Panuvuth Lakhonchai 
email: panuvuth@hotmail.com
  
Jouni Sampo 
email: jouni.sampo@lut.fi
  
Songkiat Sumetkijakan 
email: songkiat.s@chula.ac.th
  
Analysis of Singularity Lines by Transforms with Parabolic Scaling

Using Hart Smith's, curvelet, and shearlet transforms, we investigate L 2 functions with sufficiently smooth background and present here sufficient and necessary conditions, which include the special case with 1-dimensional singularity line. Specifically, we consider the situation where regularity on a line in a non-parallel direction is much lower than directional regularity along the line in a neighborhood and how this is reflected in the behavior of the three transforms.

Introduction

Wavelet transforms, both continuous and discrete, have proved to be a very efficient tool in detecting point singularities. However, due to its isotropic scaling, wavelet transforms are not ideal tools in detecting one-dimensional singularities like singularity lines or curves. Recently, wavelet-like transforms with parabolic scaling, such as Hart Smith's and curvelet transforms, were introduced and applied successfully in edge detection. Our goal is then to investigate how these transforms can be used in detecting point, line, and curve singularities. New necessary and new sufficient conditions for an L 2 (R 2 ) function to possess Hölder regularity, uniform and pointwise, with exponent α > 0 are given. Similar to the characterization of Hölder regularity by the continuous wavelet transform, the conditions here are in terms of bounds of the Smith and curvelet transforms across fine scales. However, due to the parabolic scaling, the sufficient and necessary conditions differ in both the uniform and pointwise cases, with larger gap in pointwise regularities. Naturally, global conditions for pointwise singularities can be weakened. We then investigate functions with sufficiently smooth background in one direction and potential singularity in the perpendicular (non-parallel) direction. Specifically, sufficient and necessary conditions, which include the special case with one-dimensional singularity line, are derived for pointwise Hölder exponent. Inside their "cones" of influence, these conditions are practically the same, giving near-characterization of direction of singularity.

Directional Regularity

We shall restrict our definition to a real-valued function f of two variables. Generalization to a function of several variables is straightforward. For a given positive exponent α not in N, its pointwise, uniform, and directional Hölder (or Lipschitz) regularities are defined as follows. Fix a point u ∈ R 2 at which regularity is under investigation. f is said to be pointwise Hölder regular with exponent α at u, denoted by f ∈ C α (u), if there exists a polynomial P u of degree less than α and a constant C = C u such that for all x in a neighborhood of u

|f (x) -P u (x -u)| ≤ C x -u α . ( 1 
)
If there exists a uniform constant C so that for all u in an open subset Ω of R 2 there is a polynomial P u of degree less than α such that (1) holds for all x ∈ Ω, then we say that f is uniformly Hölder regular with exponent α on Ω or f ∈ C α (Ω). The uniform Hölder exponent of f on Ω is defined to be

α l (Ω) := sup{α : f ∈ C α (Ω)}, (2) 
and the pointwise Hölder exponent is defined in an analogous manner. Following [START_REF] Seuret | The local Hölder function of a continuous function[END_REF], the local Hölder exponent of f at u is defines as

α l (u) = lim n→∞ α l (I n ).
where {I n } n∈N is a family of nested open sets in R 2 , i.e.

I n+1 ⊂ I n , with intersection ∩ n I n = {u}.
In order to define directional regularity, let v ∈ R d be a fixed unit vector representing a direction and u be a point in R d . f is said to be pointwise Hölder regular with exponent α at u in the direction v, denoted by f ∈ C α (u; v), if there exist a constant C = C u,v and a polynomial P u,v of degree less than α such that

|f (u + λv) -P u,v (λ)| ≤ C|λ| α (3)
holds for all λ in a neighborhood of 0 ∈ R. We next define directional regularity on a set

Ω 1 ⊆ R 2 . Let Ω 2
be an open neighborhood of Ω 1 representing a set on which the Hölder estimate holds. Then f is said to be in C α (Ω 1 , Ω 2 ; v) if there exists a constant C = C v so that for all u ∈ Ω 1 there is a polynomial P u,v of degree less than α such that (3) holds for all λ ∈ R with u

+ λv ∈ Ω 2 . If Ω 1 = Ω 2 , then we denote C α (Ω 1 , Ω 2 ; v) simply by C α (Ω 1 ; v).
Of course, the directional pointwise and uniform Hölder exponents could be defined in the same way as (2). In the pointwise case, this directional Hölder exponent measures one-dimensional regularity of f at u on the line passing through u and parallel with v.

See [START_REF] Jaffard | Multifractal functions: Recent advances and open problems[END_REF]. For C α (Ω 1 , Ω 2 ; v), the set Ω 1 in our context of line singularity will usually be a line and v points in a direction that is nonparallel with the line. In this situation, f ∈ C α (Ω 1 , Ω 2 ; v) has a ridge along the line provided that hte regularity in the direction of the line is sufficiently high. See Theorem 4.

Three Transforms with Parabolic Scaling

Hart Smith Transform

Originally defined in [START_REF] Hart | A Hardy space for Fourier integral operators[END_REF], the Hart Smith transform was described in [START_REF] Candès | Continuous curvelet transform. I: Resolution of the wavefront set[END_REF][START_REF] Candès | Continuous curvelet transform. II: Discretization and frames[END_REF] as follows. For a given ϕ ∈ L 2 (R 2 ), we define

ϕ abθ (x) = a -3 4 ϕ D 1 a R -θ (x -b) , for θ ∈ [0, 2π), b ∈ R 2 , and 0 < a < a 0 , where a 0 is a fixed coarsest scale, D 1 a = diag 1 a , 1
√ a , and R -θ is the matrix affecting planar rotation of θ radians in clockwise direction. Hart Smith transform can then be defined as

Γ f (a, b, θ) := ϕ abθ , f .
This gives a true affine transform that uses parabolic scaling. For each scale a and direction θ, let us define the norm

v a,θ := D 1 a R -θ v for v ∈ R 2 .
We define vector v θ := R θ (0, 1) T so that v θ is parallel to the major axis of the ellipse v a,θ = 1.

Reconstruction Formula [10, 1, 2]

There exists a Fourier multiplier M of order 0 so that

whenever f ∈ L 2 (R 2 ) is a high-frequency function sup- ported in frequency space ξ > 2 a0 , then, in L 2 (R 2 ) f = a0 0 2π 0 R 2 ϕ abθ , M f ϕ abθ db dθ da a 3 (4) = a 0 0 2π 0 R 2 ϕ abθ , f M ϕ abθ db dθ da a 3 .

Continuous Curvelet Transform

Following Candès and Donoho [START_REF] Candès | Continuous curvelet transform. I: Resolution of the wavefront set[END_REF][START_REF] Candès | Continuous curvelet transform. II: Discretization and frames[END_REF], the continuous curvelet transform (CCT) is defined in the polar coordinates (r, ω) of the Fourier domain. Let W be a positive real-valued C ∞ function supported inside 1 2 , 2 , called a radial window, and let V be a real-valued C ∞ function supported on [-1, 1], called an angular window, for which the following admissibility conditions hold:

∞ 0 W (r) 2 dr r = 1 and 1 -1 V (ω) 2 dω = 1. (5)
At each scale a, 0 < a < a 0 , γ a00 is defined by

γ a00 (r cos(ω), r sin(ω)) = a 3 4 W (ar) V ω/ √ a
for r ≥ 0 and ω ∈ [0, 2π). For each 0 < a < a 0 , b ∈ R 2 , and θ ∈ [0, 2π), a curvelet γ abθ is defined by

γ abθ (x) = γ a00 (R θ (x -b)) , for x ∈ R 2 . (6)
The continuous curvelet transform of

f ∈ L ( R 2 ) is Γ f (a, b, θ) = γ abθ , f for 0 < a < a 0 , b ∈ R 2 , and θ ∈ [0, 2π).
The admissibility conditions (5) and the polar coordinate design of curvelets yield the following: Reconstruction formula [START_REF] Candès | Continuous curvelet transform. II: Discretization and frames[END_REF] There exists a bandlimited purely radial function Φ such that for all f ∈ L 2 (R 2 ),

f = f + a0 0 2π 0 R 2 γ abθ , f γ abθ db dθ da a 3 , ( 7 
)
where

f = R 2 Φ b , f Φ b db and Φ b (x) = Φ(x -b).
For analysis of singularities of f , the low frequency part f

is not an issue as it is always C ∞ . Unlike Smith transform, curvelet transform does not use a true affine parabolic scaling as a slightly different generating function γ a00 is used at each scale a > 0.

Continuous Shearlet Transform

We will follow mainly the definitions and notations in G. Kutyniok and D. Labate [START_REF] Kutyniok | Resolution of the wavefront set using continuous shearlets[END_REF]. Let

ψ 1 , ψ 2 ∈ L 2 (R) and ψ ∈ L 2 (R 2 ) be given by ψ(ξ 1 , ξ 2 ) = ψ1 (ξ 1 ) ψ2 ξ 2 ξ 1 , ξ 1 = 0, ξ 2 ∈ R, (8) 
where ψ 1 satisfies the admissibility condition and ψ1 ∈

C ∞ 0 (R) with supp ψ1 ⊂ [-2, -1 2 ] ∪ [ 1 2 , 2] while ψ2 ∈ C ∞ 0 (R) with supp ψ2 ⊂ [-1, 1]
, ψ2 > 0 on (-1, 1), and ψ 2 = 1. Given such a shearlet function ψ, a continuous shearlet system is the family of functions ψ ast , a ∈ R + , s ∈ R, t ∈ R 2 , where

ψ ast = a -3 4 ψ D -1 a B -1 s (• -t)
where B s is the shear matrix 1 -s 0 1 and D a is the diagonal matrix a 0 0 √ a . The continuous shearlet transform of f is then defined for such (a, s, t) by

SH ψ f (a, s, t) = f, ψ ast .
Many properties of the continuous shearlet are more evident in the frequency domain. So we note here that each ψast is supported on the set

(ξ 1 , ξ 2 ) : 1 2a ≤ |ξ 1 | ≤ 2 a , ξ 2 ξ 1 -s ≤ √ a .
Reconstruction Formula [START_REF] Kutyniok | Resolution of the wavefront set using continuous shearlets[END_REF] Let ψ ∈ L 2 (R 2 ) be a shearlet function. Then, for all f ∈ L 2 (R 2 ),

f = R 2 R R + ψ ast , f ψ ast da a 3 ds dt in L 2 . ( 9 
) If supp f ⊂ C = (ξ 1 , ξ 2 ) : |ξ 1 | ≥ 2 and ξ2 ξ1 ≤ 1 , then f = R 2 2 -2 1 0 ψ ast , f ψ ast da a 3 ds dt in L 2 . ( 10 
)
Even though the second reconstruction formula ( 10) is valid only for functions with frequency support in the union C of two infinite horizontal trapezoids, it has the advantage that the integral involves only scales a and shear parameters s in bounded sets. A complementary shearlet system ψ

(v)
ast can be similarly defined so that one has a reconstruction formula which is valid for

f with supp f ⊂ C (v) = (ξ 1 , ξ 2 ) : |ξ 2 | ≥ 2 and ξ2 ξ 1 > 1 . Finally, ev- ery f ∈ L 2 (R 2
) can be decomposed into three functions with frequency supports in C, C (v) , and W = [-2, 2] 2 . The former two functions can then be reconstructed from ψ ast and ψ

(v)
ast respectively, while the latter is C ∞ . Therefore, regularity analysis can be carried out by considering the continuous shearlet transform with respect to these two shearlet systems. For more details, see [START_REF] Kutyniok | Resolution of the wavefront set using continuous shearlets[END_REF].

Common Properties of the Transforms

We shall suppose from this point onward that φ ∈ C ∞ and that there exist

C 1 > C 1 > 0 and C 2 > 0 such that supp( φ) ⊂ ([-C 1 , -C 1 ]∪[C 1 , C 1 ])×[-C 2 , C 2 ]
. This assumption ensures that all our three kernel functions, Hart Smith, curvelet, and shearlet functions, have Fourier supports away from the Y -axis, which in turns results in crucial properties needed to prove our main results.

Vanishing Directional Moments

A function f of two variables is said to have an L-order vanishing directional moments along a direction

v = (v 1 , v 2 ) T = 0 if R b n f (bv+w)db = 0, for all w ∈ R 2 and 0 ≤ n < L. Lemma 1: Let v = (v 1 , v 2 ) T be a unit vector. 1. There exists C < ∞ (independent of a, b and θ) such that if |θ + arctan( v1 v2 )| ≥ C √ a then the curvelet
functions γ abθ and the Smith functions ϕ abθ and M ϕ abθ have vanishing directional moments of any order L < ∞ along the direction v.

If s

+ v 1 v2 >
√ a then the shearlet functions ψ ast have vanishing directional moments of any order L < ∞ along the direction v. Here, if v 2 is 0 then v1 v2 are treated as ∞ so that the assumed inequality holds for all a ∈ (0, 1) and s ∈ [-2, 2], hence ψ ast has vanishing directional moments of any order L < ∞ along the direction v = (v 1 , 0).

Smoothness and Decay Properties

Lemma 2: For each N = 1, 2, ... there is a constant C N such that for all x ∈ R 2 and ν ∈ N 2 0

|∂ ν γ abθ (x)| ≤ C N a -3/4-|ν| 1 + D 1 a R -θ (x -b) 2N (11) 
and

|∂ ν ψ ast (x)| ≤ C N a -3/4-|ν| ( √ a + |s|) ν 2 1 + D 1/a B -s (x -t) 2N . ( 12 
)
Moreover, (11) also holds for functions ϕ abθ and M ϕ abθ .

Singularity Lines

Let φ abθ denote any of the γ abθ , ϕ abθ , or M ϕ abθ . Let us quote the following results. [START_REF] Sampo | Estimations of Hölder regularities and direction of singularity by Hart Smith and curvelet transforms[END_REF][START_REF] Lakhonchai | Shearlet transforms and hölder regularities[END_REF] Theorem 1:

Let f ∈ L 2 (R 2 ), u ∈ R 2
, and assume that α > 0 is not an integer. If there exist α < 2α, θ 0 ∈ [0, 2π], and

A, C < ∞ such that | φ abθ , f | is bounded by            Ca α+ 5 4 1 + b -u a 1/2 α , if |θ -θ 0 | ≥ A √ a Ca α+ 3 4 1 + b -u a 1/2 α , if |θ -θ 0 | ≤ A √ a for all a ∈ (0, a 0 ), b ∈ R 2 , and θ ∈ [0, 2π), then f ∈ C α (u).
Theorem 2: Let f ∈ L 2 (R 2 ), u ∈ R 2 , and assume that α > 0 is not an integer. If there exist α < 2α, -2 ≤ s 0 ≤ 2, and C, C < ∞ such that, for each 0 < a < 1, -2 ≤ s ≤ 2, and

t ∈ R 2 , | ψ ast , P C1 f | is bounded by            Ca α+ 5 4 1 + t -u a 1/2 α , if |s -s 0 | > C √ a, Ca α+ 3 4 1 + t -u a 1/2 α , if |s -s 0 | ≤ C √ a, (13) 
and

ψ (v) ast , P C2 f ≤ Ca α+ 5 4 1 + t -u a 1/2 α , (14) 
then f ∈ C α (u). Similar statement holds if the inequality (13) holds for ψ 

∈ C 2α+1+ε (R 2 , v θ 0 ) for some θ 0 ∈ [0, 2π) with any fixed ε > 0. Then there exist α ∈ [α -ε, α] and A, C < ∞ such that for a > 0 and b ∈ R 2 , | φ abθ , f | is bounded by      Ca α+ 5 4 , if |θ -θ 0 | ≥ A √ a, Ca α + 3 4 1 + b -u a α , if |θ -θ 0 | ≤ A √ a.
For s 0 ∈ [-2, 2] and u = (u 1 , u 2 ) ∈ R 2 , let Γ u denote the vertical line passing though u and Γ u,s 0 denote the line passing through u with slope -1 s0 . Observe that we may write Γ u = Γ u,0 so that (x 1 , x 2 ) ∈ Γ u,s0 if and only if x 1 = -s 0 (x 2 -u 2 ) + u 1 . Recall that if Γ ⊆ R 2 and ρ > 0, then Γ(ρ) is the ρ-neighborhood of Γ, i.e. the set of all points whose distance to Γ is less than ρ.

Theorem 4 Let f ∈ C α (Γ u,s 0 , Γ u,s 0 (ρ) ; (1, 0)) and bounded for some α ∈ (0, 1], u ∈ R 2 , s 0 ∈ [-2, 2] and ρ > 1.
Suppose also that f is in C 2α+1+ε (Γ u,s 0 (ρ) ; B s 0 (0, 1)) for some fixed ε > 0. Then there exists C < ∞ such that if 0 < a < a 0 < 1 and t ∈ Γ u (r) with r < ρ/2 and s ∈ [-2, 2], the continuous shearlet transform ψ ast , f is bounded in magnitude by    Ca α+ 5 4 , if |s -s 0 | > √ a,

Ca α+ 3 4 1 + d s 0 (t, u) a α , if |s -s 0 | ≤ √ a,
where d s 0 (t, u) = |t 1 + s 0 t 2 -u 1 -s 0 u 2 | denotes the distance between the parallel lines with slope -1 s 0 (vertical line if s 0 = 0) and passing through t and u respectively. Edge analysis has been done successfully using the continuous shearlet transform ( [START_REF] Yi | Edge detection and processing using shearlets[END_REF][START_REF] Guo | Characterization and analysis of edges using the continuous shearlet transform[END_REF][START_REF] Guo | Edge analysis and identification using the continuous shearlet transform[END_REF][START_REF] Kutyniok | Resolution of the wavefront set using continuous shearlets[END_REF]). They consider the shearlet transform of the characteristic function of a set with piecewise smooth boundary and found that, at a regular boundary point t, the shearlet transform decays like a 3/4 if s = s 0 = ± v1 v 2 and decays rapidly at other s = s 0 , where v = (v 1 , v 2 ) is the normal vector of the boundary curve at t. Since this characteristic function has Hölder exponent 0 (bounded and discontinuous) at any boundary point in the normal direction, this decay rate of a 3/4 at s = s 0 = 0 agrees with that of Theorem 4. However, when s 0 = 0 the two directions in Theorem 4 along which regularity is assumed are not perpendicular. More comparisons of our results and the aforementioned work are needed.

C 2 fTheorem 3

 23 and the inequality (14) holds for ψ ast , P C 1 f . Let f be bounded with local Hölder exponent α ∈ (0, 1] at point u and f