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Abstract: variables is straightforward. For a given positive exponent

Using Hart Smith’s, curvelet, and shearlet transforms, we ¢ notinN, its pointwise, uniform, and directionaldttier

investigate 2 functions with sufficiently smooth back- (or Lipschitz) regularities are defined as follows. Fix a

ground and present here sufficient and necessary condiP@intw € R? atwhich regularity is under investigatiof.
tions, which include the special case witktdimensional 'S Said t0 bepointwise Fblder regular with exponent at

singularity line. Specifically, we consider the situation % denoted by’ & C(u), if there exists a polynomia,
where regularity on a line in a non-parallel direction is of degree less tham and a constart’ = C, such that for

much lower than directional regularity along the line in a &/l  in @ neighborhood ot
?he;g;tutr:)e():;(r);r:jszjr;?ngow this is reflected in the behavior of (@) = Pu(@ —w)| < Cllz — u®. 1)
If there exists a uniform constaft so that for alk: in an
1. Introduction open subsef of R? there is a polynomiaP,, of degree
less thary such that (1) holds for alt € 2, then we say
Wavelet transforms, both continuous and discrete, havethat f is uniformly Holder regular with exponent: on 2
proved to be a very efficient tool in detecting point sin- or f € C*(Q). Theuniform Holder exponenof f onQ is
gularities. However, due to its isotropic scaling, wavelet defined to be
transforms are notideal tools in detecting one-dimensional
singularities like singularity lines or curves. Recently, () := sup{a: f € C*(Q)}, 2
wavelet-like transforms with parabolic scaling, such as o . ) i .
Hart Smith's and curvelet transforms, were introduced and@nd thepointwise Holder exponenis defined in an analo-
applied successfully in edge detection. Our goal is then to90US manner. Following [9], thiecal Holder exponenof
investigate how these transforms can be used in detectin@f atu is defines as
point, line, and curve singularities. New necessary and a(w) = lim au(L)
new sufficient conditions for ai?(R2) function to pos- ! r—soo TV
sess tblder regularity, uniform and pointwise, with ex-
ponenta > 0 are given. Similar to the characterization
of Holder regularity by the continuous wavelet transform,
the conditions here are in terms of bounds of the Smith _ , : e :
and curvelet transforms across fine scales. However, dué'xecjl unl_t vec_tor repregentl_ng a.dlrectlon Mdb? a point
to the parabolic scaling, the sufficient and necessary con!" R%. s s_a|d to b_epomtmse Holder regular with expo-
ditions differ in both the uniform and pointwise cases, with NeNte atw in the directionv, denoted by & % (w;v),
larger gap in pointwise regularities. Naturally, global con- if there exist a constartt' = Cy,» and a polynomiaP,, .
ditions for pointwise singularities can be weakened. We of degree less tham such that
then investigate functions with sufficiently smooth back- o
ground in one direction and potential singularity in the [f(u+Av) = Pup(N] < CA )
perpendicular (non-parallel) direction. Specifically, suffi- ho|ds for all A in a neighborhood off € R. We next
cient and necessary conditions, which include the specialjefine directional regularity on a s C R2. Let 2,
case with one-dimensional singularity line, are derived for he an open neighborhood 6t; representing a set on
pointwise Holder exponent. Inside their “cones” of in- \hich the Holder estimate holds. Thefi is said to be
fluence, these conditions are practically the same, givingin co(Q,, Q,; v) if there exists a constart = C,, so

where{I, } .cn is a family of nested open setsk?, i.e.
I,+1 C I, with intersectiom,, I,, = {u}.
In order to define directional regularity, let ¢ R be a

near-characterization of direction of singularity. that for allw € € there is a polynomiaP, ,, of de-
gree less tham such that (3) holds for alh € R with
2. Directional Regularity u+Av € . If Q1 = Qy, then we denot€' (€2, (a5 v)

simply by C%(Q;;v). Of course, thalirectional point-
We shall restrict our definition to a real-valued functipbn  wise and uniform Klder exponentgould be defined in
of two variables. Generalization to a function of several the same way as (2). In the pointwise case, this directional



Holder exponent measures one-dimensional regularity offor » > 0 andw € [0, 27). For each) < a < ag, b € R?,

f atw on the line passing througd and parallel withv.
See [5]. ForC*(Qq,Qs;v), the set?; in our context of
line singularity will usually be a line and points in a di-
rection that is nonparallel with the line. In this situation,
f € C*(1,Q9;v) has a ridge along the line provided
that hte regularity in the direction of the line is sufficiently
high. See Theorem 4.

3. Three Transforms with Parabolic Scaling

3.1 Hart Smith Transform

Originally defined in [10], the Hart Smith transform was
described in [1, 2] as follows. For a givenc L?(R?),
we define

Pabo() = a1 (DéR—a (z — b)) :

for 0 € [0,27), b € R%, and0 < a < ag, Whereq, is a
fixed coarsest scal®) . = diag (%, ﬁ) andR_, is the
matrix affecting planar rotation d@f radians in clockwise
direction. Hart Smith transform can then be defined as

Tt (a,b,0) := (pabo, f) -

andé € [0, 2), acurvelety,yp is defined by

Yabt (T) = Yaoo (Ro (x — b)), forz e R*. (6)

The continuous curvelet transform pfc L(R?) is

1—‘f (a7 b,0) = <'7ab07 f>

for0 < a < ag, b € R?, andf € [0, 27).
The admissibility conditions (5) and the polar coordinate
design of curvelets yield the following:

Reconstruction formula [2]

There exists a bandlimited purely radial functi®@nsuch
that for all f € L?(R?),

N ao 27 da
f:f+/0 /O /mee,fmwdbdea—g, )

wheref = [o. (®p, f) Pp db and®y(z) = &(x — b).

For analysis of singularities gf, the low frequency parf

is not anissue as itis always™. Unlike Smith transform,
curvelet transform does not use a true affine parabolic scal-
ing as a slightly different generating functigpgo is used

at each scale > 0.

3.3 Continuous Shearlet Transform

This gives a true affine transform that uses parabolic scal-We will follow mainly the definitions and notations in

ing. For each scale and directiond, let us define the
norm

[vl,6 = HDlngvH for v € R2,

We define vecto, := Ry(0,1)7 so thatvy is parallel to
the major axis of the ellipsgv||,, , = 1.

Reconstruction Formula[10, 1, 2]

There exists a Fourier multiplied of order 0 so that
wheneverf € L?(R?) is a high-frequency function sup-
ported in frequency spadg|| > 2, then, inL*(R?)

ao 27 da
f:/ / / (Pabo, M f) ©aby dbdf —
Jo 0 R2 a

w e da
:/ / / (@abss f) Mpape dbdf — .
0 0 R2 a

3.2 Continuous Curvelet Transform

4)

Following Canés and Donoho[l, 2], the continuous
curvelet transform (CCT) is defined in the polar coordi-
nates(r,w) of the Fourier domain. LelV be a positive
real-valuedC* function supported insidé1,2), called
aradial window and letl” be a real-valued'> function
supported onf—1, 1], called arangular windowfor which
the following admissibility conditions hold:

') 1
/ W(r)zﬁ =1 and / V(w)?dw=1. (5)
0 r -1
At each scale, 0 < a < ag, Yq00 IS defined by

Ya00 (7 cos(w), rsin(w)) = aiw (ar)V (w/Va)

G. Kutyniok and D. Labate[6]. Lef;,», € L?(R) and
Y € L?(R?) be given by

D(&1, &) = P1(61)e (Z) , &1 #0,6€R, (8)

where); satisfies the admissibility condition ang €

C§°(R) with supp ¢y C [~2,—4] U [4,2] while ¢, €

C5°(R) with supp vy C [~1,1], ¢ > 0 on(—1,1), and
¥, = 1. Given such ahearlet function), acontinuous
shearlet systeris the family of functionsy,.:, a € RT,

s € R, t € R?, where

wast = a_%lﬁ (Dngs_l( - t))

whereB, is theshear matrix(1 _S) andD,, is the di-

0 1
a

0
formof f is then defined for sucfu, s, t) by

SHyf(a,s,t) = (f, Yast) -

Many properties of the continuous shearlet are more evi-
dent in the frequency domain. So we note here that each
g5t IS supported on the set

agonal matrix| \?6 . Thecontinuous shearlet trans-

{5 <ial<?,

s}
1

Reconstruction Formula[6]
Letvy € L?(R?) be a shearlet function. Then, for gllc
L?(R?),

f= [ ] et v S5 asdtin @)



If suppf C C = {(51,52) 11| >

} 4.2 Smoothness and Decay Properties

then Lemma 2 For eachN = 1,2, ... there is a constand y
S 4 such that for alle € R? andv € Nj
a
- et ) Vase 2 dsdtin L2, (10
1= L) e v s 4o a3/

10" Yabo (®)] < HQN (11)

Even though the second reconstruction formula (10) is 1+ HD%R—Q(“’ —b)

valid only for functions with frequency support in the

unionC of two infinite horizontal trapezoids, it has the ad- &nd

vantage that_ the integral involves only scateand shear Ona~3/4W\(/a + |s|)*2

parameters in bounded sets. A complementary shearlet |0" Yast(x)] <

systemwmt can be similarly defined so that one has a re-
construction formula which is valid fof with suppf C

cw = {(gl £): & > 2and ’5—2’ > 1} Finally, ev-

ery f € L*(R?) can be decomposed into three functions g5 Singularity Lines

with frequency supports i@, C®), andW = [-2,2]>.

The former two functions can then be reconstructed from et ¢,,,, denote any of the,ue, Qabss OF Mpapg. Letus

Yast andzpm1t respectively, while the latter §°°. There- quote the following results.[8, 7]

fore, regularity analysis can be carried out by consrderlng.l.heorem 1 Let f € L(R?), u € R?, and assume that
the continuous shearlet transform with respect to these two .
« > 0is not an integer. If there exist’ < 2a, 0y €

shearlet systems. For more details, see [6]. [0,27], andA, C' < oo such that(éuse, f)]| is bounded by

.12
1+ [D1eB (@ — )"

Moreover, (11) also holds for functios,sg and M p,pe-

4. Common Properties of the Transforms Ca®ti <1 + Hbl/; ) . if|0—6o| > Ava
a

We shall suppose from this point onward tlfate C*° cactd (1 b—ul® 10— 60l < A

and that there exisf’; > C] > 0 andC> > 0 such that ¢ - ’ | ol = 4va

supp(cﬁ) C ([—C{, —Cl]U[Cl, C{]) X [_027 02] This as-

sumption ensures that all our three kernel functions, Hartfor all a € (0,a0), b € R?, andd € [0,2n), thenf €
Smith, curvelet, and shearlet functions, have Fourier sup-C%(u).

ports away from th&”-axis, which in turns results in cru- - thagrem 2 Let f € L2(R?), u € R?, and assume that
cial properties needed to prove our main results. a > 0 is not an integer. If there exist’ < 2a, —2 <

so < 2, andC,C" < oo such that, for each < a < 1,

- . . -2 < s <2,andt € R?, [(ast, Po, f)] is bounded b
4.1 Vanishing Directional Moments == [Wast, For P y

A function f of two variables is said to have drorder Cao+i [ 1+ H
vanishing directional moments along a directien =

t—u|® .
T;L ), if |s—so|>C'Va,
(Ul,UQ)T #Olf

Ca®ti <1+ Htl/f > . i |s— sl < C'Va,
a

/ b f(bv+w)db =0, forallw € R*and0 < n < L. (13)

R

and
) , (14)
1. There exist€ < oo (independent of, b andf) such

that if |0 + arctan(2)| > Cy/a then the curvelet thenf € C(u). Similar statement holds if the inequality
functions v,5¢ and the Smith functions.pg and (13) holds for<1pf£,)t,Pczf> and the inequality (14) holds

Mgapo have vanishing directional moments of any for (y,.,, Po, f).
orderL < oo along the direction.

Lemma 1: Letv = (v, v2)T be a unit vector. ’<1/J,(j;l, Pczf>‘ < Caoti <1 + Htl_/;‘
’ - a

Theorem 3Let f be bounded with local Blder exponent
a € (0,1] at pointu and f € C?*T1+<(R? vy, ) for some

2. 1If ’s + 3L > Va then the shearlet functiong,.: 0o € [0,27) with any fixede > 0. Then there exist’ €
have vanishing directional moments of any orflex [a —¢,a] andA, C < oo such that fow > 0 andb € R?,
oo along the directiorv. Here, if vy is 0 then 2 |(¢abo, f)] is bounded by
are treated aso so that the assumed inequality holds .
foralla € (0,1) ands € [~2,2], hencey,.; has Ca®*1, / if [0 — 60| = AV/a,

vanishing directional moments of any order< oo ol g3 b—ul” .
along the directiow = (vy,0). Ca® ™3 (1+ » (10 —b[ < AV



Forsy € [—2,2] andu = (u1,u2) € R?, letT,, denote

the vertical line passing though and I, ;, denote the
line passing through with slope—é. Observe that we
may writeI',, = Ty, o So that(z1, z2) € 'y, 5, if and only

if 21 = —so(2e — us) + u1. Recall that ifl € R? and

p > 0, thenI'(p) is the p-neighborhood of’, i.e. the set
of all points whose distance 10is less tharp.

Theorem 4 Let f € C*(Ty,59:Lus, (p);(1,0)) and
bounded for somex € (0,1, u € R? s, €
[-2,2] and p > 1. Suppose also thaf is in
C?H1+e (Ty 4, (p) 3 Bs, (0,1)) for some fixede > 0.
Then there exist€’ < oo such thatifd < a < ag < 1 and
t e Ty, (r)withr < p/2 ands € [-2, 2], the continuous
shearlet transforni, ¢, f) is bounded in magnitude by

if |s—so| > Va,
<1+

>7 if s —sol < Va,
whered,, (t,u) = |t1 + sot2 —u1 — spus| denotes the dis-
tance between the parallel lines with slopc:szlg (vertical
line if s¢ = 0) and passing throughandw respectively.

Edge analysis has been done successfully using the contin-
uous shearlet transform ([11, 4, 3, 6]). They consider the
shearlet transform of the characteristic function of a set
with piecewise smooth boundary and found that, at a reg-
ular boundary point, the shearlet transform decays like
a?/tif s =59 = + 31 and decays rapidly at other# s,
wherev = (v1,v2) Is the normal vector of the boundary
curve att. Since this characteristic function haglder
exponent (bounded and discontinuous) at any boundary
point in the normal direction, this decay rate ©of* at

s = so = 0 agrees with that of Theorem 4. However,
whensy # 0 the two directions in Theorem 4 along which
regularity is assumed are not perpendicular. More com-
parisons of our results and the aforementioned work are
needed.

Ca*ti,

Caoti sy (8, 11)
a
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