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Abstract:
Using Hart Smith’s, curvelet, and shearlet transforms, we
investigateL2 functions with sufficiently smooth back-
ground and present here sufficient and necessary condi-
tions, which include the special case with1-dimensional
singularity line. Specifically, we consider the situation
where regularity on a line in a non-parallel direction is
much lower than directional regularity along the line in a
neighborhood and how this is reflected in the behavior of
the three transforms.

1. Introduction

Wavelet transforms, both continuous and discrete, have
proved to be a very efficient tool in detecting point sin-
gularities. However, due to its isotropic scaling, wavelet
transforms are not ideal tools in detecting one-dimensional
singularities like singularity lines or curves. Recently,
wavelet-like transforms with parabolic scaling, such as
Hart Smith’s and curvelet transforms, were introduced and
applied successfully in edge detection. Our goal is then to
investigate how these transforms can be used in detecting
point, line, and curve singularities. New necessary and
new sufficient conditions for anL2(R2) function to pos-
sess Ḧolder regularity, uniform and pointwise, with ex-
ponentα > 0 are given. Similar to the characterization
of Hölder regularity by the continuous wavelet transform,
the conditions here are in terms of bounds of the Smith
and curvelet transforms across fine scales. However, due
to the parabolic scaling, the sufficient and necessary con-
ditions differ in both the uniform and pointwise cases, with
larger gap in pointwise regularities. Naturally, global con-
ditions for pointwise singularities can be weakened. We
then investigate functions with sufficiently smooth back-
ground in one direction and potential singularity in the
perpendicular (non-parallel) direction. Specifically, suffi-
cient and necessary conditions, which include the special
case with one-dimensional singularity line, are derived for
pointwise Ḧolder exponent. Inside their “cones” of in-
fluence, these conditions are practically the same, giving
near-characterization of direction of singularity.

2. Directional Regularity

We shall restrict our definition to a real-valued functionf
of two variables. Generalization to a function of several

variables is straightforward. For a given positive exponent
α not inN, its pointwise, uniform, and directional Hölder
(or Lipschitz) regularities are defined as follows. Fix a
pointu ∈ R2 at which regularity is under investigation.f
is said to bepointwise Ḧolder regular with exponentα at
u, denoted byf ∈ Cα(u), if there exists a polynomialPu

of degree less thanα and a constantC = Cu such that for
all x in a neighborhood ofu

|f(x)− Pu(x− u)| ≤ C‖x− u‖α. (1)

If there exists a uniform constantC so that for allu in an
open subsetΩ of R2 there is a polynomialPu of degree
less thanα such that (1) holds for allx ∈ Ω, then we say
thatf is uniformly Hölder regular with exponentα on Ω
or f ∈ Cα(Ω). Theuniform Hölder exponentof f onΩ is
defined to be

αl(Ω) := sup{α : f ∈ Cα(Ω)}, (2)

and thepointwise Ḧolder exponentis defined in an analo-
gous manner. Following [9], thelocal Hölder exponentof
f atu is defines as

αl(u) = lim
n→∞

αl(In).

where{In}n∈N is a family of nested open sets inR2, i.e.
In+1 ⊂ In, with intersection∩nIn = {u}.
In order to define directional regularity, letv ∈ Rd be a
fixed unit vector representing a direction andu be a point
in Rd. f is said to bepointwise Ḧolder regular with expo-
nentα at u in the directionv, denoted byf ∈ Cα(u; v),
if there exist a constantC = Cu,v and a polynomialPu,v

of degree less thanα such that

|f(u + λv)− Pu,v(λ)| ≤ C|λ|α (3)

holds for all λ in a neighborhood of0 ∈ R. We next
define directional regularity on a setΩ1 ⊆ R2. Let Ω2

be an open neighborhood ofΩ1 representing a set on
which the Ḧolder estimate holds. Thenf is said to be
in Cα(Ω1, Ω2; v) if there exists a constantC = Cv so
that for all u ∈ Ω1 there is a polynomialPu,v of de-
gree less thanα such that (3) holds for allλ ∈ R with
u+λv ∈ Ω2. If Ω1 = Ω2, then we denoteCα(Ω1, Ω2; v)
simply by Cα(Ω1; v). Of course, thedirectional point-
wise and uniform Ḧolder exponentscould be defined in
the same way as (2). In the pointwise case, this directional



Hölder exponent measures one-dimensional regularity of
f at u on the line passing throughu and parallel withv.
See [5]. ForCα(Ω1, Ω2;v), the setΩ1 in our context of
line singularity will usually be a line andv points in a di-
rection that is nonparallel with the line. In this situation,
f ∈ Cα(Ω1,Ω2;v) has a ridge along the line provided
that hte regularity in the direction of the line is sufficiently
high. See Theorem 4.

3. Three Transforms with Parabolic Scaling

3.1 Hart Smith Transform

Originally defined in [10], the Hart Smith transform was
described in [1, 2] as follows. For a givenϕ ∈ L2(R2),
we define

ϕabθ(x) = a−
3
4 ϕ

(
D 1

a
R−θ (x− b)

)
,

for θ ∈ [0, 2π), b ∈ R2, and0 < a < a0, wherea0 is a

fixed coarsest scale,D 1
a

= diag
(

1
a , 1√

a

)
, andR−θ is the

matrix affecting planar rotation ofθ radians in clockwise
direction. Hart Smith transform can then be defined as

Γf (a, b, θ) := 〈ϕabθ, f〉 .

This gives a true affine transform that uses parabolic scal-
ing. For each scalea and directionθ, let us define the
norm

‖v‖a,θ :=
∥∥∥D 1

a
R−θv

∥∥∥ for v ∈ R2.

We define vectorvθ := Rθ(0, 1)T so thatvθ is parallel to
the major axis of the ellipse‖v‖a,θ = 1.

Reconstruction Formula [10, 1, 2]
There exists a Fourier multiplierM of order 0 so that
wheneverf ∈ L2(R2) is a high-frequency function sup-
ported in frequency space‖ξ‖ > 2

a0
, then, inL2(R2)

f =
∫ a0

0

∫ 2π

0

∫

R2
〈ϕabθ,Mf〉ϕabθ db dθ

da

a3
(4)

=
∫ a0

0

∫ 2π

0

∫

R2
〈ϕabθ, f〉Mϕabθ db dθ

da

a3
.

3.2 Continuous Curvelet Transform

Following Cand̀es and Donoho[1, 2], the continuous
curvelet transform (CCT) is defined in the polar coordi-
nates(r, ω) of the Fourier domain. LetW be a positive
real-valuedC∞ function supported inside

(
1
2 , 2

)
, called

a radial window, and letV be a real-valuedC∞ function
supported on[−1, 1], called anangular window, for which
the following admissibility conditions hold:

∫ ∞

0

W (r)2
dr

r
= 1 and

∫ 1

−1

V (ω)2 dω = 1. (5)

At each scalea, 0 < a < a0, γa00 is defined by

γ̂a00 (r cos(ω), r sin(ω)) = a
3
4 W (ar)V

(
ω/
√

a
)

for r ≥ 0 andω ∈ [0, 2π). For each0 < a < a0, b ∈ R2,
andθ ∈ [0, 2π), acurveletγabθ is defined by

γabθ(x) = γa00 (Rθ (x− b)) , for x ∈ R2. (6)

The continuous curvelet transform off ∈ L(R2) is

Γf (a, b, θ) = 〈γabθ, f〉
for 0 < a < a0, b ∈ R2, andθ ∈ [0, 2π).
The admissibility conditions (5) and the polar coordinate
design of curvelets yield the following:

Reconstruction formula [2]
There exists a bandlimited purely radial functionΦ such
that for allf ∈ L2(R2),

f = f̃ +
∫ a0

0

∫ 2π

0

∫

R2
〈γabθ, f〉 γabθ db dθ

da

a3
, (7)

wheref̃ =
∫
R2 〈Φb, f〉Φb db andΦb(x) = Φ(x− b).

For analysis of singularities off , the low frequency part̃f
is not an issue as it is alwaysC∞. Unlike Smith transform,
curvelet transform does not use a true affine parabolic scal-
ing as a slightly different generating functionγa00 is used
at each scalea > 0.

3.3 Continuous Shearlet Transform

We will follow mainly the definitions and notations in
G. Kutyniok and D. Labate[6]. Letψ1, ψ2 ∈ L2(R) and
ψ ∈ L2(R2) be given by

ψ̂(ξ1, ξ2) = ψ̂1(ξ1)ψ̂2

(
ξ2

ξ1

)
, ξ1 6= 0, ξ2 ∈ R, (8)

whereψ1 satisfies the admissibility condition and̂ψ1 ∈
C∞0 (R) with supp ψ̂1 ⊂ [−2,− 1

2 ] ∪ [ 12 , 2] while ψ̂2 ∈
C∞0 (R) with supp ψ̂2 ⊂ [−1, 1], ψ̂2 > 0 on (−1, 1), and
‖ψ‖2 = 1. Given such ashearlet functionψ, acontinuous
shearlet systemis the family of functionsψast, a ∈ R+,
s ∈ R, t ∈ R2, where

ψast = a−
3
4 ψ

(
D−1

a B−1
s (· − t)

)

whereBs is theshear matrix

(
1 −s
0 1

)
andDa is the di-

agonal matrix

(
a 0
0

√
a

)
. Thecontinuous shearlet trans-

form of f is then defined for such(a, s, t) by

SHψf(a, s, t) = 〈f, ψast〉 .
Many properties of the continuous shearlet are more evi-
dent in the frequency domain. So we note here that each
ψ̂ast is supported on the set

{
(ξ1, ξ2) :

1
2a

≤ |ξ1| ≤ 2
a
,

∣∣∣∣
ξ2

ξ1
− s

∣∣∣∣ ≤
√

a

}
.

Reconstruction Formula [6]
Let ψ ∈ L2(R2) be a shearlet function. Then, for allf ∈
L2(R2),

f =
∫

R2

∫

R

∫

R+
〈ψast, f〉ψast

da

a3
ds dt in L2. (9)



If supp f̂ ⊂ C =
{

(ξ1, ξ2) : |ξ1| ≥ 2 and
∣∣∣ ξ2
ξ1

∣∣∣ ≤ 1
}

,

then

f =
∫

R2

∫ 2

−2

∫ 1

0

〈ψast, f〉ψast
da

a3
ds dt in L2. (10)

Even though the second reconstruction formula (10) is
valid only for functions with frequency support in the
unionC of two infinite horizontal trapezoids, it has the ad-
vantage that the integral involves only scalesa and shear
parameterss in bounded sets. A complementary shearlet
systemψ

(v)
ast can be similarly defined so that one has a re-

construction formula which is valid forf with supp f̂ ⊂
C(v) =

{
(ξ1, ξ2) : |ξ2| ≥ 2 and

∣∣∣ ξ2
ξ1

∣∣∣ > 1
}

. Finally, ev-

ery f ∈ L2(R2) can be decomposed into three functions
with frequency supports inC, C(v), andW = [−2, 2]2.
The former two functions can then be reconstructed from
ψast andψ

(v)
ast respectively, while the latter isC∞. There-

fore, regularity analysis can be carried out by considering
the continuous shearlet transform with respect to these two
shearlet systems. For more details, see [6].

4. Common Properties of the Transforms

We shall suppose from this point onward thatϕ̂ ∈ C∞

and that there existC ′1 > C ′1 > 0 andC2 > 0 such that
supp(ϕ̂) ⊂ ([−C ′1,−C1]∪[C1, C

′
1])×[−C2, C2]. This as-

sumption ensures that all our three kernel functions, Hart
Smith, curvelet, and shearlet functions, have Fourier sup-
ports away from theY -axis, which in turns results in cru-
cial properties needed to prove our main results.

4.1 Vanishing Directional Moments

A function f of two variables is said to have anL-order
vanishing directional moments along a directionv =
(v1, v2)T 6= 0 if

∫

R
bnf(bv+w)db = 0, for all w ∈ R2 and0 ≤ n < L.

Lemma 1: Let v = (v1, v2)T be a unit vector.

1. There existsC < ∞ (independent ofa, b andθ) such
that if |θ + arctan( v1

v2
)| ≥ C

√
a then the curvelet

functions γabθ and the Smith functionsϕabθ and
Mϕabθ have vanishing directional moments of any
orderL < ∞ along the directionv.

2. If
∣∣∣s + v1

v2

∣∣∣ >
√

a then the shearlet functionsψast

have vanishing directional moments of any orderL <
∞ along the directionv. Here, if v2 is 0 then v1

v2
are treated as∞ so that the assumed inequality holds
for all a ∈ (0, 1) ands ∈ [−2, 2], henceψast has
vanishing directional moments of any orderL < ∞
along the directionv = (v1, 0).

4.2 Smoothness and Decay Properties

Lemma 2: For eachN = 1, 2, ... there is a constantCN

such that for allx ∈ R2 andν ∈ N2
0

|∂νγabθ(x)| ≤ CNa−3/4−|ν|

1 +
∥∥∥D 1

a
R−θ(x− b)

∥∥∥
2N

(11)

and

|∂νψast(x)| ≤ CNa−3/4−|ν|(
√

a + |s|)ν2

1 +
∥∥D1/aB−s(x− t)

∥∥2N
. (12)

Moreover, (11) also holds for functionsϕabθ andMϕabθ.

5. Singularity Lines

Let φabθ denote any of theγabθ, ϕabθ, or Mϕabθ. Let us
quote the following results.[8, 7]

Theorem 1: Let f ∈ L2(R2), u ∈ R2, and assume that
α > 0 is not an integer. If there existα′ < 2α, θ0 ∈
[0, 2π], andA,C < ∞ such that|〈φabθ, f〉| is bounded by





Caα+ 5
4

(
1 +

∥∥∥∥
b− u

a1/2

∥∥∥∥
α′

)
, if |θ − θ0| ≥ A

√
a

Caα+ 3
4

(
1 +

∥∥∥∥
b− u

a1/2

∥∥∥∥
α′

)
, if |θ − θ0| ≤ A

√
a

for all a ∈ (0, a0), b ∈ R2, andθ ∈ [0, 2π), thenf ∈
Cα(u).

Theorem 2: Let f ∈ L2(R2), u ∈ R2, and assume that
α > 0 is not an integer. If there existα′ < 2α, −2 ≤
s0 ≤ 2, andC,C ′ < ∞ such that, for each0 < a < 1,
−2 ≤ s ≤ 2, andt ∈ R2, |〈ψast, PC1f〉| is bounded by





Caα+ 5
4

(
1 +

∥∥∥∥
t− u

a1/2

∥∥∥∥
α′

)
, if |s− s0| > C ′

√
a,

Caα+ 3
4

(
1 +

∥∥∥∥
t− u

a1/2

∥∥∥∥
α′

)
, if |s− s0| ≤ C ′

√
a,

(13)
and

∣∣∣
〈
ψ

(v)
ast, PC2f

〉∣∣∣ ≤ Caα+ 5
4

(
1 +

∥∥∥∥
t− u

a1/2

∥∥∥∥
α′

)
, (14)

thenf ∈ Cα(u). Similar statement holds if the inequality

(13) holds for
〈
ψ

(v)
ast, PC2f

〉
and the inequality (14) holds

for 〈ψast, PC1f〉.
Theorem 3Let f be bounded with local Ḧolder exponent
α ∈ (0, 1] at pointu andf ∈ C2α+1+ε(R2, vθ0) for some
θ0 ∈ [0, 2π) with any fixedε > 0. Then there existα′ ∈
[α− ε, α] andA,C < ∞ such that fora > 0 andb ∈ R2,
|〈φabθ, f〉| is bounded by





Caα+ 5
4 , if |θ − θ0| ≥ A

√
a,

Caα′+ 3
4

(
1 +

∥∥∥∥
b− u

a

∥∥∥∥
α′

)
, if |θ − θ0| ≤ A

√
a.



For s0 ∈ [−2, 2] andu = (u1, u2) ∈ R2, let Γu denote
the vertical line passing thoughu andΓu,s0 denote the
line passing throughu with slope− 1

s0
. Observe that we

may writeΓu = Γu,0 so that(x1, x2) ∈ Γu,s0 if and only
if x1 = −s0(x2 − u2) + u1. Recall that ifΓ ⊆ R2 and
ρ > 0, thenΓ(ρ) is theρ-neighborhood ofΓ, i.e. the set
of all points whose distance toΓ is less thanρ.

Theorem 4 Let f ∈ Cα(Γu,s0 , Γu,s0 (ρ) ; (1, 0)) and
bounded for someα ∈ (0, 1], u ∈ R2, s0 ∈
[−2, 2] and ρ > 1. Suppose also thatf is in
C2α+1+ε (Γu,s0 (ρ) ; Bs0(0, 1)) for some fixedε > 0.
Then there existsC < ∞ such that if0 < a < a0 < 1 and
t ∈ Γu (r) with r < ρ/2 ands ∈ [−2, 2], the continuous
shearlet transform〈ψast, f〉 is bounded in magnitude by





Caα+ 5
4 , if |s− s0| >

√
a,

Caα+ 3
4

(
1 +

∣∣∣∣
ds0(t, u)

a

∣∣∣∣
α)

, if |s− s0| ≤
√

a,

whereds0(t, u) = |t1 +s0t2−u1−s0u2| denotes the dis-
tance between the parallel lines with slope− 1

s0
(vertical

line if s0 = 0) and passing throught andu respectively.

Edge analysis has been done successfully using the contin-
uous shearlet transform ([11, 4, 3, 6]). They consider the
shearlet transform of the characteristic function of a set
with piecewise smooth boundary and found that, at a reg-
ular boundary pointt, the shearlet transform decays like
a3/4 if s = s0 = ±v1

v2
and decays rapidly at others 6= s0,

wherev = (v1, v2) is the normal vector of the boundary
curve att. Since this characteristic function has Hölder
exponent0 (bounded and discontinuous) at any boundary
point in the normal direction, this decay rate ofa3/4 at
s = s0 = 0 agrees with that of Theorem 4. However,
whens0 6= 0 the two directions in Theorem 4 along which
regularity is assumed are not perpendicular. More com-
parisons of our results and the aforementioned work are
needed.
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