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Abstract:

In order to get an efficient image representation we intro-
duce a new adaptive Haar wavelet transform, calledTetro-
let Transform. Tetrolets are Haar-type wavelets whose
supports are tetrominoes which are shapes made by con-
necting four equal-sized squares. The corresponding filter
bank algorithm is simple but enormously effective. Nu-
merical results show the strong efficiency of the tetrolet
transform for image compression.

1. Introduction

The main task in every kind of image processing is find-
ing an efficient image representation that characterizes the
significant image features in a compact form. In the last
years a lot of methods have been proposed to improve
the treatment with orientated geometric image structures.
Curvelets [1], contourlets [2], shearlets [5], and direction-
lets [10] are wavelet systems with more directional sensi-
tivity than classical tensor product wavelets.
Instead of choosing a priori a basis or a frame one may
adapt the function system depending on the local image
structures. Wedgelets [3] and bandelets [7] stand for this
second class of image representation schemes which is a
wide field of further research. Very recent approaches are
the grouplets [8] or the EPWT [9] which are based on an
averaging in adaptive neighborhoods of data points.
In [6] we have introduced a new adaptive algorithm whose
underlying idea is similar to the idea of digital wedgelets
where Haar functions on wedge partitions are considered.
We divide the image into 4 × 4 blocks, then we deter-
mine in each block a tetromino partition which is adapted
to the image geometry in this block. Tetrominoes are
shapes made by connecting four equal-sized squares, each
joined together with at least one other square along an
edge. On these geometric shapes we define Haar-type
wavelets, called tetrolets, which form a local orthonormal
basis. The main advantage of Haar-type wavelets is the
lack of pseudo-Gibbs artifacts. The corresponding filter
bank algorithm decomposes an image into a compact rep-
resentation.
The tetrolet transform is also very efficient for compres-
sion of real data arrays.

2. The Adaptive Tetrolet Transform

2.1 Definitions and Notations
Let be I = {(i, j) : i, j = 0, . . . , N − 1} ⊂ Z2 the
index set of a digital image a = (a[i, j])(i,j)∈I with N =
2J , J ∈ N. We determine a 4-neighborhood of an index
(i, j) ∈ I by N4(i, j) := {(i − 1, j), (i + 1, j), (i, j −
1), (i, j +1)}.An index that lies at the boundary has three
neighbors, an index at the vertex of the image has two
neighbors.
A set E = {I0, . . . , Ir}, r ∈ N, of subsets Iν ⊂ I is
a disjoint partition of I if Iν ∩ Iµ = ∅ for ν '= µ and
⋃r

ν=0 Iν = I.
In this paper we consider disjoint partitions of the index
set I that satisfy two conditions for all Iν :

1. each subset Iν contains four indices, i.e. #Iν = 4,

2. every index of Iν has a neighbor in Iν , i.e. ∀(i, j) ∈
Iν ∃(i′, j′) ∈ Iν : (i′, j′) ∈ N4(i, j).

We call such subsets Iν tetromino, since the tiling prob-
lem of the square [0, N)2 by shapes called tetrominoes is
a well-known problem being closely related to our parti-
tions of the index set I = {0, 1, . . . , N − 1}2. We shortly
introduce this tetromino tiling problem in the next subsec-
tion.

2.2 Tilings by Tetrominoes
Tetrominoes were introduced by Golomb in [4]. They are
shapes formed from a union of four unit squares, each con-
nected by edges, not merely at their corners. The tiling
problem with tetrominoes became popular through the fa-
mous computer game classic ’Tetris’. Disregarding rota-
tions and reflections there are five different shapes, the so
called free tetrominoes, see Figure 1.
It is clear that every square [0, N)2 can be covered by
tetrominoes if and only if N is even. But the number of
different coverings explodes with increasingN . There are
117 solutions for disjoint covering of a 4 × 4 board with
four tetrominoes. As represented in Figure 2, we have 22

Figure 1: The five free tetrominoes.



Figure 2: The 22 fundamental forms tiling a 4 × 4 board.
Regarding additionally rotations and reflections there are
117 solutions.

fundamental configurations (disregarding rotations and re-
flections). One solution (first line) is unaltered by rotations
and reflections, four solutions (second line) give a second
version applying the isometries. Seven forms can occur in
four orientations (third line), and ten asymmetric cases in
eight directions (last line).

2.3 The Idea of Tetrolets
In the two-dimensional classical Haar case, the low-pass
filter and the high-pass filters are just given by the averag-
ing sum and the averaging differences of each four pixel
values which are arranged in a 2 × 2 square, i.e., with
Ii,j = {(2i, 2j), (2i+1, 2j), (2i, 2j+1), (2i+1, 2j+1)}
for i, j = 0, 1, . . . , N

2 − 1, we have a dyadic partition
E = {I0,0, . . . , IN

2 −1, N
2 −1} of the image index set I . Let

L be a bijective mapping which maps the four pixel pairs
(i, j) to the scalar set {0, 1, 2, 3}, that means it brings the
pixels into a unique order. Then we can determine the low-
pass part a1 = (a1[i, j])

N
2 −1

i,j=0 as well as the three high-pass

parts w1
l = (w1

l [i, j])
N
2 −1

i,j=0 for l = 1, 2, 3 with

a1[i, j] =
∑

(i′,j′)∈Ii,j

ε[0, L(i′, j′)] a[i′, j′] (1)

w1
l [i, j] =

∑

(i′,j′)∈Ii,j

ε[l, L(i′, j′)] a[i′, j′], (2)

where the coefficients ε[l, m], l, m = 0, . . . , 3, are entries
from the Haar wavelet transform matrix

W := (ε[l, m])3l,m=0 =
1

2







1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1






. (3)

Obviously, the fixed blocking by the dyadic squares Ii,j

is very inefficient because the local structures of an image
are disregarded. Our idea is, to allow more general parti-
tions such that the local image geometry is taken into ac-
count. Namely, we use tetromino partitions. As described
in the previous subsection we shall restrict us to 4 × 4
blocks. This leads to a third condition for the desired dis-
joint partition E of the index set I introduced in Section
2.1:

3. Each 4 × 4 square Qi,j := {4i, . . . , 4i + 3} ×
{4j, . . . , 4j + 3}, i, j = 0, 1, . . . , N

4 − 1, is covered
by four subsets (tetrominoes) I0, . . . , I3.

In other words, we first divide the index set I of an im-
age a into N2

16 squares Qi,j and then we consider the ad-
missible tetromino partitions there. Among the 117 solu-
tions we compute an optimal partition in each image block
such that the wavelet coefficients defined on the tetromi-
noes have minimal l1-norm.

3. Detailed Description of the Algorithm

The rough structure of the tetrolet filter bank algorithm is
described in Table 1.

Adaptive Tetrolet Decomposition Algorithm
Input: Image a = (a[i, j])N−1

i,j=0 with N = 2J , J ∈ N.
1. Divide the image into 4 × 4 blocks.
2. Find in each block the sparsest tetrolet representation.
3. Rearrange the low- and high-pass coefficients of
each block into a 2 × 2 block.

4. Store the tetrolet coefficients (high-pass part).
5. Apply step 1 to 4 to the low-pass image.
Output: Decomposed image ã.

Table 1: Adaptive tetrolet decomposition algorithm.

Going into detail our main attention shall be turned to step
2 of the algorithm where the adaptivity comes into play.
We start with the input image a

0 = (a[i, j])N−1
i,j=0 with

N = 2J , J ∈ N. In the rth-level, r = 1, . . . , J − 1,
we apply the following computations.

1. Divide the low-pass image a
r−1 into blocks Qi,j of

size 4 × 4, i, j = 0, . . . , N
4r − 1.

2. In each block Qi,j we compute analogously to (1)
and (2) the pixel averages for every admissible tetro-
mino covering c = 1, . . . , 117 by

ar,(c)[s] =
∑

(m,n)∈I
(c)
s

ε[0, L(m, n)] ar−1[m, n],

as well as the three high-pass parts for l = 1, 2, 3

wr,(c)
l [s] =

∑

(m,n)∈I
(c)
s

ε[l, L(m, n)] ar−1[m, n],

s = 0, . . . , 3, where the coefficients are given in (3)
and L is the mapping mentioned above. Then we
choose the covering c∗ such that the l1-norm of the
tetrolet coefficients becomes minimal

c∗ = argmin
c

3
∑

l=1

3
∑

s=0

|wr,(c)
l [s]|. (4)

Hence, for every block Qi,j we get an optimal tetro-
let decomposition [ar,(c∗),wr,(c∗)

1 ,wr,(c∗)
2 ,wr,(c∗)

3 ].
By doing this, the local structure of the image block
is adapted. The best configuration c∗ is a cover-
ing whose tetrominoes do not intersect an important
structure like an edge in the image ar−1. Because the
tetrolet coefficients become as minimal as possible
a sparse image representation will be obtained. We
have to store for each block Qi,j which covering c∗

has been chosen, since this information is necessary
for reconstruction.



3. In order to be able to apply further levels of the tetro-
let decomposition algorithm, we rearrange the entries
of the vectors ar,(c∗) andw

r,(c∗)
l into 2× 2 matrices,

a
r
|Qi,j

=

(

ar,(c∗)[0] ar,(c∗)[2]
ar,(c∗)[1] ar,(c∗)[3]

)

,

and in the same wayw
r
l|Qi,j

for l = 1, 2, 3.

4. After finding a sparse representation in every block
Qi,j for i, j = 0, . . . , N

4r − 1, we store (as usually
done) the low-pass matrix a

r and the high-pass ma-
trices w

r
l , l = 1, 2, 3, replacing the low-pass image

a
r−1 by the matrix

(

a
r

w
r
2

w
r
1 w

r
3

)

.

After a suitable number of decomposition steps, one can
apply a shrinkage to the tetrolet coefficients in order to get
a sparse image representation.

4. An Orthonormal Basis of Tetrolets

We describe the discrete basis functions which correspond
to the above algorithm. Remember that the digital image
a = (a[i, j])(i,j)∈I is a subset of l2(Z2). For any tetro-
mino Iν of I we define the discrete functions

φIν [m, n] :=

{

1/2, (m, n) ∈ Iν ,
0, else,

ψl
Iν

[m, n] :=

{

ε[l, L(m, n)], (m, n) ∈ Iν ,
0, else.

Due to the underlying tetromino support, we call φIν and
ψl

Iν
tetrolets. As a straightforward consequence of the or-

thogonality of the standard 2D Haar basis functions and
the disjoint partition of the discrete space by the tetromino
supports, we have the following essential statement.

Theorem 1 For every admissible covering {I0, I1, I2, I3}
of a 4 × 4 square Q ⊂ Z2 the tetrolet system

{φIν : ν = 0, 1, 2, 3}∪ {ψl
Iν

: ν = 0, 1, 2, 3; l = 1, 2, 3}

is an orthonormal basis of l2(Q).

5. Cost of Adaptivity: Modified Tetrolet
Transform

We will address the costs of storing additional adaptivity
information. Our observations will lead to some relaxed
versions of the tetrolet transform in order to reduce these
costs.
It is well known that a vector of length N and with en-
tropy E can be stored with N ·E bits. Hence, the entropy
describes the required bits per pixel (bpp) and is an appro-
priate measure for the quality of compression.
In the following, we propose three methods of entropy re-
duction in order to reduce the adaptivity costs. An appli-
cation of these modified transforms as well as of combi-
nations of them is given in the last section.

The simplest approach of entropy reduction is reduction
of the symbol alphabet. The tetrolet transform uses the
alphabet {1, . . . , 117} for the chosen covering in each im-
age block. If we restrict ourselves to 16 essential config-
urations that feature different directions we considerably
reduce the entropy as well as the computation time.
A second approach to reduce the entropy is to change the
distribution of the symbols. Relaxing the tetrolet trans-
form we could ensure that only very few tilings are pre-
ferred. Hence, we allow the choice of an almost optimal
covering c∗ in (4) in order to get a tiling which is already
frequently chosen. More precisely, we replace (4) by the
two steps:

1. Find the set of almost optimal configurations that sat-
isfy

3
∑

l=1

3
∑

s=0

|wr,(c)
l [s]| ! min

c

3
∑

l=1

3
∑

s=0

|wr,(c)
l [s]| + θ

with a predetermined tolerance parameter θ.

2. Among these tilings choose the covering c which is
chosen most frequently in the previous image blocks.

Using an appropriate relaxing parameter θ, we achieve a
satisfactory balance between low entropy (low adaptivity
costs) and minimal tetrolet coefficients.
The third method also reduces the entropy by optimization
of the tiling distribution. After an application of an edge
detector we use the classical Haar wavelet transform in-
side flat image regions. In the image blocks that contain
edges we make use of the strong adaptivity of the proposed
tetrolet transform.
More details of the modified versions can be found in [6].

6. Numerical Experiments

We apply a complete wavelet decomposition of an image
and use a shrinkage with global hard-thresholding.
The detail ’monarch’ image in Figure 3 shows the enor-
mous efficiency in handling with several directional edges
due to the high adaptivity. It can be well noticed that the
tetrolet transformation gives excellent results for piece-
wise constant images. Though the tetrolets are not con-
tinuous the approximation of the ’cameraman’ image in
Figure 4 illustrates that even for natural images the tetrolet
filter bank outperforms the tensor product wavelets with
the biorthogonal 9-7 filter bank, since no pseudo-Gibbs
phenomena occur. This confirms the fact already noticed
with wedgelets [3] and bandelets [7]: While nonadaptive
methods need smooth wavelets for excellent results, well
constructed adaptive methods need not. See [6] for more
numerical examples.
Considering the adaptivity costs we compare the standard
tetrolet transform with its modified versions. Of course,
reduction of adaptivity cost produces a loss of approxima-
tion quality. Hence, a satisfactory balance is necessary.
For a rough estimation of the complete storage costs of the
compressed image with N2 pixels we apply a simplified
scheme

costfull = costW + costP + costA,
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Figure 3: Approximation with 256 coefficients. (a) In-
put, (b) classical Haar, PSNR 18.98, (c) Biorthogonal 9-7,
PSNR 21.78, (d) Tetrolets, PSNR 24.43.

where costW = 16 ·M/N2 are the costs in bpp of storing
M non-zero wavelet coefficients with 16 bits. The term
costP gives the cost for coding the position of theseM co-
efficients by − M

N2 log2(
M
N2 ) − N2−M

N2 log2(
N2−M

N2 ). The
third component appearing only with the tetrolet transform
contains the cost of adaptivity, costA = E · R/N2, for R
adaptivity values and the entropy E previously discussed.
Table 2 presents some results for the monarch detail image
(Fig. 3) where different versions of the tetrolet transform
are compared with the tensor product wavelet transforma-
tion regarding to quality and storage costs. We have tried
to balance the modified tetrolet transform such that the full
costs are in the same scale as with the 9-7 filter. For the
relaxed versions we have used the parameter θ = 25.

coeff PSNR entropy costfull

Tensor Haar 300 19.58 - 1.55
Tensor 9-7 filter 300 22.62 - 1.55
Tetrolet 256 24.43 0.53 1.86
Tetro 16 256 23.56 0.30 1.64
Tetro rel 256 24.51 0.32 1.66
Tetro edge 256 24.24 0.43 1.77
Tetro 16 edge rel 256 23.48 0.21 1.55

Table 2: Comparison between tensor wavelet transforms
and the different versions of the tetrolet transform regard-
ing quality (PSNR) and storage cost (costfull in bpp).
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Figure 4: Approximation with 2048 coefficients. (a) In-
put, (b) classical Haar, PSNR 25.47, (c) Biorthogonal 9-7,
PSNR 27.26, (d) Tetrolets, PSNR 29.17.
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