Yogi Felix J Herrmann 
email: fherrmann@eos.ubc.ca
  
Tim T Y Lin 
email: tlin@eos.ubc.ca
  
Compressive-wavefield simulations

Full-waveform inversion's high demand on computational resources forms, along with the non-uniqueness problem, the major impediment withstanding its widespread use on industrial-size datasets. Turning modeling and inversion into a compressive sensing problem-where simulated data are recovered from a relatively small number of independent simultaneous sources-can effectively mitigate this high-cost impediment. The key is in showing that we can design a sub-sampling operator that commutes with the time-harmonic Helmholtz system. As in compressive sensing, this leads to a reduction in simulation cost. Moreover, this reduction is commensurate with the transform-domain sparsity of the solution, implying that computational costs are no longer determined by the size of the discretization but by transform-domain sparsity of the solution of the CS problem which forms our data. The combination of this sub-sampling strategy with our recent work on implicit solvers for the Helmholtz equation provides a viable alternative to full-waveform inversion schemes based on explicit finite-difference methods.

Introduction

With the recent resurgence of full-waveform inversioni.e., adjoint-state methods applied to solve PDEconstrained optimization problems-the computational cost of solving forward modeling has become one of the major impediments withstanding successful application of this technology to industry-size data volumes. To overcome this impediment, we argue that further improvements will depend on a problem formulation with a computational complexity that is no longer strictly determined by the size of the discretization but by transform-domain sparsity of its solution. In this new paradigm, we bring computational costs in par with our ability to compress solutions to certain PDEs. This premise is related to two recent developments. First, there is the new field of compressive sensing [CS in short throughout the paper, 4, 5]-where the argument is made, and rigorously proven-that compressible signals can be recovered from severely sub-Nyquist sampling by solving a sparsity promoting program. Second, there is in the seismic community the recent resurgence of simultaneous-source acquisition [START_REF] Beasley | A new look at marine simultaneous sources[END_REF][START_REF] Krohn | Simultaneous sourcing without compromise[END_REF][START_REF] Berkhout | Changing the mindset in seismic data acquisition[END_REF][START_REF] Neelamani | Efficient seismic forward modeling using simultaneous random sources and sparsity[END_REF][START_REF] Herrmann | Compressive simultaneous full-waveform simulation[END_REF], and continuing efforts to reduce the cost of seismic modeling, imaging, and inversion through phase encoding of simultaneous sources [START_REF] Morton | Faster shot-record depth migrations using phase encoding[END_REF][START_REF] Romero | Phase encoding of shot records in prestack migration[END_REF][START_REF] Krohn | Simultaneous sourcing without compromise[END_REF][START_REF] Herrmann | Compressive simultaneous full-waveform simulation[END_REF] and the removal of subsets of angular frequencies [START_REF] Sirgue | Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies[END_REF][START_REF] Mulder | How to choose a subset of frequencies in frequency-domain finite-difference migration[END_REF][START_REF] Lin | Interpolating solutions of the helmholtz equation with compressed sensing[END_REF][START_REF] Herrmann | Compressive simultaneous full-waveform simulation[END_REF] or plane waves [START_REF] Vigh | 3d prestack plane-wave, fullwaveform inversion[END_REF]. All these approaches correspond to instances of CS. By using CS principles, we have been able to remove the associated sub-sampling interferences through a combination of exploiting transform-domain sparsity, properties of certain sub-sampling schemes, and the existence of sparsity promoting solvers.

Compressive full-waveform inversion

Full-waveform inversion entails solving PDE-constrained optimization problems of the following type:

min U, m 1 2 RM d -DU 2 2 s.t. H[m]U = B, (1) 
where d and U are the observed data volumes and the solution of the multi-source (in its columns)-frequency Helmholtz equation over the domain of interest, D represents the detection operator that extracts the simulated data from time-harmonic solutions at the receiver locations, H a matrix with the discretized multi-frequency Helmholtz equation, and B a matrix with the frequency-transformed source distributions in its columns. In the above optimization problem (from which-after casting Eq. 1 in its unconstrained form-most quasi-Newton type full-waveform inversion schemes derive), solutions for the unknown velocity model, m, and for the wave equation, U, that minimize the energy mismatch are pursued. Because Eq. 1 is nonlinear in the model variables collected in the vector m, solutions of Eq. 1 require multiple solves of the (implicit) Helmholtz equation. Even after preconditioning (yielding a complexity for this solver of O(n 4 ) in 2-D [START_REF] Erlangga | On multilevel projection Krylov method for the preconditioned Helmholtz system[END_REF][START_REF] Erlangga | An iterative multilevel method for computing wavefields in frequency-domain seismic inversion[END_REF]), this may prove computationally prohibitive. We address this problem by using CS [START_REF] Romberg | Compressive sensing by random convolution[END_REF][START_REF] Herrmann | Compressive simultaneous full-waveform simulation[END_REF] to reduce the size of the seismic data volume through y = RMd where

RM = sub sampler    R Σ 1 ⊗ I ⊗ R Ω 1 . . . R Σ n s ′ ⊗ I ⊗ R Ω n s ′    random phase encoder F * 2 diag e îθ ⊗ I F 3 ,
with F 2,3 the 2,3-D Fourier transforms, and θ = Uniform([0, 2π]) a random phase rotation. The matrices R Ω and R Σ represent CS-subsampling matrices (see Figure 1) acting along the rows (frequency coordinate) and columns (source coordinate) of the data volume, respectively. As shown by [START_REF] Herrmann | Compressive simultaneous full-waveform simulation[END_REF] application of this CS-sampling matrix, RM, to the data is equivalent to applying it to the source wavefields directly, which turns single-impulsive sources into a smaller set (n ′ s ≪ n s with n s the number of separated single-impulsive sources) of time-harmonic simultaneous sources that are randomly phase encoded and that have for each source-experiment a different set of angular frequencies missing-i.e., there are n ′ f ≪ n f (with n f the number of frequencies of fully sampled data) frequencies non-zero (see Figure 1). This implies that the sub-sampling operator commutes with the Helmholtz system and this allows us to recast Eq. 1 into the following reduced form (consisting of fewer frequencies and fewer right-hand sides):

min U, m 1 2 y -DU 2 2 s.t. H[m]U = B, (2) 
where the underlined quantities are related to the reduced Helmholtz system.

The time-harmonic Helmholtz system

Since their inception, iterative implicit matrix-free solutions to the time-harmonic Helmholtz equation have been plagued by lack of numerical convergence for decreasing mesh sizes and increasing angular frequencies [START_REF] Riyanti | A new iterative solver for the time-harmonic wave equation[END_REF]. The inclusion of deflation-a way to handle small eigenvalues that lead to slow convergence [START_REF] Erlangga | On multilevel projection Krylov method for the preconditioned Helmholtz system[END_REF][START_REF] Erlangga | An iterative multilevel method for computing wavefields in frequency-domain seismic inversion[END_REF]-can successfully remove this impediment, bringing 2-and 3-D solvers for the time-harmonic Helmholtz into reach. For a given source (right-hand side b) and angular frequency ω (:= 2πf , with f the temporal frequency in Hz), the frequency-domain wavefield u is computed with a Krylov method that involves the following system of equations:

H[ω]M -1 Qû = b, u = M -1 Qû,
where H[ω], M, and Q represent the discretized monochromatic Helmholtz equation, the preconditioner, and the projection matrices, respectively. As shown by [START_REF] Erlangga | On a class of preconditioners for solving the Helmholtz equation[END_REF][START_REF] Erlangga | Comparison of multigrid and incomplete LU shifted-Laplace preconditioners for the inhomogeneous Helmholtz equation[END_REF], convergence is guaranteed by defining the preconditioning matrix M in terms of the discretized shifted or damped Helmholtz operator

M := -∇ • ∇ -ω 2 c(x) 2 (1 - β î), î = √ -1, with β > 0.
With this preconditioning, the eigenvalues of HM -1 are clustered into a circle in the complex plane. By the action of the projector matrix Q, these eigenvalues move towards unity on the real axis. These two operations lower the condition number, which explains the superior performance of this solver.

Source-solution CS-sampling equivalence

Aside from the required number of frequencies, the computational cost of full-wavefield simulation is determined by the number of sources-i.e., the number of right-hand sides. In the current simulation paradigm, the number of sources coincides with the number of single-impulsive source simulations. As prescribed by CS, this number can be reduced by designing a survey that consists of a relatively small number of simultaneous experiments with simultaneous sources that contain subsets of angular frequencies. Mathematically, we can accomplish this by applying a CSsampling matrix, RM, to the individual-impulsive sources collected in the vector s. If we can show that the solution from this set of "compressed" sources s = RMs, is identical to the compressively sampled solution yielded from modeling the complete, we are in the position to speed up our computations. This speed up is the result of a decreased number of experiments and angular frequencies that are present in the simultaneous source vector. For this to work, the solution y must be equivalent to the solution y, obtained by compressively sampling the full solution.

More specifically, we need to demonstrate that the solutions for the full and compressed systems are equivalent-i.e., y = y in

         B = D * s impulsive sources HU = B y = RMDU := RMd          B = D * s = D * RMs sim. sources HU = B y = DU.
Here, 

H = diag(H[ω i ]) is the block-diagonal discretized Helmholtz equation for each ω i := 2πi • ∆f, i = 1 • • • n f , with n f the
H -1 = diag(H -1 [ω i ]), i = 1 • • • n s .
After CS sampling, this volume is reduced to y = RMd by applying the flat rectangular CS-sampling matrix RM (defined explicitly in the next section) to the full simulation. Applying RM directly to the sources s leads to a compressed system H, which after inversion gives y. To illustrate why y is equivalent to y, consider a compressive sampling of the solution over frequency by the subsampling matrix R Ω (for clarity, we removed the orthonormal measurement matrix). This restriction matrix removes arbitrary rows from the right-hand side. By virtue of the block-diagonal structure of our system, we have

R Ω H -1 = H -1 R Ω with H -1 = diag(H -1 [ω i ]), i ⊂ {1 • • • n f }, yielding R Ω U = H -1 B = U, where B := R Ω B.
This means that frequency subsampling the right-hand side, followed by solving the system for the corresponding frequencies, is the same as solving the full system, followed by frequency subsampling. A similar argument holds when subsampling the shots (removing arbitrary columns of B). Now, we have 

the reduced system R Ω U(R Σ ) * = H -1 B = U, with B := R Ω B(R Σ ) * .

Recovery by sparsity promotion

Aside from CS sampling the recovery from simultaneous simulations depends on a sparsifying transform that compresses seismic data, is fast, and reasonably incoherent with the CS sampling matrix. We accomplish this by defining the sparsity transform as the Kronecker product between the 2-D discrete curvelet transform [START_REF] Candès | Fast discrete curvelet transforms[END_REF] along the sourcereceiver coordinates, and the discrete wavelet transform along the time coordinate-i.e., S := C ⊗ W with C, W the curvelet-and wavelet-transform matrices, respectively. We reconstruct the seismic wavefield by solving the following nonlinear optimization problem

x = arg min x x 1 subject to Ax = y, (3) 
with d = S * x the reconstruction, A := RMS * the CS matrix, and y (= y) the compressively simulated data (cf. Equation 2-right). Equation 3is solved by SPGℓ 1 [START_REF] Van Den | Probing the pareto frontier for basis pursuit solutions[END_REF], a projected-gradient algorithm with root finding.

Computational complexity analysis

According to [START_REF] Riyanti | A new iterative solver for the time-harmonic wave equation[END_REF], the cost of the iterative Helmholtz solver equals n f n s n it O(n d ), typically with n it = O(n) the number of iterations. For d = 2 and assuming

n s = n f = O(n), this cost becomes O(n 5
). Under the same assumption, the cost of a time-domain solver is O(n 4 ). The iterative Helmholtz solver can only become competitive if n it = O(1), yielding an O(n 4 ) computational complexity. [START_REF] Erlangga | On multilevel projection Krylov method for the preconditioned Helmholtz system[END_REF][START_REF] Erlangga | An iterative multilevel method for computing wavefields in frequency-domain seismic inversion[END_REF] achieve this by the method explained earlier. Despite this improvement, this figure is still overly pessimistic for simulations that permit sparse representations. As long as the simulation cost exceeds the ℓ 1 -recovery cost (cf. Equation 3), CS will improve on this result. This reduction depends on the cost of A, which is dominated by the CS-matrix. For naive choices, such as Gaussian projections, these sampling matrices cost O(n 3 ) for each frequency, which offers no gain. However, with our choice of fast O(n log n) projections with random convolutions [START_REF] Romberg | Compressive sensing by random convolution[END_REF], we are able to reduce this cost to O(n 2 log n). Note that these costs are of the same order as those of calculating the sparsifying transforms. Now, the leading order cost of the ℓ 1 recovery is reduced to O(n 3 log n), which is significantly less than the cost of solving the full Helmholtz system, especially for large problems (n → ∞) and for extensions to d = 3.

Example

To illustrate CS-recovery quality, we conduct a series of experiments for two velocity models, namely the complex model used in [START_REF] Herrmann | Non-linear primary-multiple separation with directional curvelet frames[END_REF], and a simple single-layer model. These models generate seismic lines that differ in complexity.

During these experiments, we vary the subsampling ratio and the frequency-to-shot subsampling ratio. All simulations are carried out with a fully parallel Helmholtz solver for a spread with 128 collocated shots and receivers sampled at a 30 m interval. The time sample interval is 0.004 s and the source function is a Ricker wavelet with a central frequency of 10 Hz. By solving Equation 3, we recover the full simulation for the two datasets. Comparison between the full and compressive simulations in Figure 2 shows remarkable high-fidelity results even for increasing subsampling ratios. As expected, the SNR for the simple model is better because of the reduced complexity, whereas the numbers in Table 1 for the complex model confirm increasing recovery errors for increasing subsampling ratios. Moreover, the bandwidth limitation of seismic data explains improved recovery with decreasing frequencyto-shot ratio for a fixed subsampling ratio. Because the speedup of the solution is roughly proportional to the subsampling ratio, we can conclude that speedups of four to six times are possible with a minor drop in SNR. 

2 ) for reconstructions with the curvelet-wavelet sparsity transform for different subsample and frequency-to-shot ratios..

Discussion, extensions, and conclusions

Compressive sampling (CS) can be considered a paradigm shift because objects of interest that exhibit transformdomain sparsity can be recovered from degrees of subsampling commensurate their sparsity. This new paradigm can be applied to reduce the computational complexity of solving PDEs that lie at the heart of PDE-constrained optimization problems. In this paper, we demonstrate that this principle leads to simultaneous source experiments that reduce the cost of computer simulations. Similar cost reductions are possible during actual acquisition in situations where we have control over the physical sources; such as during acquisition on land [START_REF] Tim | Designing simultaneous acquisitions with compressive sensing[END_REF]. These results are exciting because CS decouples simulation-and acquisitionrelated costs from the discretization size. Instead, these costs depend on sparsity. Because the image space is even sparser after focusing seismic energy, we obtain further improvements when we extend CS principles to promote joint sparsity through mixed (1, 2)-norm minimization [START_REF] Herrmann | Compressive imaging by wavefield inversion with group sparsity[END_REF]. 

  number of frequencies and ∆f its sample interval. The adjoint (denoted by * ) of the detection matrix D injects the individual sources into the multiple righthand sides, B = [b 1 b 2 • • • b ns ], with n s the number of shots. This detection matrix extracts data at the receiver positions. Its adjoint inserts data at the co-located source positions. Each column of U contains the wavefields for all frequencies induced by the shots located in the columns of B. Consequently, the full simulation requires the inversion of the block-diagonal system (for all shots), followed by a detection-i.e., we have d = DH -1 B, with

  Using Kronecker products, these relations can be written succinctly as (R Σ ⊗ R Ω )vec (U) = vec (U) and (R Σ ⊗ R Ω )vec (B) = vec (B) with vec (•) being a linear operator that maps a matrix into a lexicographicallysorted array. The inversion of HU = B is easier because it involves only a subset of angular frequencies and simultaneous shots-i.e., {U, B} contain only n ′ s columns with n ′ f frequency components each. Finally, the matrix D extracts the compressed data from the solution.

Figure 1 :

 1 Figure 1: Compressive sampling with simultaneous sources. (a) Amplitude spectrum for the source signatures emitted by each source as part of the simultaneous-source experiments. These signatures appear noisy in the shot-receiver coordinates because of the phase encoding (cf. Equation 1). Observe that the frequency restrictions are different for each simultaneous source experiment. (b) CS-data after applying the inverse Fourier transform. Notice the noisy character of the simultaneous-shot interferences..

Figure 2 :

 2 Figure 2: Comparison between conventional and compressive simulations in for simple and complex velocity models. (a) Crossing-planes view of the seismic line for the simple model. (b) The same for the complex model. (c). Recovered simulation (with a SNR of 28.1 dB) for the simple model from 25 % of the samples with the ℓ 1 -solver running to convergence. (d) The same but for the complex model now with a SNR of 18.2 dB..

Table 1 :

 1 Signal-to-noise ratios based on the complex model, SNR = -20 log 10 ( d-e

	Subsample ratio 0.25 0.15 0.07
	n ′ f /n ′ s	recovery error (dB)
	2	14.3 12.1	8.6
	1	18.2 14.5 10.2
	0.5	22.2 16.5 10.7
	Speed up (%)	400 670 1420
	d 2