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Abstract:

With application to the impulse radio communications in
mind, a locally supported and zero-mean pulse which is
orthogonal to its shifts by integers is sought among the
exponential splines having the knot interval % An ex-
ample pulse is obtained that complies with the regulation
imposed by the US Federal Communications Commission
and will potentially enable an impulse radio communica-
tions system as fast as 6G pulses per second.

1. Introduction

The M-shaped linear spline

V3t, 0<t<i
V3(2-3t), 3<t<l

M(t)=4¢ V3(3t—4), 1<t<?2 €))
V3(2-1t), 2<t<2
0, elsewhere

plotted in Fig. 1 is not a wavelet in the sense of muntires-
olutional analysis because M (t) is not orthogonal to its
contracted version M (2t). But it has three remarkable
properties that (i) it is locally supported, (ii) its integra-
tion over the domain is zero, and (iii) its shifts by integers
are orthogonal to one another [2]. Those properties are ex-
actly what is required of pulses for the impulse radio com-
munications [6]. The three properties are required (i) for
the sake of real-time communications, (ii) for the pulse to
be feasible as a radio waveform, and (iii) for pulse detec-
tion to be robust against noise in the sense of least-square
estimation, respectively.

We shall look for this kind of pulse functions in the
broader family of exponential splines [4, 5] which have the
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Figure 1: M-shaped linear spline.

advantage that they can be shaped through linear dynam-
ical systems [5] . The pulse functions, if they are found,
will work as practical pulses which carry information in
the impulse radio communications.

The problem is simple: we are to find a locally supported
and zero-mean exponential spline ¢(t) with the knot inter-
val % that satisfies

k=0

| awate-na={ 5 120

for any ingeter k. This paper presents a procedure to find
such a pulse function and its application to the impulse
radio.
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2. Construction of orthogonal pulses

Any exponential spline can be represented by a linear
combination of the exponential B-spline and its shifts
[4, 5]. An exponential B-spline with the knot interval %
is the output

B(t) = Sb)(¢) 3)
of a linear dynamical system S having the transfer func-
tion

fin—18" "t 4 4 pas + o

G(s) = 4
SO P v TP W B P ey B
for the input being a series of delta functions
b(t) = > bid(t—1/2) (5)
such that =0
B(z)= biz"2
1=0

A Ap_1

(1—2_%670)(1—2_%6%1) . (l—z_%enT).(@

This exponential B-spline is locally supported as

B =0, t¢ (0.3). ™

In order to keep the splines zero-mean, instead of the orig-
inal exponential B-spline 3(¢), we shall use

Mwmwﬁﬁl) ®)



which has the zero mean

/ at)dt = 0 ©
and is locally supported as
n+1
a(t) =0, t¢ ( ) . (10)
Another representation of this «/(t) is the output
a(t) = S(a)(t) (11)
of S for the input
a(t) =Y ad(t —1/2), (12)
1=0
where
n+1 .
A(z)=)» az72
1=0

= (1 ¥ ) (1 He T ) (1 - 27 E).(13)

Let the desired pulse function be represented in the form

n—1
t)=> aalt—1/2). (14)
1=0
Then it is automatic that ¢(¢) is locally supported as
q(t) =0, t ¢ (0,n) 15)
and has the zero mean
(o)
/ q(t)dt = 0. (16)
The remaining request is that its autocorrelation
oo
o) = [ ot~ ) (7)
— 0o
should satisfy the orthogonality conditions
1, k=0
r(k) = { 0, k=+1,42, - (18)

with respect to shift by integers. Here the number n of
{a(t —1/2)};=; employed for composing g(t) in (14) is
chosen so that the number n of the unknown coefficients
{e1}72, be the same as that of the essential conditions

1, k=0
T(k)_{ 0, k=12 ,n—-1 19
reduced from (18) by (15) and the equality r(z) = r(—zx).

Now we have only to find the coefficients {c;}]"-,' that
make (19) hold good. Define

n—1 n—1
()= adt—1/2) and C(z) =Y az% (0)
1=0 =0

by {1}, and prepare time-reversed functions
a(t) = a(=t), &(t) = c(=1), 4(t) = q(=t) 1)

and the “mirror” system S having the transfer function
G(—s). Then we can express the correlation by

r(k) = (g% 3)(k)
= (SoS)axaresa)k), (2

where * denotes the convolution integral, and we can write
D(z) = C(2)C(z7') in the form

w\w,

C(2)C(z! —d0+Zd 54 (23)
which implies
n—1
(c* &) (1) = dod(t)+)_d; (8(t=j/2) + 6(t+/2)) .(24)
j=1

In the meantime, a locally supported exponential spline
p(x) = (SoS)(axa)() (25)

associated with the composite system S o S satisfies

o) = p(—). (26)

By (22), (24), (25) and (26), we can reduce the orthogo-
nality conditions (19) to the linear equations

dop (k)4 (o(k — 3/2) + ok + 1/2))
j=1

1, k=0
_{0, k=1,2-,n—1 @7

Solvability of (27) for {d; }" o can be checked by numer-
ical computation in practice. A simpler condition in terms
of dynamical parameters is yet to be established.

We assume that (27) is solvable since we cannot proceed
unless this is the case. Then, C(z)C(z~ 1) determined by
(23) from {d ! can be factorized in the form

C()0(="Y) = vo(z’ffvl)(ﬁ*%)(f% —2) (23 —2)
"(Z_%_’ynfl)(zé_')/n 1) (28)

Taking half the factors, we can find
C(2) = £y/A0(z 2—n) (2 E—y2) - (2 2 —yn_1) (29)

that gives the sought coefficients {¢;}]-;' by (20). Excit-
ing the system S with the input series of delta functions

n—1

v(t) = calt —1/2), (30)
=0

we obtain the desired pulse function

q(t):S(v)(t):nz_:cla(t—l/Z). (31)
1=0



In the case G/(s) = 1, the problem is trivial and the result-
ing pulse is the Haar function
1, 0<t<3
H(t)=¢ -1, i<t<<1 (32)

0, elsewhere.

The case G(s) = % yields M(t) of (1) as expected. Be-
cause it happens that M (t) = +/3(H % H)(t), we might
speculate that the pulse associated with G(s) = 2 could
be proportional to (H « H « H)(t). But that is not true since
(H % H =« H)(t) is not orthogonal to (H = H x H)(t — 2).
It is interesting as well as disappointing that we obtain a
complex-valued pulse in the case G(s) = 2. A nice ex-
ample pulse will appear in the next section in the context
of its application to the impulse radio communications.

3. Application to Impulse Radio

While the series of delta functions a(t) does not exist in
the real world, its integration

0,t<0

t
/( Ydr={ 3! _ Oak,§<t<l+1 1=0,1,---
—00 Z+Oak_A( )_0’ n-2i-1 <t

. n(33)

is a locally supported piecewise constant function that can
be easily generated by electric current switches.

The system .S excited by the piecewise constant function

t n t—1/2
u(t) = /U(T)dT = ch / a(t)dr 34)
- =0 77>

shapes the pulse

p(t) = S(u)(t) (35)
which is locally supported as
p(t) =0, t¢(0,n) (36)

and has the relationship

n t—1/2 t
= ch/ a(r)dr :/q(T)dT. 37
=0 “ 7=

—00

Besides the simple and practical system (35) to shape p(t)
from the piecewise constant seed u(t), the pulse p(t) has
the remarkable property

o 2 oo
[ vttt = b= a0t ~ Ry

-1, k=0
_{ 0, k=+1,42..09

which follows from (17), (18), (36), (37) and the partial
integration formula. This property gives the foundation to
transmission and detection of the pulse p(¢) in the impulse
radio communications.

Given data bits {w; }, we transmit the waveform

w(t) s( > wm(tl)) = > wpt—1) (39

l=—00 l=—0c0

3 7? Jdtoror - wg vy 6

b receiver - - - -- |

as illustrated in Fig. 2. Since a good broadband antenna is
well approximated [6] by %, the transmitted signal w(t)
is differentiated once by the transmitter antenna to be the
radio signal

— d
= l;m wy—p(t = 1) (40)

and again by the receiver antenna to arrive at the receiver
as

dt2 Z w dt2p — - “D

Correlating the received signal dth( ) with the template
pulse p(t—k), which is the same as the transmission pulse,
for its duration (k, k + n), we have the bit wy, recovered
by

k+nd2 00d2
/k O pl=byi=[ Lo ple—k
00 00 d2
=> w / @p(t—l) p(t—k)dt
l=—00 -
S— 42)

because of the property (38).

It should be noted that, because of (38), the detection for-
mula (42) virtually performs the least- squares approxima-
tion of the radio waveform % w(t) by 4 p(t—k) = q(t—k)
to detect wy. Additive noises superimposed on %w(t)
will then be most suppressed in the sense of least-squares

estimation.
An example pulse associated with the transfer function

1

() = 8) (L1410 9) (5111410 1)

(43)

and its derivatives are plotted in Fig. 3. The correlation
in Fig. 4 becomes 1 and O at the origin and at the other
integers, respectively, to verify (38). The power spectral
density of the radio pulse p(t) = ¢(t) is plotted in Fig. 5
along with the spectral mask (plotted by the boxy line) for
the indoor ultra-wideband communications systems [1]
imposed by the US Federal Communications Commission

transmission pulses
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Figure 2: Schematic diagram of the transceiver.
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Figure 3: Pulses for impulse radio.

as the upper bound which no practical pulses are allowed
to exceed. The frequency axis of the mask is scaled down
by 6 GHz for the purpose of comparison, or equivalently,
the pulse repetition rate is assumed to be 6 G pulses per
second, which is much faster than the 1.32G pulses per
second of the high speed direct sequence ultra-wideband
protocol discussed in the IEEE 802.15.3a standard.

The fast transmission is possible because the pulses are or-
thogonal even though they are densely overlapping. But
dense pulses are prone to interfere with one another in
the situation that several reflected pulses arrive with var-
ious delays. Multipath compensation by digital filtering
is crucial in order to effectively exploit the dense pulses
we obtained. Transmitting a sounder pulse and digitiz-
ing the observed correlations, we have the end-to-end im-
pulse response of the multipath channel. Digital filtering
by an FIR approximation of the inverse impulse response
will work as a kind of rake receiver. This compensation
requires an analog-to-digital converter and a digital filter
that work at the pulse rate and thus costs more hardware.
But this cost should be justified since all the pulse-based
systems cannot be faster without having denser pulses in
the first place. A detailed analysis of the multipath ef-
fects, channel modeling error, and pulse synchronization
is available in [3].

We may ignore the multipath effects and channel model-
ing error in the extreme situation that antennas are induc-
tively coupled at a very short distance less than one inch.
TransferJet technology has been working in the same situ-
ation at the maximum transmission rate of 560Mbps since
2008. A faster system will hopefully be the first applica-
tion of the dense pulses obtained in this paper.

4. Conclusions

Inspired by the M-shaped orthogonal pulse, we derived
a procedure to construct an exponential spline pulse with
the knot interval % that is locally supported, has its mean
zero, and is orthogonal to its shifts by integers. An exam-

/ At)a(t—x)dt = [ Cpe) pe—x)dt
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Figure 4: Correlation of the pulse.
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Figure 5: Power spectral density of the pulse and the FCC
spectral mask.

ple pulse was obtained that will potentially enable an im-
pulse radio communications system as fast as 6G pulses
per second under the FCC regulation for the indoor ultra-
wideband communications.
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