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Abstract:

Full-waveform inversion’s high demand on computational

resources forms, along with the non-uniqueness problem,

the major impediment withstanding its widespread use on

industrial-size datasets. Turning modeling and inversion

into a compressive sensing problem—where simulated data

are recovered from a relatively small number of indepen-

dent simultaneous sources—can effectively mitigate this

high-cost impediment. The key is in showing that we can

design a sub-sampling operator that commutes with the

time-harmonic Helmholtz system. As in compressive sens-

ing, this leads to a reduction in simulation cost. Moreover,

this reduction is commensurate with the transform-domain

sparsity of the solution, implying that computational costs

are no longer determined by the size of the discretization

but by transform-domain sparsity of the solution of the

CS problem which forms our data. The combination of

this sub-sampling strategy with our recent work on im-

plicit solvers for the Helmholtz equation provides a viable

alternative to full-waveform inversion schemes based on

explicit finite-difference methods.

1. Introduction

With the recent resurgence of full-waveform inversion—

i.e., adjoint-state methods applied to solve PDE-

constrained optimization problems—the computational

cost of solving forward modeling has become one of the

major impediments withstanding successful application of

this technology to industry-size data volumes. To overcome

this impediment, we argue that further improvements will

depend on a problem formulation with a computational

complexity that is no longer strictly determined by the

size of the discretization but by transform-domain sparsity

of its solution. In this new paradigm, we bring computa-

tional costs in par with our ability to compress solutions to

certain PDEs. This premise is related to two recent develop-

ments. First, there is the new field of compressive sensing

[CS in short throughout the paper, 4, 5]—where the argu-

ment is made, and rigorously proven—that compressible

signals can be recovered from severely sub-Nyquist sam-

pling by solving a sparsity promoting program. Second,

there is in the seismic community the recent resurgence

of simultaneous-source acquisition [1, 13, 2, 18, 12], and

continuing efforts to reduce the cost of seismic modeling,

imaging, and inversion through phase encoding of simulta-

neous sources [16, 21, 13, 12] and the removal of subsets

of angular frequencies [22, 17, 15, 12] or plane waves [24].

All these approaches correspond to instances of CS. By

using CS principles, we have been able to remove the asso-

ciated sub-sampling interferences through a combination

of exploiting transform-domain sparsity, properties of cer-

tain sub-sampling schemes, and the existence of sparsity

promoting solvers.

2. Compressive full-waveform inversion

Full-waveform inversion entails solving PDE-constrained

optimization problems of the following type:

min
U, m

1

2
‖RM

(
d − DU

)
‖2
2 s.t. H[m]U = B, (1)

where d and U are the observed data volumes and the

solution of the multi-source (in its columns)-frequency

Helmholtz equation over the domain of interest, D repre-

sents the detection operator that extracts the simulated data

from time-harmonic solutions at the receiver locations, H

a matrix with the discretized multi-frequency Helmholtz

equation, and B a matrix with the frequency-transformed

source distributions in its columns. In the above optimiza-

tion problem (from which—after casting Eq. 1 in its un-

constrained form—most quasi-Newton type full-waveform

inversion schemes derive), solutions for the unknown veloc-

ity model, m, and for the wave equation, U, that minimize

the energy mismatch are pursued. Because Eq. 1 is non-

linear in the model variables collected in the vector m,

solutions of Eq. 1 require multiple solves of the (implicit)

Helmholtz equation. Even after preconditioning (yielding

a complexity for this solver of O(n4) in 2-D [7, 6]), this

may prove computationally prohibitive. We address this

problem by using CS [20, 12] to reduce the size of the

seismic data volume through y = RMd where

RM =

sub sampler
︷ ︸︸ ︷


RΣ
1 ⊗ I ⊗ RΩ

1
...

RΣ
n

s
′
⊗ I ⊗ RΩ

n
s
′




random phase encoder
︷ ︸︸ ︷(
F∗

2 diag
(
eîθ

)
⊗ I

)
F3,

with F2,3 the 2,3-D Fourier transforms, and θ =
Uniform([0, 2π]) a random phase rotation. The matrices

R
Ω and R

Σ represent CS-subsampling matrices (see Fig-

ure 1) acting along the rows (frequency coordinate) and

columns (source coordinate) of the data volume, respec-

tively. As shown by [12] application of this CS-sampling



matrix, RM, to the data is equivalent to applying it to the

source wavefields directly, which turns single-impulsive

sources into a smaller set (n′
s ≪ ns with ns the number

of separated single-impulsive sources) of time-harmonic

simultaneous sources that are randomly phase encoded

and that have for each source-experiment a different set

of angular frequencies missing—i.e., there are n′
f ≪ nf

(with nf the number of frequencies of fully sampled data)

frequencies non-zero (see Figure 1). This implies that the

sub-sampling operator commutes with the Helmholtz sys-

tem and this allows us to recast Eq. 1 into the following

reduced form (consisting of fewer frequencies and fewer

right-hand sides):

min
U, m

1

2
‖y − DU‖2

2 s.t. H[m]U = B, (2)

where the underlined quantities are related to the reduced

Helmholtz system.

3. The time-harmonic Helmholtz system

Since their inception, iterative implicit matrix-free solu-

tions to the time-harmonic Helmholtz equation have been

plagued by lack of numerical convergence for decreasing

mesh sizes and increasing angular frequencies [19]. The

inclusion of deflation—a way to handle small eigenvalues

that lead to slow convergence [7, 6]—can successfully re-

move this impediment, bringing 2- and 3-D solvers for the

time-harmonic Helmholtz into reach. For a given source

(right-hand side b) and angular frequency ω (:= 2πf , with

f the temporal frequency in Hz), the frequency-domain

wavefield u is computed with a Krylov method that in-

volves the following system of equations:

H[ω]M−1
Qû = b, u = M

−1
Qû,

where H[ω], M, and Q represent the discretized

monochromatic Helmholtz equation, the preconditioner,

and the projection matrices, respectively. As shown by

[8, 9], convergence is guaranteed by defining the precon-

ditioning matrix M in terms of the discretized shifted or

damped Helmholtz operator M := −∇ · ∇ − ω2

c(x)2 (1 −
βî), î =

√
−1, with β > 0. With this preconditioning,

the eigenvalues of HM
−1 are clustered into a circle in

the complex plane. By the action of the projector matrix

Q, these eigenvalues move towards unity on the real axis.

These two operations lower the condition number, which

explains the superior performance of this solver.

4. Source-solution CS-sampling equivalence

Aside from the required number of frequencies, the compu-

tational cost of full-wavefield simulation is determined by

the number of sources—i.e., the number of right-hand sides.

In the current simulation paradigm, the number of sources

coincides with the number of single-impulsive source sim-

ulations. As prescribed by CS, this number can be re-

duced by designing a survey that consists of a relatively

small number of simultaneous experiments with simulta-

neous sources that contain subsets of angular frequencies.

Mathematically, we can accomplish this by applying a CS-

sampling matrix, RM, to the individual-impulsive sources

collected in the vector s. If we can show that the solution

from this set of “compressed” sources s = RMs, is iden-

tical to the compressively sampled solution yielded from

modeling the complete, we are in the position to speed

up our computations. This speed up is the result of a de-

creased number of experiments and angular frequencies

that are present in the simultaneous source vector. For this

to work, the solution y must be equivalent to the solution

y, obtained by compressively sampling the full solution.

More specifically, we need to demonstrate that the solutions

for the full and compressed systems are equivalent—i.e.,

y = y in





B = D
∗ s︸︷︷︸

impulsive sources

HU = B

y = RMDU := RMd





B = D
∗s = D

∗ RMs︸ ︷︷ ︸
sim. sources

HU = B

y = DU.

Here, H = diag(H[ωi]) is the block-diagonal discretized

Helmholtz equation for each ωi := 2πi · ∆f, i = 1 · · ·nf ,

with nf the number of frequencies and ∆f its sample in-

terval. The adjoint (denoted by ∗) of the detection matrix

D injects the individual sources into the multiple right-

hand sides, B = [b1 b2 · · · bns
], with ns the number of

shots. This detection matrix extracts data at the receiver

positions. Its adjoint inserts data at the co-located source

positions. Each column of U contains the wavefields for

all frequencies induced by the shots located in the columns

of B. Consequently, the full simulation requires the in-

version of the block-diagonal system (for all shots), fol-

lowed by a detection—i.e., we have d = DH
−1

B, with

H
−1 = diag(H−1[ωi]), i = 1 · · ·ns. After CS sampling,

this volume is reduced to y = RMd by applying the

flat rectangular CS-sampling matrix RM (defined explic-

itly in the next section) to the full simulation. Applying

RM directly to the sources s leads to a compressed sys-

tem H, which after inversion gives y. To illustrate why

y is equivalent to y, consider a compressive sampling of

the solution over frequency by the subsampling matrix

R
Ω (for clarity, we removed the orthonormal measurement

matrix). This restriction matrix removes arbitrary rows

from the right-hand side. By virtue of the block-diagonal

structure of our system, we have R
Ω
H

−1 = H
−1

R
Ω

with H
−1 = diag(H−1[ωi]), i ⊂ {1 · · ·nf}, yielding

R
Ω
U = H

−1
B = U, where B := R

Ω
B. This means

that frequency subsampling the right-hand side, followed

by solving the system for the corresponding frequencies, is

the same as solving the full system, followed by frequency

subsampling. A similar argument holds when subsampling

the shots (removing arbitrary columns of B). Now, we have

the reduced system R
Ω
U(RΣ)∗ = H

−1
B = U, with B :=

R
Ω
B(RΣ)∗. Using Kronecker products, these relations

can be written succinctly as (RΣ ⊗R
Ω)vec (U) = vec (U)

and (RΣ ⊗ R
Ω)vec (B) = vec (B) with vec (·) being a

linear operator that maps a matrix into a lexicographically-

sorted array. The inversion of HU = B is easier because it

involves only a subset of angular frequencies and simulta-

neous shots—i.e., {U,B} contain only n′
s columns with n′

f

frequency components each. Finally, the matrix D extracts

the compressed data from the solution.



5. Recovery by sparsity promotion

Aside from CS sampling the recovery from simultaneous

simulations depends on a sparsifying transform that com-

presses seismic data, is fast, and reasonably incoherent with

the CS sampling matrix. We accomplish this by defining

the sparsity transform as the Kronecker product between

the 2-D discrete curvelet transform [3] along the source-

receiver coordinates, and the discrete wavelet transform

along the time coordinate—i.e., S := C ⊗ W with C, W

the curvelet- and wavelet-transform matrices, respectively.

We reconstruct the seismic wavefield by solving the follow-

ing nonlinear optimization problem

x̃ = arg min
x

‖x‖1 subject to Ax = y, (3)

with d̃ = S∗x̃ the reconstruction, A := RMS∗ the CS

matrix, and y (= y) the compressively simulated data

(cf. Equation 2-right). Equation 3 is solved by SPGℓ1
[23], a projected-gradient algorithm with root finding.

6. Computational complexity analysis

According to [19], the cost of the iterative Helmholtz

solver equals nfnsnitO(nd), typically with nit = O(n)
the number of iterations. For d = 2 and assuming

ns = nf = O(n), this cost becomes O(n5). Under

the same assumption, the cost of a time-domain solver

is O(n4). The iterative Helmholtz solver can only become

competitive if nit = O(1), yielding an O(n4) computa-

tional complexity. [7, 6] achieve this by the method ex-

plained earlier. Despite this improvement, this figure is

still overly pessimistic for simulations that permit sparse

representations. As long as the simulation cost exceeds

the ℓ1-recovery cost (cf. Equation 3), CS will improve

on this result. This reduction depends on the cost of A,

which is dominated by the CS-matrix. For naive choices,

such as Gaussian projections, these sampling matrices cost

O(n3) for each frequency, which offers no gain. However,

with our choice of fast O(n log n) projections with ran-

dom convolutions [20], we are able to reduce this cost to

O(n2 log n). Note that these costs are of the same order

as those of calculating the sparsifying transforms. Now,

the leading order cost of the ℓ1 recovery is reduced to

O(n3 log n), which is significantly less than the cost of

solving the full Helmholtz system, especially for large

problems (n → ∞) and for extensions to d = 3.

7. Example

To illustrate CS-recovery quality, we conduct a series of

experiments for two velocity models, namely the complex

model used in [10], and a simple single-layer model. These

models generate seismic lines that differ in complexity.

During these experiments, we vary the subsampling ratio

and the frequency-to-shot subsampling ratio. All simula-

tions are carried out with a fully parallel Helmholtz solver

for a spread with 128 collocated shots and receivers sam-

pled at a 30 m interval. The time sample interval is 0.004 s
and the source function is a Ricker wavelet with a central

frequency of 10 Hz. By solving Equation 3, we recover

the full simulation for the two datasets. Comparison be-

tween the full and compressive simulations in Figure 2

shows remarkable high-fidelity results even for increasing

subsampling ratios. As expected, the SNR for the simple

model is better because of the reduced complexity, whereas

the numbers in Table 1 for the complex model confirm

increasing recovery errors for increasing subsampling ra-

tios. Moreover, the bandwidth limitation of seismic data

explains improved recovery with decreasing frequency-

to-shot ratio for a fixed subsampling ratio. Because the

speedup of the solution is roughly proportional to the sub-

sampling ratio, we can conclude that speedups of four to

six times are possible with a minor drop in SNR.

Subsample ratio 0.25 0.15 0.07

n′
f /n′

s recovery error (dB)

2 14.3 12.1 8.6

1 18.2 14.5 10.2

0.5 22.2 16.5 10.7

Speed up (%) 400 670 1420

Table 1: Signal-to-noise ratios based on the complex model,

SNR = −20 log10(
‖d−ed‖2

‖d‖2

) for reconstructions with the

curvelet-wavelet sparsity transform for different subsample

and frequency-to-shot ratios..

8. Discussion, extensions, and conclusions

Compressive sampling (CS) can be considered a paradigm

shift because objects of interest that exhibit transform-

domain sparsity can be recovered from degrees of sub-

sampling commensurate their sparsity. This new paradigm

can be applied to reduce the computational complexity of

solving PDEs that lie at the heart of PDE-constrained op-

timization problems. In this paper, we demonstrate that

this principle leads to simultaneous source experiments

that reduce the cost of computer simulations. Similar cost

reductions are possible during actual acquisition in situ-

ations where we have control over the physical sources;

such as during acquisition on land [14]. These results are

exciting because CS decouples simulation- and acquisition-

related costs from the discretization size. Instead, these

costs depend on sparsity. Because the image space is even

sparser after focusing seismic energy, we obtain further im-

provements when we extend CS principles to promote joint

sparsity through mixed (1, 2)-norm minimization [11].
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Figure 2: Comparison between conventional and compressive simu-

lations in for simple and complex velocity models. (a) Crossing-planes

view of the seismic line for the simple model. (b) The same for the

complex model. (c). Recovered simulation (with a SNR of 28.1 dB) for

the simple model from 25 % of the samples with the ℓ1-solver running to

convergence. (d) The same but for the complex model now with a SNR

of 18.2 dB..


