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Introduction

We consider the equation

-∆ψ + v(x)ψ = 0, x ∈ D, (1.1) 
where

D is an open bounded domain in R d , d ≥ 2, ∂D ∈ C 2 , v ∈ L ∞ (D). (1.2) 
Equation (1.1) arises, in particular, in quantum mechanics, acoustics, electrodynamics. Formally, (1.1) looks as the Schrödinger equation with potential v at zero energy. We consider the map Φ such that ∂ψ ∂ν ∂D = Φ(ψ ∂D ) (1.3) for all sufficiently regular solutions ψ of (1.1) in D = D ∪ ∂D, where ν is the outward normal to ∂D. Here we assume also that 0 is not a Dirichlet eigenvalue for the operator -∆ + v in D.

(1.4)

The map Φ is called the Dirichlet-to-Neumann map for equation (1.1) and is considered as boundary measurements for (physical model described by) (1.1). We consider the following inverse boundary value problem for equation (1.1): Problem 1.1. Given Φ, find v. This problem can be considered as the Gel'fand inverse boundary value problem for the Schrödinger equation at zero energy (see [START_REF] Gelfand | Some problems of functional analysis and algebra[END_REF], [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt. Anal. i Pril[END_REF]). This problem can be also considered as a generalization of the Calderon problem of the electrical impedance tomography (see [START_REF] Calderón | On an inverse boundary value problem[END_REF], [START_REF] Sylvester | A global uniqueness theorem for an inverse boundary value problem[END_REF], [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt. Anal. i Pril[END_REF]).

We recall that the simplest interpretation of D, v and Φ in the framework of the electrical impedance tomography consists in the following (see, for example, [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt. Anal. i Pril[END_REF], [START_REF] Nachman | Reconstructions from boundary measurements[END_REF], [START_REF] Mandache | Exponential instability in an inverse problem for the Schrödinger equation[END_REF]): D is a body with isotropic conductivity σ(x) (where σ ≥ σ min > 0),

v(x) = (σ(x)) -1/2 ∆(σ(x)) 1/2 , x ∈ D, (1.5) 
Φ = σ -1/2 Λσ -1/2 + ∂σ 1/2 ∂ν , (1.6) 
where ∆ is the Laplacian, Λ is the voltage-to-current map on ∂D, and σ -1/2 , ∂σ 1/2 /∂ν in (1.6) denote the multiplication operators by the functions σ -1/2 ∂D , (∂σ 1/2 /∂ν) ∂D , respectively. In addition, (1.4) is always fulfilled if v is given by (1.5) (where σ ≥ σ min > 0 and σ is twice differential in L ∞ (D)).

Problem 1.1 includes, in particular, the following questions: (a) uniqueness, (b) reconstruction, (c) stability.

Global uniqueness theorems for Problem 1.1 (in its Calderon or Gel'fand form) in dimension d ≥ 3 were obtained for the first time in [START_REF] Sylvester | A global uniqueness theorem for an inverse boundary value problem[END_REF] and [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt. Anal. i Pril[END_REF]. In particular, according to [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt. Anal. i Pril[END_REF], under assumptions (1.2), (1.4), the map Φ uniquely determines v.

A global reconstruction method for Problem 1.1 in dimension d ≥ 3 was proposed for the first time in [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt. Anal. i Pril[END_REF]. In its simplest form, this method of [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt. Anal. i Pril[END_REF] consists in reducing Problem 1.1 to Problem 4.1 via formulas and equations (5.1), (5.2) for v 2 = v, ψ 2 = ψ, h 1 = h, v 1 ≡ 0, ψ 1 (x, k) = e ikx , R 1 (x, y, k) = G(xy, k), h 1 ≡ 0 and in solving Problem 4.1 via formula (4.10), see Sections 3,4 and 5 of the present paper.

Global stability estimates for Problem 1.1 in dimension d ≥ 3 were given for the first time in [START_REF] Alessandrini | Stable determination of conductivity by boundary measurements[END_REF]. A variation of this result is presented as Theorem 2.1 of Section 2 of the present paper.

We recall that in global results one does not assume that σ or v is small in some sense or that σ or v is peicewise constant or piecewise real-analytic. For peicewise constant or piecewise real-analytic σ the first uniqueness results for the Calderon version of Problem 1.1 in dimension d ≥ 2 were given in [START_REF] Druskin | The unique solution of the inverse problem in electrical surveying and electrical well logging for piecewise-constant conductivity[END_REF], [START_REF] Kohn | Determining conductivity by boundary measurements II, Interior results[END_REF].

As regards global results given in the literature on Problem 1.1 in dimension d = 2, the reader is refered to Corollary 2 of [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt. Anal. i Pril[END_REF] and to [START_REF] Nachman | Global uniqueness for a two-dimensional inverse boundary value problem[END_REF], [START_REF] Brown | Uniqueness in the inverse conductivity problem for nonsmooth conductivities in two dimensions[END_REF], [START_REF] Mandache | Exponential instability in an inverse problem for the Schrödinger equation[END_REF], [START_REF] Lassas | Mapping properties of the nonlinear Fourier transform in dimension two[END_REF], [START_REF] Bukhgeim | Recovering a potential from Cauchy data in the two-dimensional case[END_REF] and to references given in [START_REF] Bukhgeim | Recovering a potential from Cauchy data in the two-dimensional case[END_REF].

In the present work we continue studies of [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt. Anal. i Pril[END_REF], [START_REF] Novikov | Formulae and equations for finding scattering data from the Dirichletto-Neumann map with nonzero background potential[END_REF], [START_REF] Novikov | On non-overdetermined inverse scattering at zero energy in three dimensions[END_REF], [START_REF] Novikov | On stable determination of potential by boundary measurements[END_REF], [START_REF] Novikov | An effectivization of the global reconstruction in the Gel'fand-Calderon inverse problem in three dimensions[END_REF]. One of the main purposes of these studies was developing an efficient reconstruction algorithm for Problem 1.1 in dimension d = 3. Note that the aforementioned global reconstruction method of [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt. Anal. i Pril[END_REF] is fine in the sense that it consists in solving Fredholm linear integral equations of the second type and using explicit formulas but this reconstruction is not optimal with respect to its stability properties. An effectivization of this reconstruction of [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt. Anal. i Pril[END_REF] with respect to its stability properties was developed in [START_REF] Novikov | Formulae and equations for finding scattering data from the Dirichletto-Neumann map with nonzero background potential[END_REF], [START_REF] Novikov | On non-overdetermined inverse scattering at zero energy in three dimensions[END_REF], [START_REF] Novikov | An effectivization of the global reconstruction in the Gel'fand-Calderon inverse problem in three dimensions[END_REF]. In [START_REF] Novikov | On stable determination of potential by boundary measurements[END_REF] and in the present work we illustrate our progress in stability by proving new stability estimates for Problem 1.1 in 3D and, in particular, by proving Theorem 2.2 of Section 2 in 3D. For sufficiently regular potentials this theorem is a principle improvement of the aforementioned Alessandrini stability result of [START_REF] Alessandrini | Stable determination of conductivity by boundary measurements[END_REF].

Note that algorithms developed in [START_REF] Novikov | Formulae and equations for finding scattering data from the Dirichletto-Neumann map with nonzero background potential[END_REF], [START_REF] Novikov | On non-overdetermined inverse scattering at zero energy in three dimensions[END_REF], [START_REF] Novikov | An effectivization of the global reconstruction in the Gel'fand-Calderon inverse problem in three dimensions[END_REF] for finding v from Φ in 3D can be used even if v has discontinuities. In this case these algorithms can be considered as methods for finding the smooth part of v from Φ. In particular, the global algorithms of [START_REF] Novikov | Formulae and equations for finding scattering data from the Dirichletto-Neumann map with nonzero background potential[END_REF], [START_REF] Novikov | An effectivization of the global reconstruction in the Gel'fand-Calderon inverse problem in three dimensions[END_REF] can be considered as methods for approximate finding the Fourier transform v(p), |p| ≤ 2ρ, from Φ for sufficiently great ρ, where v(p) is defined by (4.12), d = 3. However, for the case when v is not smooth enough we did not manage yet to formalize our principle progress of [START_REF] Novikov | An effectivization of the global reconstruction in the Gel'fand-Calderon inverse problem in three dimensions[END_REF] in global stability as a rigorous mathematical theorem.

Note that in [START_REF] Novikov | On stable determination of potential by boundary measurements[END_REF] our new stability estimates of Theorem 2.2 of the next section were proved in the Born approximation (that is in the linear approximation near zero potential) only. Besides, a scheme of proof of these estimates was also mentioned in [START_REF] Novikov | On stable determination of potential by boundary measurements[END_REF] for potentials with sufficiently small norm in dimension d = 3. In the present work we give a complete proof of Theorem 2.2 in the general (or by other words global) case in dimension d = 3.

Our new stabilty estimates for Problem 1.1 (that is the estimates of Theorem 2.2) are presented and discussed in Section 2. In addition, relations between Theorems 2.1, 2.2 and global reconstructions of [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt. Anal. i Pril[END_REF], [START_REF] Novikov | Formulae and equations for finding scattering data from the Dirichletto-Neumann map with nonzero background potential[END_REF], [START_REF] Novikov | An effectivization of the global reconstruction in the Gel'fand-Calderon inverse problem in three dimensions[END_REF] are explained in Section 3. The proof of Theorem 2.2 for the global case in 3D is given in Section 8.

Stability estimates

As in [START_REF] Novikov | On stable determination of potential by boundary measurements[END_REF] we assume for simplicity that

D is an open bounded domain in R d , ∂D ∈ C 2 , v ∈ W m,1 (R d ) for some m > d, supp v ⊂ D, d ≥ 2, ( 2.1) 
where

W m,1 (R d ) = {v : ∂ J v ∈ L 1 (R d ), |J| ≤ m}, m ∈ N ∪ 0, (2.2) 
where

J ∈ (N ∪ 0) d , |J| = d i=1 J i , ∂ J v(x) = ∂ |J| v(x) ∂x J 1 1 . . . ∂x J d d . Let v m,1 = max |J|≤m ∂ J v L 1 (R d ) . (2.3) 

Let

A denote the norm of an operator

A : L ∞ (∂D) → L ∞ (∂D). (2.4)
We recall that if v 1 , v 2 are potentials satisfying (1.2), (1.3), where D is fixed, then

Φ 1 -Φ 2 is a compact operator in L ∞ (∂D), (2.5) 
where Φ 1 , Φ 2 are the DtN maps for v 1 , v 2 respectively, see [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt. Anal. i Pril[END_REF], [START_REF] Novikov | Formulae and equations for finding scattering data from the Dirichletto-Neumann map with nonzero background potential[END_REF]. Note also that (2.1) ⇒ (1.2).

Theorem 2.1 (variation of the result of [START_REF] Alessandrini | Stable determination of conductivity by boundary measurements[END_REF]). Let conditions (1.4), (2.1) hold for potentials v 1 and v 2 , where D is fixed,

d ≥ 3. Let v j m,1 ≤ N , j = 1, 2, for some N > 0. Let Φ 1 , Φ 2 denote the DtN maps for v 1 , v 2 , respectively. Then v 1 -v 2 L ∞ (D) ≤ c 1 (ln(3 + Φ 1 -Φ 2 -1 )) -α 1 , (2.6) 
where 

c 1 = c 1 (N, D, m), α 1 = (m -d)/m, Φ 1 -Φ 2 is
v 1 -v 2 L ∞ (D) ≤ c 2 (ln(3 + Φ 1 -Φ 2 -1 )) -α 2 , (2.8) 
where 

c 2 = c 2 (N, D, m), α 2 = m -d, Φ 1 -Φ 2 is
α 2 → +∞ as m → +∞, (2.9) 
in contrast with (2.7).

In the Born approximation, that is in the linear approximation near zero potential, Theorem 2.2 was proved in [START_REF] Novikov | On stable determination of potential by boundary measurements[END_REF].

For sufficiently small N in dimension d = 3, a scheme of proof of Theorem 2.2 was also mentioned in [START_REF] Novikov | On stable determination of potential by boundary measurements[END_REF]. This scheme involves, in particular, results of [START_REF] Novikov | Formulae and equations for finding scattering data from the Dirichletto-Neumann map with nonzero background potential[END_REF], [START_REF] Novikov | On non-overdetermined inverse scattering at zero energy in three dimensions[END_REF].

In the general (or by other words global) case Theorem 2.2 in dimension d = 3 is proved in Section 8. This proof involves, in particular, results of [START_REF] Novikov | Formulae and equations for finding scattering data from the Dirichletto-Neumann map with nonzero background potential[END_REF], [START_REF] Novikov | An effectivization of the global reconstruction in the Gel'fand-Calderon inverse problem in three dimensions[END_REF]. We see no principal difficulties (except restrictions in time) to give a similar proof in dimension d > 3.

We would like to mention that, under the assumptions of Theorems 2.1 and 2.2, according to the Mandache results of [START_REF] Mandache | Exponential instability in an inverse problem for the Schrödinger equation[END_REF], the estimate (2.8) can not hold with α 2 > m(2d -1)/d. However, we think that this instability result of [START_REF] Mandache | Exponential instability in an inverse problem for the Schrödinger equation[END_REF] can be sharpened considerably and that in this sense our Theorem 2.2 is almost optimal already.

For additional information concerning stability and instability results given in the literature for Problem 1.1 (in its Calderon or Gel'fand form) the reader is refered to [START_REF] Alessandrini | Stable determination of conductivity by boundary measurements[END_REF], [START_REF] Mandache | Exponential instability in an inverse problem for the Schrödinger equation[END_REF], [START_REF] Novikov | On stable determination of potential by boundary measurements[END_REF], [START_REF] Palamodov | Gabor analysis of the continuum model for impedance tomography[END_REF], [START_REF] Novikov | A global stability estimate for the Gel'fand-Calderon inverse problem in two dimensions[END_REF] and references therein. In particular, in [START_REF] Novikov | A global stability estimate for the Gel'fand-Calderon inverse problem in two dimensions[END_REF] estimate (2.6) is proved for d = 2 and any α 1 ∈]0, 1[, under the assumptions that v j ∈ C 2 ( D), v j C 2 ( D) ≤ N (and, at least, under the additional assumption that supp v j ⊆ D0 ⊂ D for some closed D0 ), j = 1, 2, where c 1 depends on D, N , α 1 (and on D0 ).

3. Theorems 2.1 and 2.2 and global reconstructions of [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt. Anal. i Pril[END_REF], [START_REF] Novikov | Formulae and equations for finding scattering data from the Dirichletto-Neumann map with nonzero background potential[END_REF], [START_REF] Novikov | An effectivization of the global reconstruction in the Gel'fand-Calderon inverse problem in three dimensions[END_REF] In this section we explain relations between Theorems 2.1, 2.2 and global reconstructions of [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt. Anal. i Pril[END_REF], [START_REF] Novikov | Formulae and equations for finding scattering data from the Dirichletto-Neumann map with nonzero background potential[END_REF], [START_REF] Novikov | An effectivization of the global reconstruction in the Gel'fand-Calderon inverse problem in three dimensions[END_REF] for Problem 1.1, where we assume that dimension d = 3. (The case d > 3 is similar to the case d = 3.) The scheme of the aforementioned global reconstructions consists in the following:

Φ → h Ξ → vρ,τ → v, (3.1) 
where h is the Faddeev generalized scattering amplitude (at zero energy) defined in the complex domain Θ (see formulas (4.4), (4.5), (4.1)-(4.3) of Section 4 for d = 3), Ξ is an appropriate subset of Θ, for example Ξ is the subset of Θ with the imaginary part length equal to ρ, vρ,τ is an approximation to v on

B 2τ ρ , vρ,τ → v on B 2τ ρ as ρ → +∞, (3.2) 
where v is the Fourier transform of v (see formula (4.12), d = 3), B r is the ball of the radius r, τ is a fixed parameter, 0 < τ ≤ 1.

3.1. Theorem 2.1 and global reconstructions of [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt. Anal. i Pril[END_REF], [START_REF] Novikov | Formulae and equations for finding scattering data from the Dirichletto-Neumann map with nonzero background potential[END_REF]. For the case when Ξ = bΘ ρ (see formulas (6.2)), (3.3a)

h bΘ ρ is determined from Φ via (5.1), (5.2) considered for v 2 = v, ψ 2 = ψ, h 2 = h, v 1 ≡ 0, ψ 1 (x, k) = e ikx , R 1 (x, y, k) = G(x -y, k), h 1 ≡ 0, (3.3b) vρ,τ (p) = h(k(p), l(p)), p ∈ B 2τ ρ , τ = 1, for some vector -functions k(p), l(p) such that k(p), l(p) ∈ bΘ ρ , k(p) -l(p) = p, (3.3c) 
reconstruction (3.1) was, actually, given in [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt. Anal. i Pril[END_REF]. In this case (3.2) holds according to (4.10), (4.11). (In the framework of [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt. Anal. i Pril[END_REF] less precise version of (4.11) was known.) General formulas and equations (5.1)-( 5.3) for finding h bΘ ρ from Φ with known background potential v 1 ≡ 0 were given for the first time in [START_REF] Novikov | Formulae and equations for finding scattering data from the Dirichletto-Neumann map with nonzero background potential[END_REF]. If unknown potential v is sufficiently close to some known background potential v 1 ≡ 0, then formulas and equations (5.1)-( 5.3) considered for v 2 = v, ψ 2 = ψ, h 2 = h give more stable determination of h bΘ ρ from Φ than these formulas and equations for v 1 ≡ 0 (see [START_REF] Novikov | Formulae and equations for finding scattering data from the Dirichletto-Neumann map with nonzero background potential[END_REF] for more detailed discussion of this issue).

Note that Theorem 2.1 follows from formulas (4.10), (4.11), (5.1) mentioned above in connection with the versions of (3.1), (3.2) of [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt. Anal. i Pril[END_REF], [START_REF] Novikov | Formulae and equations for finding scattering data from the Dirichletto-Neumann map with nonzero background potential[END_REF]. [START_REF] Novikov | Formulae and equations for finding scattering data from the Dirichletto-Neumann map with nonzero background potential[END_REF], [START_REF] Novikov | An effectivization of the global reconstruction in the Gel'fand-Calderon inverse problem in three dimensions[END_REF]. The main disadvantage of the global reconstruction (3.1), (3.2) in the framework of [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt. Anal. i Pril[END_REF], [START_REF] Novikov | Formulae and equations for finding scattering data from the Dirichletto-Neumann map with nonzero background potential[END_REF] is related with the following two facts:

Theorem 2.2 and global reconstructions of

(1) The determination of h Ξ for Ξ = bΘ ρ or, more generally, for Ξ ⊆ Θρ , Ξ ∩ bΘ ρ = ∅ (see formulas (6.2)) from Φ via formulas and equations (5.1)-(5.3) for v 2 = v, ψ 2 = ψ, h 2 = h with some known background potential v 1 is stable for relatively small ρ, but is very unstable for ρ → +∞ in the points of Ξ with sufficiently great imaginary part (see [START_REF] Novikov | Formulae and equations for finding scattering data from the Dirichletto-Neumann map with nonzero background potential[END_REF], [START_REF] Novikov | On non-overdetermined inverse scattering at zero energy in three dimensions[END_REF], [START_REF] Novikov | An effectivization of the global reconstruction in the Gel'fand-Calderon inverse problem in three dimensions[END_REF] for more detailed discussion of this issue).

(2) For vρ,τ defined as in (3.3c) the decay of the error vvρ,τ on B 2ρτ is very slow for ρ → +∞ (not faster than O(ρ -1 ) even for infinitely smooth compactly supported v) (see [START_REF] Novikov | An effectivization of the global reconstruction in the Gel'fand-Calderon inverse problem in three dimensions[END_REF] for more detailed discussion of this issue).

As a corollary, the global reconstruction (3.1), (3.2) in the framework of [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt. Anal. i Pril[END_REF] and even in the framework of [START_REF] Novikov | Formulae and equations for finding scattering data from the Dirichletto-Neumann map with nonzero background potential[END_REF] is not optimal with respect to its stability properties. A principle effectivization of the global reconstruction (3.1), (3.2) with respect to its stability properties was given in [START_REF] Novikov | An effectivization of the global reconstruction in the Gel'fand-Calderon inverse problem in three dimensions[END_REF].

The main new result of [START_REF] Novikov | An effectivization of the global reconstruction in the Gel'fand-Calderon inverse problem in three dimensions[END_REF] consists in stable construction of some vρ,τ on B 2τ ρ from h on bΘ ρ,τ ⊆ bΘ ρ (see definitions (6.2)) in such a way that

|v(p) -vρ,τ (p)| ≤ C(m, µ 0 , τ )N 2 (1 + |p|) -µ 0 ρ -(m-µ 0 ) for p ∈ B 2τ ρ , ρ ≥ ρ 1 and fixed τ ∈]0, τ 1 [, (3.4) 

R.G. Novikov

under the assumptions that

v ∈ W m,1 (R 2 ), v m,1 < N (see definitions (2.2), (2.3)), m > 2, 2 ≤ µ 0 < m, τ 1 = τ 1 (m, µ 0 , N ), ρ 1 = ρ 1 (m, µ 0 , N ), (3.5) 
where C(m, µ 0 , τ ), τ 1 (m, µ 0 , N ), ρ 1 (m, µ 0 , N ) are special constants and, in particular, 0 < τ 1 < 1, see Theorem 2.1 of [START_REF] Novikov | An effectivization of the global reconstruction in the Gel'fand-Calderon inverse problem in three dimensions[END_REF]. The scheme of this construction of [START_REF] Novikov | An effectivization of the global reconstruction in the Gel'fand-Calderon inverse problem in three dimensions[END_REF] consists in the following: 

h bΘ ρ,τ → H bΩ ρ,τ → H bΛ ρ,τ,ν → H 0 Λ ρ,τ,ν → Hρ,τ on Λ ρ,τ,ν → vρ,τ on B 2τ ρ . ( 3 
(p) = lim λ→0 Hρ,τ (λ, p), v- ρ,τ (p) = lim λ→∞ Hρ,τ (λ, p), (3.7) 
where definitions (3.7) are similar to formulas (7.16). For more detailed discussion of (3.6) see Section 5 of [START_REF] Novikov | An effectivization of the global reconstruction in the Gel'fand-Calderon inverse problem in three dimensions[END_REF]. Note that in [START_REF] Novikov | An effectivization of the global reconstruction in the Gel'fand-Calderon inverse problem in three dimensions[END_REF] we deal with approximate finding v from h bΘ ρ in a similar way with approximate finding v from the scattering amplitude f at fixed energy E of [START_REF] Novikov | The ∂approach to approximate inverse scattering at fixed energy in three dimensions[END_REF]. The parameter ρ of [START_REF] Novikov | An effectivization of the global reconstruction in the Gel'fand-Calderon inverse problem in three dimensions[END_REF] plays the role of the parameter √ E of [START_REF] Novikov | The ∂approach to approximate inverse scattering at fixed energy in three dimensions[END_REF]. One can see that for sufficiently regular potentials v that is for v ∈ W m,1 (R 3 ), where m is sufficiently great, and for vρ,τ constructed from h bΘ ρ,τ via (3.6) as in [START_REF] Novikov | An effectivization of the global reconstruction in the Gel'fand-Calderon inverse problem in three dimensions[END_REF] the decay rate of the error vvρ,τ on B 2τ ρ is O(ρ -(m-2) ) as ρ → +∞ (see (3.4) for µ 0 = 2) and is much faster than for vρ,τ given by (3.3c) as in [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt. Anal. i Pril[END_REF], [START_REF] Novikov | Formulae and equations for finding scattering data from the Dirichletto-Neumann map with nonzero background potential[END_REF]. Therefore, for Problem 1.1 in dimension d = 3 the global reconstruction of [START_REF] Novikov | An effectivization of the global reconstruction in the Gel'fand-Calderon inverse problem in three dimensions[END_REF] (using also (5.1)-(5.3) for finding h bΘ ρ,τ from Φ as in [START_REF] Novikov | Formulae and equations for finding scattering data from the Dirichletto-Neumann map with nonzero background potential[END_REF]) has much more optimal stability properties than the global reconstructions of [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt. Anal. i Pril[END_REF], [START_REF] Novikov | Formulae and equations for finding scattering data from the Dirichletto-Neumann map with nonzero background potential[END_REF].

Therefore, Theorem 1.2 illustrating the progress in global stability of [START_REF] Novikov | Formulae and equations for finding scattering data from the Dirichletto-Neumann map with nonzero background potential[END_REF], [START_REF] Novikov | An effectivization of the global reconstruction in the Gel'fand-Calderon inverse problem in three dimensions[END_REF] is much more optimal than Theorem 1.1 related with global reconstruction results of [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt. Anal. i Pril[END_REF] and [START_REF] Novikov | Formulae and equations for finding scattering data from the Dirichletto-Neumann map with nonzero background potential[END_REF] only.

Faddeev functions

We consider the Faddeev functions G, ψ and h (see [START_REF] Faddeev | Growing solutions of the Schrödinger equation[END_REF], [START_REF] Faddeev | Inverse problem of quantum scattering theory II[END_REF], [START_REF] Henkin | The ∂equation in the multidimensional inverse scattering problem[END_REF], [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt. Anal. i Pril[END_REF]):

ψ(x, k) = e ikx + R d G(x -y, k)v(y)ψ(y, k)dy, (4.1) 
G(x, k) = e ikx g(x, k), g(x, k) = -(2π) -d R d e iξx dξ ξ 2 + 2kξ , (4.2) 
where

x ∈ R d , k ∈ Σ, Σ = {k ∈ C d : k 2 = k 2 1 + . . . + k 2 d = 0}; (4.3) h(k, l) = (2π) -d R d e -ilx v(x)ψ(x, k)dx, (4.4) 
where

(k, l) ∈ Θ, Θ = {k ∈ Σ, l ∈ Σ : Im k = Im l}. (4.5)
One can consider (4.1), (4.4) assuming that v is a sufficiently regular function on R d with sufficient decay at infinity. For example, one can consider (4.1), (4.4) assuming that (1.2) holds.

We recall that:

∆G(x, k) = δ(x), x ∈ R d , k ∈ Σ; (4.6)
formula (4.1) at fixed k is considered as an equation for

ψ = e ikx µ(x, k), (4.7) 
where µ is sought in L ∞ (R d ); as a corollary of (4.1),(4.2), (4.6), ψ satisfies (1.1); h of (4.4) is a generalized "scattering" amplitude in the complex domain at zero energy. Note that, actually, G, ψ, h of (4.1)-(4.5) are zero energy restrictions of functions introduced by Faddeev as extentions to the complex domain of some functions of the classical scattering theory for the Schrödinger equation at positive energies. In addition, G, ψ, h in their zero energy restriction were considered for the first time in [START_REF] Beals | Multidimensional inverse scattering and nonlinear partial differential equations[END_REF]. The Faddeev functions G, ψ, h were, actually, rediscovered in [START_REF] Beals | Multidimensional inverse scattering and nonlinear partial differential equations[END_REF].

We recall also that, under the assumptions of Theorem 2.1,

µ(x, k) → 1 as |Im k| → ∞ (uniformly in x) (4.8) 
and, for any σ > 1,

|µ(x, k)| < σ for |Im k| ≥ r 1 (N, D, m, σ), (4.9) 
where

x ∈ R d , k ∈ Σ; v(p) = lim (k,l)∈Θ, k-l=p |Im k|=|Im l|→∞ h(k, l) for any p ∈ R d , (4.10 
)

|v(p) -h(k, l)| ≤ c 3 (D, m)N 2 ρ for (k, l) ∈ Θ, p = k -l, |Im k| = |Im l| = ρ ≥ r 2 (N, D, m), (4.11) 
where

v(p) = 1 2π d R d e ipx v(x)dx, p ∈ R d . (4.12)
Results of the type (4.8), (4.9) go back to [START_REF] Beals | Multidimensional inverse scattering and nonlinear partial differential equations[END_REF]. Results of the type (4.10), (4.11) (with less precise right-hand side in (4.11)) go back to [START_REF] Henkin | The ∂equation in the multidimensional inverse scattering problem[END_REF]. Estimates (4.8), (4.11) are related also with some important L 2 -estimate going back to [START_REF] Sylvester | A global uniqueness theorem for an inverse boundary value problem[END_REF] on the Green function g of (4.1).

Note also that in some considerations it is convenient to consider h on Θ as H on Ω, where

h(k, l) = H(k, k -l), (k, l) ∈ Θ, H(k, p) = h(k, k -p), (k, p) ∈ Ω, (4.13 
)

Ω = {k ∈ C d , p ∈ R d : k 2 = 0, p 2 = 2kp}. (4.14)
For more information on properties of the Faddeev functions G, ψ, h, see [START_REF] Henkin | The ∂equation in the multidimensional inverse scattering problem[END_REF], [START_REF] Novikov | Formulae and equations for finding scattering data from the Dirichletto-Neumann map with nonzero background potential[END_REF], [START_REF] Novikov | An effectivization of the global reconstruction in the Gel'fand-Calderon inverse problem in three dimensions[END_REF] and references therein.

In the next section we recall that Problem 1.1 (of Introduction) admits a reduction to the following inverse "scattering" problem: Problem 4.1. Given h on Θ, find v on R d . [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt. Anal. i Pril[END_REF], [START_REF] Novikov | Formulae and equations for finding scattering data from the Dirichletto-Neumann map with nonzero background potential[END_REF] of Problem 1.1 to Problem 4.1 Let conditions (1.2), (1.4) hold for potentials v 1 and v 2 , where D is fixed. Let Φ i , ψ i , h i denote the DtN map Φ and the Faddeev functions ψ, h for v = v i , i = 1, 2. Let also Φ i (x, y) denote the Schwartz kernel Φ(x, y) of the integral operator Φ for v = v i , i = 1, 2. Then (see [START_REF] Novikov | Formulae and equations for finding scattering data from the Dirichletto-Neumann map with nonzero background potential[END_REF] for details):

Reduction of

h 2 (k, l) -h 1 (k, l) = 1 2π d ∂D ∂D ψ 1 (x, -l)(Φ 2 -Φ 1 )(x, y)ψ 2 (y, k)dydx, (5.1) 
where (k, l) ∈ Θ;

ψ 2 (x, k) = ψ 1 (x, k) + ∂D A(x, y, k)ψ 2 (y, k)dy, x ∈ ∂D, (5.2a) 
A(x, y, k) = ∂D R 1 (x, z, k)(Φ 2 -Φ 1 )(z, y)dz, x, y ∈ ∂D, (5.2b 
)

R 1 (x, y, k) = G(x -y, k) + R d G(x -z, k)v 1 (z)R 1 (z, y, k)dz, x, y ∈ R d , (5.3) 
where k ∈ Σ. Note that: (5.1) is an explicit formula, (5.2a) is considered as an equation for finding ψ 2 on ∂D from ψ 1 on ∂D and A on ∂D × ∂D for each fixed k, (5.2b) is an explicit formula, (5.3) is an equation for finding R 1 from G and v 1 , where G is the function of (4.2). Note that formulas and equations (5.1)-(5.3) for v 1 ≡ 0 were given in [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt. Anal. i Pril[END_REF] (see also [START_REF] Henkin | The ∂equation in the multidimensional inverse scattering problem[END_REF] (Note added in proof), [START_REF] Nachman | Reconstructions from boundary measurements[END_REF], [START_REF] Nachman | Global uniqueness for a two-dimensional inverse boundary value problem[END_REF]). In this case h 1 ≡ 0, ψ 1 = e ikx , R 1 = G(xy, k). Formulas and equations (5.1)-(5.3) for the general case were given in [START_REF] Novikov | Formulae and equations for finding scattering data from the Dirichletto-Neumann map with nonzero background potential[END_REF].

Formulas and equations (5.1)-(5.

3) with fixed background potential v 1 reduce Problem 1.1 (of Introduction) to Problem 4.1 (of Section 4). In this connection we consider (5.1)-(5.3) for v 2 = v, ψ 2 = ψ, h 2 = h and this reduction consists of the following steps: (1) v 1 → Φ 1 , ψ 1 , R 1 , h 1 via formulas and equations of the diret problem for v 1 ;

(2) Φ, Φ 1 , R 1 ∂D×∂D×Σ → A via (5.2b);

(3) A, ψ 1 ∂D×Σ → ψ ∂D×Σ via (5.2a); (4) h 1 , ψ 1 ∂D×Σ , ψ ∂D×Σ , Φ, Φ 1 → h via (5.1).

Here, on the step (4) we find h on Θ for the unknown potential v of Problem 1.1.

6. Some considerations related with Θ and Ω 6.1 Some subsets of Θ and Ω. Let

B r = {p ∈ R d : |p| < r}, ∂B r = {p ∈ R d : |p| = r}, Br = B r ∪ ∂B r , where r > 0. (6.1)
In addition to Θ of (4.5), we consider, in particular, the following its subsets:

Θ ρ = {(k, l) ∈ Θ : |Im k| = |Im l| < ρ}, bΘ ρ = {(k, l) ∈ Θ : |Im k| = |Im l| = ρ}, Θρ = Θ ρ ∪ bΘ ρ , Θ ∞ ρ,τ = {(k, l) ∈ Θ\ Θρ : k -l ∈ B 2ρτ }, bΘ ρ,τ = {(k, l) ∈ bΘ ρ : k -l ∈ B 2ρτ }, (6.2)
where ρ > 0, 0 < τ < 1, and B r is defined in (6.1).

In addition to Ω of (4.14), we consider, in particular, the following its subsets:

Ω ρ = {(k, p) ∈ Ω : |Im k| < ρ}, bΩ ρ = {(k, p) ∈ Ω : |Im k| = ρ}, Ωρ = Ω ρ ∪ bΩ ρ , Ω ∞ ρ,τ = {(k, p) ∈ Ω\ Ωρ : p ∈ B 2ρτ }, bΩ ρ,τ = {(k, p) ∈ bΩ ρ : p ∈ B 2ρτ }, (6.3)
where ρ > 0, 0 < τ < 1, and B r is defined in (6.1).

Note that

Ω ≈ Θ, Ω ρ ≈ Θ ρ , bΩ ρ ≈ bΘ ρ , Ω ∞ ρ,τ ≈ Θ ∞ ρ,τ , bΩ ρ,τ ≈ bΘ ρ,τ , (6.4) 
or, more precisely,

(k, p) ∈ Ω ⇒ (k, k -p) ∈ Θ, (k, l) ∈ Θ ⇒ (k, k -l)
∈ Ω and the same for Ω ρ , bΩ ρ , Ω ∞ ρ,τ , bΩ ρ,τ and Θ ρ , bΘ ρ , Θ ∞ ρ,τ , bΘ ρ,τ , respectively, in place of Ω and Θ.

(6.5)

We consider also, in particular,

Ω ν = {(k, p) ∈ Ω : p / ∈ L ν }, Ω ∞ ρ,τ,ν = Ω ∞ ρ,τ ∩ Ω ν , bΩ ρ,τ,ν = bΩ ρ,τ ∩ Ω ν , (6.6) 
where

L ν = {p ∈ R d : p = tν, t ∈ R}, (6.7) 
ν ∈ S d-1 , ρ > 0, 0 < τ < 1.

6.2. Coordinates on Ω for d = 3. In this subsection we assume that d = 3 in formulas (4.5), (4.14), (6.1)-(6.7).

For p ∈ R 3 \L ν we consider θ(p) and ω(p) such that θ(p), ω(p) smoothly depend on p ∈ R 3 \L ν , take values in S 2 , and

θ(p)p = 0, ω(p)p = 0, θ(p)ω(p) = 0, (6.8) 
where L ν is defined by (6.7) (for d = 3). Assumptions (6.8) imply that

ω(p) = p × θ(p) |p| for p ∈ R 3 \L ν (6.9a) or ω(p) = - p × θ(p) |p| for p ∈ R 3 \L ν , (6.9b) 
where × denotes vector product.

To satisfy (6.8), (6.9a) we can take

θ(p) = ν × p |ν × p| , ω(p) = p × θ(p) |p| , p ∈ R 3 \L ν . (6.10)
Let θ, ω satisfy (6.8). Then (according to [START_REF] Novikov | On non-overdetermined inverse scattering at zero energy in three dimensions[END_REF]) the following formulas give a diffeomorphism between Ω ν and (C\0)

× (R 3 \L ν ): (k, p) → (λ, p), where λ = λ(k, p) = 2k(θ(p) + iω(p)) i|p| , (6.11a) 
(λ, p) → (k, p), where k = k(λ, p) = κ 1 (λ, p)θ(p) + κ 2 (λ, p)ω(p) + p 2 , κ 1 (λ, p) = i|p| 4 (λ + 1 λ ), κ 2 (λ, p) = |p| 4 (λ - 1 λ ), (6.11b) 
where (k, p) ∈ Ω ν , (λ, p) ∈ (C\0)×(R 3 \L ν ). In addition, formulas (6.11a), (6.11b) for λ(k) and k(λ) at fixed p ∈ R 3 \L ν give a diffeomorphism between Z p = {k ∈ C 3 : (k, p) ∈ Ω} for fixed p and C\0.

In addition, for k and λ of (6.11) we have that

|Im k| = |p| 4 |λ| + 1 |λ| , |Re k| = |p| 4 |λ| + 1 |λ| , (6.12) 
where (k, p)

∈ Ω ν , (λ, p) ∈ (C\0) × (R 3 \L ν ). Let Λ ρ,ν = {(λ, p) : λ ∈ D ρ/|p| , p ∈ R 3 \L ν }, (6.13) Λ ρ,τ,ν = {(λ, p) : λ ∈ D ρ/|p| , p ∈ R 3 \L ν , |p| < 2τ ρ}, bΛ ρ,τ,ν = {(λ, p) : λ ∈ T ρ/|p| , p ∈ R 3 \L ν , |p| < 2τ ρ}, where ρ > 0, 0 < τ < 1, ν ∈ S 2 , D r = {λ ∈ C\0 : 1 4 (|λ| + |λ| -1
) > r}, r > 0, (6.14)

T r = {λ ∈ C : 1 4 (|λ| + |λ| -1 ) = r}, r ≥ 1/2, (6.15)
L ν is defined by (6.7) (for

d = 3). Note that Λ ρ,τ,ν = Λ + ρ,τ,ν ∪ Λ - ρ,τ,ν , Λ + ρ,τ,ν ∩ Λ - ρ,τ,ν = ∅, bΛ ρ,τ,ν = bΛ + ρ,τ,ν ∪ bΛ - ρ,τ,ν , (6.16) 
where

Λ ± ρ,τ,ν = {(λ, p) : λ ∈ D ± ρ/|p| , p ∈ B 2τ ρ \L ν }, bΛ ± ρ,τ,ν = {(λ, p) : λ ∈ T ± ρ/|p| , p ∈ B 2τ ρ \L ν }, (6.17) 
D ± r = {λ ∈ C\0 : 1 4 (|λ| + |λ| -1 ) > r, |λ| ±1 < 1}, T ± r = {λ ∈ C : 1 4 (|λ| + |λ| -1 ) = r, |λ| ±1 ≤ 1}, r > 1/2, (6.18)
where ρ > 0, τ ∈]0, 1[, ν ∈ S 2 . Using (6.12) one can see that formulas (6.11) give also the following diffeomorphisms

Ω ν \ Ωρ ≈ Λ ρ,ν , Ω ∞ ρ,τ,ν ≈ Λ ρ,τ,ν , bΩ ρ,τ,ν ≈ bΛ ρ,τ,ν , Z ∞ p,ρ = {k ∈ C 3 : (k, p) ∈ Ω ν \ Ωρ } ≈ D ρ/|p| for fixed p, (6.19) 
where ρ > 0, 0 < τ < 1, ν ∈ S 2 (and where we use the definitions (6.3), (6.6), (6.13)).

In [START_REF] Novikov | On non-overdetermined inverse scattering at zero energy in three dimensions[END_REF] λ, p of (6.11) were used as coordinates on Ω. In the present work we use them also as coordinates on Ω\Ω ρ (or more precisely on Ω ν \Ω ρ ).

7. An integral equation of [START_REF] Novikov | An effectivization of the global reconstruction in the Gel'fand-Calderon inverse problem in three dimensions[END_REF] and some related formulas In the main considerations of [START_REF] Novikov | An effectivization of the global reconstruction in the Gel'fand-Calderon inverse problem in three dimensions[END_REF] it is assumed that d = 3 and the basic assumption on v consists in the following condition on its Fourier transform:

v ∈ L ∞ µ (R 3 ) ∩ C(R 3 ) for some real µ ≥ 2, (7.1)
where v is defined by (4.12) (for d = 3),

L ∞ µ (R d ) = {u ∈ L ∞ (R d ) : u µ < +∞}, u µ = ess sup p∈R d (1 + |p|) µ |u(p)|, µ > 0, (7.2)
and C denotes the space of continuous functions.

Note that

v ∈ W m,1 (R d ) =⇒ v ∈ L ∞ µ (R d ) ∩ C(R d ), v µ ≤ c 4 (m, d) v m,1 for µ = m, (7.3) 
where W m,1 , L ∞ µ are the spaces of (2.2), (7.2). Let H(λ, p) = H(k(λ, p), p), (λ, p) ∈ (C\0) × (R 3 \L µ ), (7.4) where H is the function of (4.13), λ, p are the coordinates of Subsection 6.2 under assumption (6.9a). Let

L ∞ µ (Λ ρ,τ,ν ) = {U ∈ L ∞ (Λ ρ,τ,ν ) : |||U ||| ρ,τ,µ < ∞}, |||U ||| ρ,τ,µ = ess sup (λ,p)∈Λ ρ,τ,ν (1 + |p|) µ |U (λ, p)|, µ > 0, (7.5) 
where Λ ρ,τ,ν is defined in (6.13), ρ > 0,

τ ∈]0, 1[, ν ∈ S 2 , µ > 0. Let v satisfy (7.1) and v µ ≤ C. Let η(C, ρ, µ) def = a(µ)C(ln ρ) 2 ρ -1 < 1, ln ρ ≥ 2, (7.6)
where a(µ) is the constant c 2 (µ) of [START_REF] Novikov | An effectivization of the global reconstruction in the Gel'fand-Calderon inverse problem in three dimensions[END_REF]. Let H(λ, p) be defined by (7.4) and be considered as a function on Λ ρ,τ,ν of (6.13). Then (see Section 5 of [START_REF] Novikov | An effectivization of the global reconstruction in the Gel'fand-Calderon inverse problem in three dimensions[END_REF]):

H = H 0 + M ρ,τ (H) + Q ρ,τ , τ ∈]0, 1[, (7.7) 
where

H 0 (λ, p) = 1 2πi T + ρ/|p| H(ζ, p) dζ ζ -λ , (λ, p) ∈ Λ + ρ,τ,ν , (7.8a) 
H 0 (λ, p) = - 1 2πi T - ρ/|p| H(ζ, p) λdζ ζ(ζ -λ) , (λ, p) ∈ Λ - ρ,τ,ν , (7.8b) 
where Λ ± ρ,τ,ν , T ± r are defined in (6.17), (6.18) (and where the integrals along T ± r are taken in the counter-clock wise direction);

M ρ,τ (U )(λ, p) = M + ρ,τ (U )(λ, p) = - 1 π D + ρ/|p| (U, U ) ρ,τ (ζ, p) dRe ζdIm ζ ζ -λ , (λ, p) ∈ Λ + ρ,τ,ν , (7.9a) 
M ρ,τ (U )(λ, p) = M - ρ,τ (U )(λ, p) = - 1 π D - ρ/|p| (U, U ) ρ,τ (ζ, p) λdRe ζdIm ζ ζ(ζ -λ) , (λ, p) ∈ Λ - ρ,τ,ν , (7.9b) 
(U 1 , U 2 ) ρ,τ (ζ, p) = {χ 2τ ρ U ′ 1 , χ 2τ ρ U ′ 2 }(ζ, p), (ζ, p) ∈ Λ ρ,τ,ν , χ 2τ ρ U ′ j (k, p) = U j (λ(k, p), p), (k, p) ∈ Ω ∞ ρ,τ,ν , χ 2τ ρ U ′ j (k, p) = 0, |p| ≥ 2τ ρ, j = 1, 2, (7.10) 
where U, U 1 , U 2 are test functions on Λ ρ,τ,ν , Ω ∞ ρ,τ,ν is defined in (6.6), λ(k, p) is defined in (6.11a), {•, •} is defined by the formula

{F 1 , F 2 }(λ, p) = - π 4 π -π |p| 2 |λ| 2 -1 λ|λ| (cos ϕ -1) - |p| λ sin ϕ × F 1 (k(λ, p), -ξ(λ, p, ϕ))F 2 (k(λ, p) + ξ(λ, p, ϕ), p + ξ(λ, p, ϕ))dϕ, (7.11) 
for (λ, p) ∈ Λ ρ,ν , where F 1 , F 2 are test functions on Ω\ Ωρ , k(λ, p) is defined in (6.11b), Λ ρ,ν is defined in (

= Re k(λ, p)(cos ϕ -1) + k ⊥ (λ, p) sin ϕ, 6.13), ξ(λ, p, ϕ) 
k ⊥ (λ, p) = Im k(λ, p) × Re k(λ, p) |Im k(λ, p)| , (7.12) 
where × in (7.13) denotes vector product;

H, H 0 , Q ρ,τ ∈ L ∞ µ (Λ ρ,τ,ν ), (7.14) 
|||H||| ρ,τ,µ 0 ≤ C 1 -η(C, ρ, µ) , (7.15a) 
|||H 0 ||| ρ,τ,µ 0 ≤ C 1 -η(C, ρ, µ) 1 + c 5 (µ 0 )C 1 -η(C, ρ, µ) , (7.15b) 
|||Q ρ,τ ||| ρ,τ,µ 0 ≤ 3c 5 (µ 0 )C 2 (1 -η(C, ρ, µ)) 2 (1 + 2τ ρ) µ-µ 0 , (7.15c) 
where 2 ≤ µ 0 ≤ µ, c 5 is the constant b 4 of [START_REF] Novikov | An effectivization of the global reconstruction in the Gel'fand-Calderon inverse problem in three dimensions[END_REF], η(C, ρ, µ) is defined by (7.6).

Following [START_REF] Novikov | An effectivization of the global reconstruction in the Gel'fand-Calderon inverse problem in three dimensions[END_REF] we consider (7.7) as an approxiate integral equation for finding H on Λ ρ,τ,ν from H 0 on Λ ρ,τ,ν with unknown remainder Q ρ,τ .

Note also that if v satisfies (7.1), then (see [START_REF] Novikov | On non-overdetermined inverse scattering at zero energy in three dimensions[END_REF], [START_REF] Novikov | An effectivization of the global reconstruction in the Gel'fand-Calderon inverse problem in three dimensions[END_REF])

H(λ, p) → v(p) as λ → 0, H(λ, p) → v(p) as λ → ∞, (7.16) 
where p ∈ B 2τ ρ \L ν , H is defined by (7.4) and is considered as a function on Λ ρ,τ,ν , ρ > 0, 0 < τ < 1, ν ∈ S 2 .

Proof of Theorem 2.2 for d = 3

Our proof of Theorem 2.2 for d = 3 is based on formulas (7.16) of Section 7 and on Lemma 8.4 given below in the present section. In turn, Lemma 8.4 follows from formula (7.3) of Section 7 and from Lemmas 8.1, 8.2, 8.3 given below in the present section. In turn:

(1) Lemma 8.1 follows from some estimates and Lemmas of [START_REF] Novikov | An effectivization of the global reconstruction in the Gel'fand-Calderon inverse problem in three dimensions[END_REF] related with studies of the non-linear integral equation given as equation (7.7) of the present paper; (2) Lemma 8.2 does not follow immediately from results of preceding works and its proof is given in Section 9; (3) Lemma 8.3 follows from formulas (4.9), (5.1) and from definitions, see Section 9 for proof of this lemma.

Lemma 8.1. Let vi satisfy (7.1) and vi µ < C, where i = 1, 2. Let

0 < τ ≤ τ 1 (µ, µ 0 , C, δ), ρ ≥ ρ 1 (µ, µ 0 , C, δ), (8.1) 
where τ 1 , ρ 1 are the constants of Section 4 of [START_REF] Novikov | An effectivization of the global reconstruction in the Gel'fand-Calderon inverse problem in three dimensions[END_REF] and where δ = 1/2, 2 ≤ µ 0 < µ. Then

|||H 2 -H 1 ||| ρ,τ,µ 0 ≤ 2(|||H 0 2 -H 0 1 ||| ρ,τ,µ 0 + |||Q 2 ρ,τ -Q 1 ρ,τ ||| ρ,τ,µ 0 ), (8.2) 
where H i , H 0 i , Q i ρ,τ are the functions of (7.4), (7.7), (7.8), (7.14), (7.15) 

for v = v i , i = 1, 2, ||| • ||| ρ,τ,
µ 0 is defined as in (7.5). In addition,

|||Q 2 ρ,τ -Q 1 ρ,τ ||| ρ,τ,µ 0 ≤ 24c 5 (µ 0 )C 2 (1 + 2τ ρ) µ-µ 0 . ( 8.3) 
In connection with (8.1) we remind that τ 1 ∈]0, 1[ is sufficiently small and ρ 1 is sufficiently great, see [START_REF] Novikov | An effectivization of the global reconstruction in the Gel'fand-Calderon inverse problem in three dimensions[END_REF]. Lemma 8.1 follows from estimates mentioned as estimates (7.14), (7.15) of the present paper (see estimates (4.3), (5.20), (5.22) of [START_REF] Novikov | An effectivization of the global reconstruction in the Gel'fand-Calderon inverse problem in three dimensions[END_REF]) and from Lemmas A.1, A.2, A.3 and estimate (A.5) (see Appendix to the present paper). Lemma 8.2. Let vi satisfy (7.1) and vi µ < C, where i = 1, 2. Let

η(C, ρ 0 , µ) ≤ 1/2, ln ρ 0 ≥ 2, ( 8.4) 
where η is defined in (7.6). Let

0 < τ 0 < 1, 2 ≤ µ 0 < µ, ρ = 2ρ 0 , τ = τ 0 /2. Then |||H 0 2 -H 0 1 ||| ρ,τ,µ 0 ≤ (c 6 + 4c 7 (µ 0 , τ 0 , ρ 0 )C)∆ ρ 0 ,ρ,µ 0 , (8.5) 
∆ ρ 0 ,ρ,µ 0 def = |||χ ρ 0 ,ρ (H 2 -H 1 )||| ρ 0 ,µ 0 , (8.6) 
where H i , H 0 i are the functions of (4.13), (7.8) for v = v i , i = 1, 2, χ ρ 0 ,ρ is the characteristic function of Ωρ \ Ωρ 0 , ||| • ||| ρ,τ,µ 0 in (8.5) is defined as in (7.5), ||| • ||| ρ 0 ,µ 0 in (8.6) is defined as in (A.12) of Appendix, c 6 is defined by (9.9), c 7 is the constant c 8 of [START_REF] Novikov | An effectivization of the global reconstruction in the Gel'fand-Calderon inverse problem in three dimensions[END_REF] (that is c 7 (µ, τ, ρ) = 3b 1 (µ)τ 2 + 4b 2 (µ)ρ -1 + 4b 3 (µ)τ , where b 1 , b 2 , b 3 are the constants of [START_REF] Novikov | An effectivization of the global reconstruction in the Gel'fand-Calderon inverse problem in three dimensions[END_REF]). Lemma 8.2 is proved in Section 9.

Lemma 8.3. Let the assumptions of Theorem 2.1 hold (for d = 3). Let

ρ 0 ≥ r 1 (N, D, m, σ) for some σ > 1, (8.7) 
where r 1 is the number of (4.9). Let 0 < τ 0 < 1, 0 < µ 0 , ρ = 2ρ 0 , τ = τ 0 /2. Then

∆ ρ 0 ,ρ,µ 0 ≤ c 8 σ 2 e 2ρL Φ 2 -Φ 1 (1 + 2ρ) µ 0 , (8.8) 
where ∆ ρ 0 ,ρ,µ 0 is defined by (8.6),

c 8 = (2π) -d ∂D dx, L = max x∈∂D |x|, (8.9) 
Φ 2 -Φ 1 is defined according to (2.4). Lemma 8.3 is proved in Section 9.

Lemma 8.4. Let the assumptions of Theorem 2.1 hold (for d = 3). Let

0 < τ ≤ τ 2 (m, µ 0 , N ), ρ ≥ ρ 2 (m, µ 0 , N, D, σ), (8.10) 
where 2 ≤ µ 0 < m, σ > 1, and τ 2 , ρ 2 are constants such that (8.10) implies that τ ≤ τ 1 (m, µ 0 , c 4 (m, 3)N, 1/2), ρ ≥ ρ 1 (m, µ 0 , c 4 (m, 3)N, 1/2), (8.11a)

τ < 1/2, η(c 4 (m, 3)N, ρ/2, m) ≤ 1/2, ln(ρ/2) ≥ 2, (8.11b) ρ/2 ≥ r 1 (N, D, m, σ), (8.11c) where τ 1 , ρ 1 , η, r 1 are the same that in (8.1), (8.4), (8.7), c 4 is the constant of (7.3). Then

|||H 2 -H 1 ||| ρ,τ,µ 0 ≤ c 9 (N, D, m, µ 0 , σ, τ )e 2Lρ ρ µ 0 Φ 2 -Φ 1 + c 10 (N, m, µ 0 , τ )ρ -(m-µ 0 ) , (8.12 
) where c 9 , c 10 are some constants which can be given explicitly. we have that 

v 1 -v 2 L ∞ (D) ≤ sup x∈ D R 3 e -ipx (v 2 (p) -v1 (p))dp ≤ I 1 (r) + I 2 (
v 1 -v 2 L ∞ (D) ≤ I 1 (2τ ρ) + I 2 (2τ ρ) ≤ |||H 2 -H 1 ||| ρ,τ,2 |p|≤2τ ρ dp (1 + |p|) 2 + 2c 4 (m, 3)N |p|≥2τ ρ dp (1 + |p|) m ≤ 8πτ ρ|||H 2 -H 1 ||| ρ,τ,2 + 8πc 4 (m, 3)N (m -3)(2τ ) m-3 1 ρ m-3 , (8.18) 
at least, under the assumptions of Lemma 8.4 for µ 0 = 2.

Under the assumptions of Lemma 8.4 for µ 0 = 2, using (8.18) and (8.12) we obtain that

v 1 -v 2 L ∞ (D) ≤ c 11 (N, D, m, σ, τ )e 2Lρ ρ 3 Φ 2 -Φ 1 + c 12 (N, m, τ )ρ -(m-3) , (8.19) 
where c 11 , c 12 are related in a simple way with c 9 , c 10 for µ 0 = 2. Let now

α ∈]0, 1[, β = 1 -α 2L , δ = Φ 1 -Φ 2 , ρ = β ln(3 + δ -1 ), (8.20) 
where δ is so small that ρ ≥ ρ 2 (m, 2, N, D, σ), where ρ 2 is the constant of (8.10). Then, due to (8.19),

v 1 -v 2 L ∞ (D) ≤ c 11 (N, D, m, σ, τ )(3 + δ -1 ) 2Lβ (β ln(3 + δ -1 )) 3 δ+ c 12 (N, D, m, τ )(β ln(3 + δ -1 )) -(m-3) = c 11 (N, D, m, σ, τ )β 3 (1 + 3δ) 1-α δ α (ln(3 + δ -1 )) 3 + c 12 (N, D, m, τ )β -(m-3) (ln(3 + δ -1 )) -(m-3) , (8.21) 
where σ, τ are the same that in (8.10) for µ 0 = 2 and where α, β and δ are the same that in (8.20). Using (8.21) we obtain that 

v 1 -v 2 L ∞ (D) ≤ c 13 (N, D, m)(ln(3 + Φ 1 -Φ 2 -1 )) -(m-3) (8.22) for δ = Φ 1 -Φ 2 ≤ δ 0 (N, D, m),
(1 + |p|) µ 0 |H 0 2 (λ(1 ∓ 0), p) -H 0 1 (λ(1 ∓ 0), p)| ≤ (c 6 + 4c 7 (µ 0 , τ 0 , ρ 0 )C)∆ ρ 0 ,ρ,µ 0 , (9.1) 
where bΛ + ρ,τ,ν , bΛ - ρ,τ,ν are defined in (6.17) (and where

H 0 i (λ(1 -0), p), i = 1, 2, are considered for (λ, p) ∈ bΛ + ρ,τ,ν , H 0 i (λ(1 + 0), p), i = 1, 2, are considered for (λ, p) ∈ bΛ - ρ,τ,ν
). Using (7.8) and the Sohotsky-Plemelj formula, we have that

H 0 (λ(1 -0), p) = 1 2πi T + ρ/|p| H(ζ, p) dζ ζ -λ(1 + 0) + H(λ, p), (λ, p) ∈ bΛ + ρ,τ,ν , (9.2a) 
H 0 (λ(1 + 0), p) = - 1 2πi T - ρ/|p| H(ζ, p) λdζ ζ(ζ -λ(1 -0)) + H(λ, p), (λ, p) ∈ bΛ - ρ,τ,ν . (9.2b) 
In addition, using the Cauchy-Green formula we have that 

H(λ, p) = - 1 2πi T + ρ/|p| H(ζ, p) dζ ζ -λ(1 + 0) + 1 2πi T + ρ/|p| H(ζ, p) dζ ζ -λ - (9.3a) 1 π D + ρ 0 /|p| \D + ρ/|p| ∂H(ζ, p) ∂ ζ dReζdImζ ζ -λ , (λ, p) ∈ bΛ + ρ,τ,ν , H(λ, p) = 1 2πi T - ρ/|p| H(ζ, p) λdζ ζ(ζ -λ(1 -0)) - 1 2πi T - ρ/|p| H(ζ, p) λdζ ζ(ζ -λ) -(9.3b) 1 π D - ρ 0 /|p| \D - ρ/|p| ∂H(ζ, p) ∂ ζ λdReζdImζ ζ(ζ -λ) , ( 
where H(ζ, p) in the left-hand side of (9.4) is defined according to (7.4), H in the right-hand side of (9.4) is the function of (4.13), {•, •} is defined by (7.11). Using (9.2), (9.3) we obtain that where (λ, p) ∈ bΛ - ρ,τ,ν . Estimates (9.1) follow from formulas (9.6) and from the estimates |A ± (λ, p)| ≤ c 6 (1 + |p|) -µ 0 ∆ ρ 0 ,ρ,µ 0 , (λ, p) ∈ bΛ ± ρ,τ,ν , (9.7)

|B ± (λ, p)| ≤ 4c 7 (µ 0 , τ 0 , ρ 0 )C(1 + |p|) -µ 0 ∆ ρ 0 ,ρ,µ 0 , (λ, p) ∈ bΛ ± ρ,τ,ν , (

where c 6 = sup r∈]1/2,+∞[ q(r) q(r)q(2r) , q(r) = 2r 1 -1 -1 4r 2 1/2 .

(9.9) Note that 0 < c 6 ≤ (2

√ 3 -3) -1 , (9.10) 
where c 6 is defined by (9.9). Estimate (9.10) follows from the formulas the properties that H i ∈ C(Λ ρ 0 ,τ 0 ,ν ∪ bΛ ρ 0 ,τ 0 ,ν ), i = 1, 2, |(H 2 -H 1 )(λ, p)| ≤ (1 + |p|) -µ 0 ∆ ρ 0 ,ρ,µ 0 , (λ, p) ∈ bΛ ρ 0 ,τ 0 ,ν

c 6 = 1 1 -2σ , σ = sup τ ∈]0,1[ 1 -(1 -(1/4)τ ) 1/2 1 -(1 -τ ) 1/2 , ( 9 
(see formulas (A.8), (A.9), (A.12), (6.19), (7.4)) and from the formulas

1 2π T - r |λ||dζ| |ζ||ζ -λ| = 1 2π T + r |dζ ′ | |ζ ′ -λ ′ | ≤ q(r) q(r) -q(2r) , (9.15) 
λ ∈ T - 2r , λ ′ ∈ T + 2r , r > 1/2. In turn, formulas (9.15) follow from the property that z -1 ∈ T + r if z ∈ T - r and from the formula that q(r) is the radius of T + r , where r > 1/2. Estimates (9.8) follow from formulas (A.8), (A.9) (for ρ = ρ 0 ), formula (8.4), Lemma A.5 (for ρ = ρ 0 , µ = µ 0 ), Lemma A.6 (for ρ = ρ 0 ) and the property λ ∈ T ± ρ/|p| ⊂ D ± ρ 0 /|p| if (λ, p) ∈ bΛ ± ρ,τ,ν , ρ = 2ρ 0 > 0, τ = τ 0 /2, 0 < τ 0 < 1. (9.16) Lemma 8.2 is proved.

Lemma 8 . 3 e

 83 4 follows from formula (7.3) and Lemmas 8.1, 8.2, 8.3. The final part of the proof of Theorem 2.2 for d = 3 consists of the following. Using the inverse Fourier transform formula v(x) = R -ipx v(p)dp, x ∈ R 3 , (8.13)

  λ, p) ∈ bΛ - ρ,τ,ν (where the integrals along T ± r are taken in the counter-clockwise direction). In addition (see equation (A.11) of Appendix), ∂H(ζ, p) ∂ ζ = {H, H}(ζ, p), (ζ, p) ∈ Λ ρ 0 ,τ 0 ,ν ,

(H 2 -

 2 |p| \D + ρ/|p| ∂H(ζ, p) ∂ ζ dReζdImζ ζλ , (λ, p) ∈ bΛ + ρ,τ,ν , H 0 (λ(1 + 0), p) = -λ) , (λ, p) ∈ bΛ - ρ,τ,ν .Using (9.5), (9.4) for H 0 = H 0 i , H = H i , i = 1, 2, we obtain that:(H 0 2 -H 0 1 )(λ(1 -0), p) = A + (λ, p) + B + (λ, p),(9.6a)A + (λ, p) = 1 2πi T + ρ 0 /|p| (H 2 -H 1 )(ζ, p) dζ ζλ , B + (λ, p) = -1 π D + ρ 0 /|p| \D + ρ/|p| {H 2 -H 1 , H 2 } + {H 1 , H 2 -H 1 } (ζ, p) dReζdImζ ζλ , where (λ, p) ∈ bΛ + ρ,τ,ν ; (H 0 2 -H 0 1 )(λ(1 + 0), p) = A -(λ, p) + B -(λ, p), (9.6b) A -(λ, p) = -H 1 )(ζ, p) λdζ ζ(ζλ) , B -(λ, p) = -1 π D - ρ 0 /|p| \D - ρ/|p| {H 2 -H 1 , H 2 } + {H 1 , H 2 -H 1 } (ζ, p) λdReζdImζ ζ(ζλ) ,

. 11 )( 1 -τ ) 1 / 2 ≤ 1 - 7 )

 1111217 (1/2)τ, 1 -(1/4)τ ≥ a(1 -(1/4)τ ) + 1a, follow from the property that (ζ, p) ∈ bΛ ρ 0 ,τ 0 ,ν if ζ ∈ T ± ρ 0 /|p| , |p| < 2τ ρ, ρ = 2ρ 0 > 0, τ = τ 0 /2, 0 < τ 0 < 1,(9.13) 

  .6) Here h bΘ ρ,τ and H bΩ ρ,τ are related by (4.13) (see also the definitions of bΘ ρ,τ and bΩ ρ,τ

given in (6.2), (6.3)), H bΛ ρ,τ,ν is defined in terms of H bΩ ρ,τ by means of (7.4) (where bΛ ρ,τ,ν is defined in (6.13)),

H 0 Λ ρ,τ,ν

is defined in terms of H bΛ ρ,τ,ν by (7.8) (see also formulas (6.13), (6.16)), Hρ,τ is defined as the solution of (7.7) for H on Λ ρ,τ,ν , where Q ρ,τ is replaced by zero in (7.7), finally, vρ,τ on B 2τ ρ is defined as vρ,τ = v+ ρ,τ or as vρ,τ = vρ,τ , where v+ ρ,τ

  where δ 0 is sufficiently small positive constant. Estimate(8.22) in the general case (with modified c 13 ) follows from(8.22) for δ = Φ 1 -Φ 2 ≤ δ 0 (N, D, m) and the property that v j L ∞ (D) ≤ c 14 (m)N (for d = 3).Thus, Theorem 2.2 for d = 3 is proved.

	9. Proofs of Lemmas 8.2 and 8.3
	Proof of Lemma 8.2. Using the maximum principle for holomorphic functions it is
	sufficient to prove that
	sup
	(λ,p)∈bΛ ± ρ,τ,ν

Proof of Lemma 8.3. Using (A.12), the formulas Ω ≈ Θ, Ω ρ ≈ Θ ρ , Ωρ ≈ Θρ (see (6.4)), and formulas (6.2), (4.13), we have that ∆ ρ 0 ,ρ,µ 0 ≤ sup (k,l)∈ Θρ \Θ ρ 0

where ∆ ρ 0 ,ρ,µ 0 is defined by (8.6), h 1 , h 2 are the functions of Section 5. Estimate (8.8) follows from formulas (9.17), (5.1), (4.7), (4.9), the property that |k -l| ≤ 2ρ for (k, l) ∈ Θρ and the property that

Lemma 8.3 is proved.

Appendix

In this appendix we recall some results of [START_REF] Novikov | An effectivization of the global reconstruction in the Gel'fand-Calderon inverse problem in three dimensions[END_REF] used in Sections 8 and 9 of the present work.

Consider the equation

for unknown U , where U 0 , U are functions on Λ ρ,τ,ν defined in (6.13), M ρ,τ is the map defined by (7.9). In particular, (7.7) can be written as (A.1) with U = H, U 0 = H 0 + Q ρ,τ .

Lemma A.1. Let ρ > 0, ν ∈ S 2 , τ ∈]0, 1[, µ ≥ 2 and 0 < r < (2c 7 (µ, τ, ρ)) -1 , where c 7 is the constant c 8 of [START_REF] Novikov | An effectivization of the global reconstruction in the Gel'fand-Calderon inverse problem in three dimensions[END_REF] (that is c 7 (µ, τ, ρ) = 3b 1 (µ)τ 2 + 4b 2 (µ)ρ -1 + 4b 3 (µ)τ , where b 1 , b 2 , b 3 are the constants of [START_REF] Novikov | An effectivization of the global reconstruction in the Gel'fand-Calderon inverse problem in three dimensions[END_REF]). Let U 0 ∈ L ∞ (Λ ρ,τ,ν ) and |||U 0 ||| ρ,τ,µ ≤ r/2 (see definition (7.5)). Then equation (A.1) is uniquely solvable for U ∈ L ∞ (Λ ρ,τ,ν ), |||U ||| ρ,τ,µ ≤ r, and U can be found by the method of successive approximations, in addition,

where M ρ,τ,U 0 denotes the map

Lemma A.2. Let the assumptions of Lemma A.1 be fulfilled. Let also

Lemma A.2 corresponds to Lemma 4.5 of [START_REF] Novikov | An effectivization of the global reconstruction in the Gel'fand-Calderon inverse problem in three dimensions[END_REF].

Let

where

, where b 1 , b 2 , b 3 are the constants of [START_REF] Novikov | An effectivization of the global reconstruction in the Gel'fand-Calderon inverse problem in three dimensions[END_REF] and n 1 , n 2 , n 3 are the constants of Lemma 11.1 of [START_REF] Novikov | On non-overdetermined inverse scattering at zero energy in three dimensions[END_REF]). In addition, from estimates (7.14), (7.15) of the present paper (see estimates (3.3), (4.20), (4.22) of [START_REF] Novikov | An effectivization of the global reconstruction in the Gel'fand-Calderon inverse problem in three dimensions[END_REF]) it follows that

where τ 1 , ρ 1 are the constants of (4.36) of [START_REF] Novikov | An effectivization of the global reconstruction in the Gel'fand-Calderon inverse problem in three dimensions[END_REF] (in particular, τ 1 ∈]0, 1[ is sufficiently small and ρ 1 is sufficiently great). Then

Lemma A.3 corresponds to estimates (4.36) of [START_REF] Novikov | An effectivization of the global reconstruction in the Gel'fand-Calderon inverse problem in three dimensions[END_REF].

Lemma A.4. Let v satisfy (7.1), v µ ≤ C, ρ satisfy (7.6). Let H be the function of (4.13). Then:

where C denotes the space of continuous functions, Ω, Ω ρ are defined in (4.14), (6.3), η is defined as in (7.6)

where k(λ, p) is defined in (6.11b), Λ ρ,ν is defined in (6.13), {•, •} is defined by (7.11). Lemma A.4 corresponds to formulas (3.2)-(3.4), (3.22) of [START_REF] Novikov | An effectivization of the global reconstruction in the Gel'fand-Calderon inverse problem in three dimensions[END_REF]. Let

where Ω, Ωρ are defined in (4.14), (6.3).

, where ρ > 0, µ ≥ 2. Let {•, •} be defined by (7.11). Then

where Λ ρ,ν is defined in (6.13), b 1 , b 2 , b 3 are the constants of [START_REF] Novikov | An effectivization of the global reconstruction in the Gel'fand-Calderon inverse problem in three dimensions[END_REF]. Lemma A.5 corresponds to estimates (3.26), (3.27) of [START_REF] Novikov | An effectivization of the global reconstruction in the Gel'fand-Calderon inverse problem in three dimensions[END_REF]. Consider , where D ± r are defined in (6.18). Lemma A.6 corresponds to formulas (7.2), (7.10) of [START_REF] Novikov | An effectivization of the global reconstruction in the Gel'fand-Calderon inverse problem in three dimensions[END_REF].