn) represents the time-amplitude pair of the nth 
interpolated sample. Then the nth reference sample 
amplitude xon, which should be obtained by sampling 
x(t) at trn, can be calculated by employing the following 
Equation. 

 ( )nsign trfAxo ...2sin. π=   Eq. 16 

The resampling error per interpolated observation Ien is 
given by the absolute difference between xon and xrn. 
The RMS (Ie) for N resampled observations can be 
calculated by employing a similar relation to Equation 
13. Finally, the ARADC SNRreal can be computed as a 
ration between the RMS (signal) and the RMS (Ie). 

4. The Simulation Results 

In order to illustrate the proposed method, a simulation is 
performed. In this case, x(t)=Vmax.sin(2.π.2300.t) is 
employed as input. Vmax = 0.9 v is chosen.  
Equation 7 shows that for a fixed fsig, the ideal LCADC 
SNR varies as a function of Ttimer. In order to demonstrate 
this statement, the simulations are performed for fixed 
M=3 and by varying Ttimer between [20; 2-2] µs. The ideal 
LCADC SNR is measured by employing Equation 14. 
The obtained results are summarized in Table 1. 

Ttimer (µs) SNRLCADC-TH (dB) SNR (dB) 
20 41.58 41.21 
2-1 47.60 47.44 
2-2 53.62 53.44 

Table 1: The ideal LCADC SNR for fixed M=3 and 
varying Ttimer. 

In Table 1, SNRLCADC-Th, represents the LCADC 
theoretical SNR, computed for the given parameters by 
employing Equation 7. These results show accordance 

between SNRLCADC-Th and the obtained SNR, which 
verifies the authenticity of the proposed LCADC SNR 
measurement method.  
Although the LCADC SNR is independent of M, yet an 
appropriate value of M should be chosen in order to 
ensure a proper reconstruction of the acquired signal [3, 
4, 7-9].  
In the case of a practical LCADC, the threshold levels 
ambiguity error �a also occurs along with the time 
quantization error δt. The modeling of �a is not straight 
forward and it depends upon the circuit architecture and 
technology employed for its implementation. A study on 
�a for different LCADC implementations is out of the 
scope of this article. Here, the example of the AADC [4], 
is taken into account. In this case, the threshold levels are 
generated with the DAC (D/A Converter). Hence, a 3-
bits DAC is implemented in the Cadence circuit design 
tool using the STMicroelectronics 0.13-µm CMOS 
technology.  
�a mainly occurs because of the process and the 
mismatch variations, introduced during the circuit 
fabrication. The effect of the process and the mismatch 
variations on vout (threshold level) is studied for different 
input combinations by employing Monte Carlo 
simulations. It is found that due to the effect of process 
variations vout varies within the range of ± 0.21% of vout. 
Similarly, due to the mismatch variations vout varies 
within the range of ± 0.11% of vout. Finally, the variation 
of vout due to the combined effect of process and 
mismatch variations is calculated and it is ± 0.23% of 
vout. Following this, �a is chosen equal to ± 0.23% of xn 
and xen is computed by employing Equation 15. The 
practical LCADC SNRreal is computed by employing the 
method discussed in Section 3.1. 
The simulation is performed for the same parameters, 
employed in the case of ideal LCADC. The obtained 
results are summarized in Table 2.  

Ttimer  
(µs) 

SNRLCADC-TH 

 (dB) 
SNRreal  

(dB) 
ENOB 

(dB) 
20 41.58 41.16 6.54 
2-1 47.60 47.05 7.52 
2-2 53.62 52.88 8.49 
2-3 59.64 56.71 9.13 
2-4 65.66 58.93 9.50 
2-5 71.66 59.45 9.58 

Table 2: The real LCADC SNR for fixed M=3 and 
varying Ttimer. 

Here, ENOB values are calculated by employing 
Equation 8. In a practical LCADC, the conversion error 
mainly consists of δt and �a. Table 2 demonstrates that 
how �a is limiting the ENOB. In the studied case, for 
higher Ttimer values [20; 2-2] µs, the major error occurs 
because of δt and the employed value of �a has minor 
impact on the SNRreal. Contrary, with a further reduction 
of Ttimer the error occurs because of �a is getting 
significant compared to the error introduced by δt. 
Hence, for lower Ttimer, �a is the main limiting factor on 
the SNRreal improvement. For the employed �a, the limit 
on the achievable SNRreal is around 59 dB for Ttimer=2-5 

µs. Further reduction in Ttimer will not introduce 



noteworthy gain in the SNRreal, except by achieving an 
appropriate reduction in �a.  
The selected signal obtained at the ASA/EASA output is 
resampled uniformly (cf. Figure 1). A large range of 
interpolation functions is available. Computationally 
efficient solutions, such as the NNR (Nearest Neighbor 
Resampling) and the linear interpolations are employed 
for the resampling purpose. 
For a fixed Ttimer, the resampled data SNR increases with 
the increase in M. The reason behind is that for any kind 
of employed interpolation, the upper bound on Ien is 
imposed by q [8]. Here, q is the LCADC quantum and is 
given as: q=2Vmax/(2

M-1). Here, Vmax is the LCADC half 
amplitude range. It follows that an increase in M causes a 
reduction in q, which consequently results into a reduced 
Ien. 
The SNR of the uniformly sampled data, obtained in 
cases of the NNR and the linear interpolations is 
calculated by employing the method discussed in Section 
3.3. It is performed by varying M and Ttimer between     
[3; 8] and [22; 2-5] µ seconds respectively.  
The ARADC conversion error mainly consists of δt, �a 
and Ie. Once the threshold levels are established, �a 
remains constant [3]. For given �a once Ttimer is decided, 
then the next step is an appropriate choice of M and the 
interpolation order. From simulation results it is found 
that while employing the linear interpolation, M=8 is 
sufficient to approach the upper SNRreal bound of 59 dB. 
On the other hand, in the NNR interpolation case, M=10 
bits is required to achieve the upper SNRreal bound. It 
follows that for certain δt and �a, the upper achievable 
SNRreal bound can be obtained for lower M with the 
increase in interpolation order. As an example, the same 
SNRreal bound can be achieved for M=4 and Ttimer=2-5 µ 
seconds, while performing the resampling with a fourth 
order interpolator. Note that higher order interpolators 
provide better results at the cost of an increased 
computation per resampled observation. Therefore, an 
appropriate interpolation order should be employed, 
which keeps the system computationally efficient, while 
not much affects the SNRreal for the chosen parameters.   
In order to compare the ARADC performance with the 
classical ADC, their SNR curves are plotted on Figure 2. 
The SNR values for the classical case are obtained by 
employing Equation 6.  
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Figure 2: The SNR curves for the ADC and the ARADC. 

In Figure 2, SNRARADC-NNR and the SNRARADC-Linear, 
represent SNRARADC obtained in the case of the NNR and 
the linear interpolations respectively. Figure 2 shows that 

in the studied case, for each value of M the SNRARADC-NNR 
and the SNRARADC-Linear remain higher than the 
corresponding classical one. It shows that for an 
appropriate choice of Ttimer, �a and the interpolation 
order, a higher ENOB can be achieved for a given M, in 
the case of ARADC compared to the classical ADC.    

5. Conclusion 

The ARADC is well suited for low activity sporadic 
signals. For such signals, it leads towards a drastic 
computational gain compared to the counter classical 
approaches [7-9]. A novel method to compute the 
ARADC SNR has been devised. It is shown that results 
obtained with the proposed method are in coherence with 
the theoretical ones, which verifies the proposed 
approach correctness. The ARADC SNR depends on M, 
Ttimer, �a and the interpolation order. For a targeted 
application, an appropriate set of these parameters should 
be found, which provides an attractive trade off between 
the system computational complexity and the delivered 
output quality, while ensuring the proper signal 
reconstruction.  
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