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The Continuous Shearlet Transform in Arbitrary Space Dimensions, Frame Construction, and Analysis of Singularities

This note is concerned with the generalization of the continuous shearlet transform to higher dimensions. Similar to the two-dimensional case, our approach is based on translations, anisotropic dilations and specific shear matrices. We show that the associated integral transform again originates from a square-integrable representation of a specific group, the full n-variate shearlet group. Moreover, we verify that by applying the coorbit theory, canonical scales of smoothness spaces and associated Banach frames can be derived. We also indicate how our transform can be used to characterize singularities in signals.

Introduction

Modern technology allows for easy creation, transmission and storage of huge amounts of data. Confronted with a flood of data, such as internet traffic, or audio and video applications, nowadays the key problem is to extract the relevant information from these sets. To this end, usually the first step is to decompose the signal with respect to suitable building blocks which are well-suited for the specific application and allow a fast and efficient extraction. In this context, one particular problem which is currently in the center of interest is the analysis of directional information. Due to the bias to the coordinate axes, classical approaches such as, e.g., wavelet or Gabor transforms are clearly not the best choices, and hence new building blocks have to be developed. In recent studies, several approaches have been suggested such as ridgelets [START_REF] Candès | Ridgelets: a key to higher-dimensional intermittency?[END_REF], curvelets [START_REF] Candès | Curvelets -A surprisingly effective nonadaptive representation for objects with edges[END_REF], contourlets [START_REF] Do | The contourlet transform: an efficient directional multiresolution image representation[END_REF], shearlets [START_REF] Guo | Sparse multidimensional representations using anisotropic dilation und shear operators[END_REF] and many others. For a general approach see also [START_REF] Guo | Wavelets with composite dilations and their MRA properties[END_REF]. Among all these approaches, the shearlet transform stands out because it is related to group theory, i.e., this transform can be derived from a square-integrable representation π : S → U(L 2 (R 2 )) of a certain group S, the socalled shearlet group, see [START_REF] Dahlke | The uncertainty principle associated with the continuous shearlet transform[END_REF]. Therefore, in the context of the shearlet transform, all the powerful tools of group representation theory can be exploited. So far, the shearlet transform is well developed for problems in R 2 . However, for analyzing higher-dimensional data sets, there is clearly an urgent need for further generalizations and applications. This is exactly the concern of this paper. One particular field of application is the geometrical structure analysis of multi-dimensional data, e.g. multimodal spectral measurements in meteorology. To our best knowledge, it seems that there exist only few results in this direction: some important progress has been achieved for the curvelet case in [START_REF] Borup | Frame decomposition of decomposition spaces[END_REF] and for surfacelets in [START_REF] Lu | Multidimensional directional filterbanks and surfacelets[END_REF]. However, for the shearlet approach the question has been completely open.

Multivariate Continuous Shearlet Transform

In this section, we introduce the shearlet transform on L 2 (R n ). This requires the generalization of the twodimensional parabolic dilation matrix and of the shear matrix, respectively. Let I n denote the (n, n)-identity matrix and 0 n , resp. 1 n the vectors with n entries 0, resp. 1. For a ∈ R * := R \ {0} and s ∈ R n-1 , we set

A a := a 0 T n-1 0 n-1 sgn(a)|a| 1 n I n-1
and In the following, we use only the left Haar measure and use the abbreviation

S s := 1 s T 0 n-1 I n-1 . Lemma 1 The set R * × R n-1 × R n endowed
dµ = dµ l . For f ∈ L 2 (R n ) we define π(a, s, t)f (x) = f a,s,t (x) := |a| 1 2n -1 f (A -1 a S -1 s (x -t)). (1) It is easy to check that π : S → U(L 2 (R n )) is a mapping from S into the group U(L 2 (R n )) of unitary operators on L 2 (R n ).
Recall that a unitary representation of a locally compact group G with the left Haar measure µ on a Hilbert space H is a homomorphism π from G into the group of unitary operators U(H) on H which is continuous with respect to the strong operator topology.

Lemma 2

The mapping π defined by (1) is a unitary representation of S.

A nontrivial function ψ ∈ L 2 (R n ) is called admissible, if S | ψ, π(a, s, t)ψ | 2 dµ(a, s, t) < ∞.
If π is irreducible and there exits at least one admissible

function ψ ∈ L 2 (R n ), then π is called square integrable.
The following result shows that the unitary representation π defined in ( 1) is square integrable.

Theorem 3 A function ψ ∈ L 2 (R n ) is

admissible if and only if it fulfills the admissibility condition

C ψ := R n | ψ(ω)| 2 |ω 1 | n dω < ∞. (2) 
Then, for any f ∈ L 2 (R n ), the following equality holds true:

S | f, ψ a,s,t | 2 dµ(a, s, t) = C ψ f 2 L2(R n ) . (3) 
In particular, the unitary representation π is irreducible and hence square integrable.

An example of a continuous shearlet can be constructed as follows: Let

ψ 1 be a continuous wavelet with ψ1 ∈ C ∞ (R) and supp ψ1 ⊆ [-2, -1 2 ] ∪ [ 1 2 , 2], and let ψ 2 be such that ψ2 ∈ C ∞ (R n-1 ) and supp ψ2 ⊆ [-1, 1] n-1 . Then the function ψ ∈ L 2 (R n ) defined by ψ(ω) = ψ(ω 1 , ω) = ψ1 (ω 1 ) ψ2 1 ω 1 ω
is a continuous shearlet. The support of ψ is depiced for ω 1 ≥ 0 in Fig. 1.

Multivariate Shearlet Coorbit Theory

In this section we want to establish a coorbit theory based on the square integrable representation (1) of the shearlet group. We mainly follow the lines of [START_REF] Dahlke | Shearlet Coorbit Spaces and Associated Banach Frames[END_REF]. For further information on coorbit space theory, the reader is referred to [START_REF] Feichtinger | A unified approach to atomic decompositions via integrable group representations[END_REF][START_REF] Feichtinger | Banach spaces related to integrable group representations and their atomic decomposition I[END_REF][START_REF] Feichtinger | Banach spaces related to integrable group representations and their atomic decomposition II[END_REF][START_REF] Feichtinger | Nonorthogonal wavelet and Gabor expansions and group representations[END_REF][START_REF] Gröchenig | Describing functions: Atomic decompositions versus frames[END_REF]].
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Figure 1: Support of the shearlet ψ for ω 1 ≥ 0.

Shearlet Coorbit Spaces

We consider weight functions w(a, s, t) = w(a, s) that are locally integrable with respect to a and s, i.e., w ∈ L loc 1 (R n ) and fulfill w ((a, s, t) • (a , s , t )) ≤ w(a, s, t)w(a , s , t ) and w(a, s, t) ≥ 1 for all (a, s, t), (a , s , t ) ∈ S. For 1 ≤ p < ∞, let L p,w (S) := {F measurable : F Lp,w(S) := S |F (g)| p w(a, s, t) p dµ(a, s, t)

1 p < ∞},
and let L ∞,w be defined with the usual modifications. In order to construct the coorbit spaces related to the shearlet group we have to ensure that there exists a function

ψ ∈ L 2 (R n ) such that SH ψ (ψ) = ψ, π(a, s, t)ψ ∈ L 1,w (S). (4) 
Fortunately, it turns out that (4) can be satisfied in our setting.

Theorem 4 Let ψ be a Schwartz function such that

supp ψ ⊆ ([-a 1 , -a 0 ] ∪ [a 0 , a 1 ]) × Q b ,where Q b := [-b 1 , b 1 ] × • • • × [-b n-1 , b n-1 ]. Then we have that SH ψ (ψ) ∈ L 1,w (S), i.e., ψ, π(•)ψ L1,w(S) = S |SH ψ (ψ)(a, s, t)| w(a, s, t) dµ(a, s, t) < ∞.
For ψ satisfying (4) we can consider the space

H 1,w := {f ∈ L 2 (R n ) : SH ψ (f ) ∈ L 1,w (S)}, (5) 
with norm f H1,w := SH ψ f L1,w(S) and its antidual H ∼ 1,w , the space of all continuous conjugate-linear functionals on H 1,w . The spaces H 1,w and H ∼ 1,w are π-invariant Banach spaces with continuous embeddings H 1,w → H → H ∼ 1,w , and their definition is independent of the shearlet ψ. Then the inner product on L 2 (R n ) × L 2 (R n ) extends to a sesquilinear form on H ∼ 1,w × H 1,w , therefore for ψ ∈ H 1,w and f ∈ H ∼ 1,w the extended representation coefficients SH ψ (f )(a, s, t) := f, π(a, s, t)ψ H ∼ 1,w ×H1,w are well-defined. Now, for 1 ≤ p ≤ ∞, we define the shearlet coorbit spaces

SC p,w := {f ∈ H ∼ 1,w : SH ψ (f ) ∈ L p,w (S)} (6)
with norms f SCp,w := SH ψ f Lp,w(S) . It holds that SC 1,w = H 1,w and SC 1,1 = L 2 (R n ).

Shearlet Banach Frames

The Feichtinger-Gröchenig theory provides us with a machinery to construct atomic decompositions and Banach frames for our shearlet coorbit spaces SC p,w . In a first step, we have to determine, for a compact neighborhood U of e ∈ S with non-void interior, so-called U -dense sets. A (countable) family X = ((a, s, t) λ ) λ∈Λ in S is said to be U -dense if ∪ λ∈Λ (a, s, t) λ U = S, and separated if for some compact neighborhood Q of e we have (a i , s i , t i )Q ∩ (a j , s j , t j )Q = ∅, i = j, and relatively separated if X is a finite union of separated sets.

Lemma 5 Let U be a neighborhood of the identity in S, and let α > 1 and β, γ > 0 be defined such that

[α 1 n -1 , α 1 n ) × [-β 2 , β 2 ) n-1 × [-γ 2 , γ 2 ) n ⊆ U. (7) Then the sequence {( α j , βα j(1-1 n ) k, S βα j(1-1 n ) k A α j γm) : j ∈ Z, k ∈ Z n-1 , m ∈ Z n , ∈ {-1, 1}} (8) 
is U -dense and relatively separated.

Next we define the U -oscillation as

osc U (a, s, t) := sup u∈U |SH ψ (ψ)(u • (a, s, t)) -SH ψ (ψ)(a, s, t)|. (9) 
Then, the following decomposition theorem, which was proved in a general setting in [START_REF] Feichtinger | A unified approach to atomic decompositions via integrable group representations[END_REF][START_REF] Feichtinger | Banach spaces related to integrable group representations and their atomic decomposition I[END_REF][START_REF] Feichtinger | Banach spaces related to integrable group representations and their atomic decomposition II[END_REF][START_REF] Feichtinger | Nonorthogonal wavelet and Gabor expansions and group representations[END_REF][START_REF] Gröchenig | Describing functions: Atomic decompositions versus frames[END_REF], says that discretizing the representation by means of an U -dense set produces an atomic decomposition for SC p,w .

Theorem 6 Assume that the irreducible, unitary representation π is w-integrable and let an appropriately nor-

malized ψ ∈ L 2 (R n ) which fulfills M ψ, π(a, s, t) := sup u∈(a,s,t)U | ψ, π(u)ψ | ∈ L 1,w (S) (10 
) be given. Choose a neighborhood U of e so small that osc U L1,w(S) < 1.

Then for any U -dense and relatively separated set X = ((a, s, t) λ ) λ∈Λ the space SC p,w has the following atomic decomposition:

If f ∈ SC p,w , then f = λ∈Λ c λ (f )π((a, s, t) λ )ψ (12) 
where the sequence of coefficients depends linearly on f and satisfies

(c λ (f )) λ∈Λ p,w ≤ C f SCp,w (13) 
with a constant C depending only on ψ and with p,w being defined by p,w := {c = (c λ ) λ∈Λ : c p,w := cw p < ∞},

where w = (w((a, s, t) λ )) λ∈Λ . Con- versely, if (c λ (f )) λ∈Λ ∈ p,w , then f = λ∈Λ c λ π((a, s, t) λ )ψ is in SC p,w and f SCp,w ≤ C (c λ (f )) λ∈Λ p,w . (14) 
Given such an atomic decomposition, the problem arises under which conditions a function f is completely determined by its moments f, π((a, s, t) λ )ψ and how f can be reconstructed from these moments. This is answered by the following theorem which establishes the existence of Banach frames.

Theorem 7 Impose the same assumptions as in Theorem 6. Choose a neighborhood U of e such that osc U L1,w(S) < 1/ SH ψ (ψ) L1,w(S) .

Then, for every U -dense and relatively separated family X = ((a, s, t) λ ) λ∈Λ in G the set {π((a, s, t) λ )ψ : λ ∈ Λ} is a Banach frame for SH p,w . This means that

i) f ∈ SC p,w if and only if ( f, π((a, s, t) λ )ψ H ∼ 1,w ×H1,w ) λ∈Λ ∈ p,w ; ii) there exist two constants 0 < D ≤ D < ∞ such that D f SCp,w ≤ ( f, π((a, s, t) λ )ψ H ∼ 1,w ×H1,w ) λ∈Λ p,w ≤ D f SCp,w ; (16) 
iii) there exists a bounded, linear reconstruction operator R from p,w to SC p,w such that

R ( f, ψ((a, s, t) λ )ψ H ∼ 1,w ×H1,w ) λ∈Λ = f.
It can be checked that the conditions ( 10), ( 11) and ( 15) can be satisfied, see [START_REF] Dahlke | The continuous shearlet transform in arbitrary space dimensions[END_REF] for details.

Analysis of Singularities

In this section, we deal with the decay of the shearlet transform at hyperplane singularities. The following analysis generalizes techniques and results presented in [START_REF] Kutyniok | Resolution of the wavefront set using continuous shearlets[END_REF] for two dimensions. An (n -m)-dimensional hyperplane in R n , 1 ≤ m ≤ n -1, not containing the x 1 -axis can be written w.l.o.g. as

   x 1 . . . x m    x A + P    x m+1 . . . x n    x E =    0 . . . 0    , P :=    p T 1 . . . p T m    ∈ R m,n-m .
Then we obtain for

ν m := δ(x A + P x E )
with the Delta distribution δ that νm (ω) = R n δ(x A + P x E )e -2πi( x A ,ω A + x E ,ω E ) dx = R n-m e -2πi(-P x E ,ω A + x E ,ω E ) dx E = δ(ω E -P T ω A ).

The following theorem describes the decay of the shearlet transform at hyperplane singularities. We use the notation SH ψ f (a, s, t) ∼ |a| r as a → 0, if there exist constants 0 < c ≤ C < ∞ such that c|a| r ≤ SH ψ f (a, s, t) ≤ C|a| r as a → 0. as a → 0.

(18)

Otherwise, the shearlet transform SH ψ ν m decays rapidly as a → 0.

Similar results can be derived for point singularities, see again [START_REF] Dahlke | The continuous shearlet transform in arbitrary space dimensions[END_REF] for details.

Theorem 8

 8 Let ψ ∈ L 2 (R n ) be a shearlet satisfying ψ ∈ C ∞ (R n ). Assume further that ψ(ω) = ψ1 (ω 1 ) ψ2 (ω/ω 1 ), where supp ψ1 ∈ [-a 1 , -a 0 ] ∪ [a 0 , a 1 ] for some a 1 > a 0 ≥ α > 0 and supp ψ2 ∈ Q b . If (s m , . . . , s n-1 ) = (-1, s 1 , . . . ,s m-1 ) P and (t 1 , . . . , t m ) = -(t m+1 , . . . , t n ) P T , then SH ψ ν m (a, s, t) ∼ |a| 1-2m 2n