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Discrete Shearlet Transform : New Multiscale Directional Image Representation

It is now widely acknowledged that analyzing the intrinsic geometrical features of an underlying image is essentially needed in image processing. In order to achieve this, several directional image representation schemes have been proposed. In this report, we develop the discrete shearlet transform (DST) which provides efficient multiscale directional representation. We also show that the implementation of the transform is built in the discrete framework based on a multiresolution analysis. We further assess the performance of the DST in image denoising and approximation applications. In image approximation, our adaptive approximation scheme using the DST significantly outperforms the wavelet transform (up to 3.0dB) and other competing transforms. Also, in image denoising, the DST compares favorably with other existing methods in the literature.

Introduction

Sharp image transitions or singularities such as edges are expensive to represent and intergrating the geometric regularity in the image representation is a key challenge to improve state of the art applications to image compression and denoising. To exploit the anisotropic regularity of a surface along edges, the basis must include elongated functions that are nearly parallel to the edges. Several image representations have been proposed to capture geometric image regularity. They include curvelets [START_REF] Candes | New tight frames of curvelets and optimal representations of objects with piecewise C 2 singularities[END_REF], contourlets [START_REF] Do | The contourlet transform: An efficient directional multiresolution image representation[END_REF] and bandelets [START_REF] Peyre | Discrete Bandelets with Geometric Orthogonal Filters[END_REF]. In particular, the construction of curvelets is not built directly in the discrete domain and they do not provide a multiresolution representation of the geometry. In consequence, the implementation and the mathematical analysis are more involved and less efficient. Contourlets are bases constructed with elongated basis functions using a combination of a multiscale and a directional filter bank. However, contourlets have less clear directional features than curvelets, which leads to artifacts in denoising and compression. Bandelets are bases adapted to the function that is represented. Asymptotically, the resulting bandelets are regular functions with compact support, which is not the case for contourlets. However, in order to find bases adapted to an image, the bandelet transform searches for the optimal geometry. For an image of N pixels, the complexity of this best bandelet basis algorithm is O(N 3/2 ) which requires extensive computation [START_REF] Peyre | Discrete Bandelets with Geometric Orthogonal Filters[END_REF]. Recently, a new representation scheme has been introduced [START_REF] Labate | Sparse Multidimensional Representation using Shearlets[END_REF]. These so called shearlets are frame elements which yield (nearly) optimally sparse representations [START_REF] Guo | Optimally Sparse Multidimensional Representation using Shearlets[END_REF]. This new representation system is based on a simple and rigorous mathematical framework which not only provides a more flexible theoretical tool for the geometric representation of multidimensional data, but is also more natural for implementations. As a result, the shearlet approach can be associated to a multiresolution analysis [START_REF] Labate | Sparse Multidimensional Representation using Shearlets[END_REF]. However constructions proposed in [START_REF] Labate | Sparse Multidimensional Representation using Shearlets[END_REF] do not provide compactly supported shearlets and this property is essentially needed especially in image processing applications. In fact, in order to capture local singularities in images efficiently, basis functions need to be well localized in the spatial domain. In this report, we construct compactly supported shearlets and show that there is a multiresolution analysis associated with this construction. Based on this, we develop the fast discrete shearlet transform (DST) which provides efficient directional representations.

Shearlets

A family of vectors {ϕ n } n∈Γ constitutes a frame for a Hilbert space H if there exist two positive constants A, B such that for each f ∈ H we have

A f 2 ≤ n∈Γ | f, ϕ n | 2 ≤ B f 2 .
In the event that A = B, the frame is said to be tight. Let us next introduce some notations that we will use throughout this paper. For f ∈ L 2 (R d ), the Fourier transform of f is defined by

f (ω) = R d f (x)e -2πix•ω dx.
Also, for t ∈ R d and A ∈ GL d (R), we define the following unitary operators:

T t (f )(x) = f (x -t) and D A (f )(x) = |A| -1 2 f (A -1 x). Finally, for q ∈ ( 1 2
, 1] and a > 1, we define

A 0 = a q 0 0 a 1 2
and

B 0 = 1 1 0 1 (1)
and

A 1 = a 1 2 0 0 a q and B 1 = 1 0 1 1 . ( 2 
)
We are now ready to define a shearlet frame as follows.

For c ∈ R + , ψ 1 0 , . . . , ψ L 0 , ψ 1 1 , . . . , ψ L 1 ∈ L 2 (R 2 ) and φ ∈ L 2 (R 2 ), we define

Ψ 0 c = {ψ i,0 jkm : j, k ∈ Z, m ∈ Z 2 , i = 1, . . . , L}, Ψ 1 c = {ψ i,1 jkm : j, k ∈ Z, m ∈ Z 2 , i = 1, . . .

, L}, and

Ψ 2 c = {T cm φ : m ∈ Z 2 } ∪{ψ i,0 jkm : j ≥ 0, -2 j ≤ k ≤ 2 j , m ∈ Z 2 , i = 1, . . . , L} ∪{ψ i,1 jkm : j ≥ 0, -2 j ≤ k ≤ 2 j , m ∈ Z 2 , i = 1, . . . , L} where ψ i, jkm = D A -j B -k T cm ψ i (3) for = 0, 1, m ∈ Z 2 , i = 1, . . . , L and j, k ∈ Z. If Ψ p c is a frame for L 2 (R 2
), then we call the functions ψ i, jkm in the system Ψ p c shearlets. Observe that each element ψ i, jkm in Ψ p c is obtained by applying an anisotropic scaling matrix A and a shear matrix B to fixed generating functions ψ i . This implies that the system Ψ p c can provide window functions which can be elongated along arbitrary directions. Therefore, the geometrical structures of singularities in images can be efficiently represented and analyzed using those window functions. In fact, it was shown that 2-dimensional piecewise smooth functions with C 2 -singularities can be approximated with nearly optimal approximation rate using shearlets. We refer to [START_REF] Guo | Optimally Sparse Multidimensional Representation using Shearlets[END_REF] for details. Furthermore, one can show that shearlets can completely analyze the singular structures of piecewise smooth images [START_REF] Guo | Edge Analysis and identification using the Continuous Shearlet Transform[END_REF]. In fact, this property of shearlets is useful especially in signal and image processing, since singularities and irregular structures carry essential information in a signal. For example, discontinuities in the intensity of an image indicate the presence of edges. Figure 1 displays examples of shearlets which can be elongated along arbitrary direction in the spatial domain.

Construction of Shearlets

In this section, we will introduce some useful sufficient conditions to construct compactly supported shearlets. Using these conditions, we will show that the system Ψ p c can be generated by simple separable functions associated with a multiresolution analysis. Furthermore, this leads to the fast DST, and we will discuss this in the next section. We first discuss sufficient conditions for the existence of compactly supported shearlets. For this, let α > max (1, (1 -p)γ) and γ > max α+1 p , 1 1-p be fixed positive numbers for 0 < p < 1. We choose α , γ > 0 such that α ≥ α + γ and γ ≥ α -α + γ. Then we obtain the following results [START_REF] Lim | Compactly Supported Shearlet Frames and Their Applications[END_REF]. 

ψ i 0 (x 1 , x 2 ) = γ i (x 1 )θ(x 2 ) such that |γ i (ω 1 )| ≤ K 1 |ω 1 | α (1 + |ω 1 | 2 ) γ /2 and | θ(ω 1 )| ≤ K 2 (1 + |ω 1 | 2 ) -γ /2 . If ess inf |ω 1 |≤1/2 | θ(ω 1 )| 2 ≥ K 3 > 0 (4) 
and

ess inf a -q ≤|ω 1 |≤1 L i=1 |γ i (ω 1 )| 2 ≥ K 4 > 0, (5) 
then there exists c 0 > 0 such that Ψ 0 c is a frame for L 2 (R 2 ) for all c ≤ c 0 .

Observe that the functions ψ 1 0 , . . . , ψ L 0 are separable functions, and the one-dimensional scaling function θ and wavelets γ i can be chosen with sufficient vanishing moments in this case. We now show some concrete examples of compactly supported shearlets using Theorem 3.1. Assume that a = 4 and q = 1 in (1) and ( 2). Let us consider a box spline [START_REF] Candes | New tight frames of curvelets and optimal representations of objects with piecewise C 2 singularities[END_REF] of order m defined as follows.

θm (ω 1 ) = sin πω 1 πω 1 m+1 e -i ω1 ,
where = 1 if m is even, and = 0 if m is odd. Obviously, we have the following two scaling equation:

θm (2ω 1 ) = m 0 (ω 1 ) θm (ω 1 )
and m 0 (ω 1 ) = (cos πω 1 ) m+1 e -i πω 1 .

Let α and γ be positive real numbers as in Theorem 3.1. We now define

ψ1 0 (ω) = (i) √ 2 sin πω 1 θm (ω 1 ) θm (ω 2 )
and

ψ2 0 (ω) = (i) sin πω 1 2 θm ( ω 1 2 ) θm (ω 2 ),
where ≥ α and m + 1 ≥ γ . Then, by Theorem 3.1, ψ 1 0 and ψ 2 0 generate a frame Ψ 0 c for c ≤ c 0 with some c 0 > 0. There are infinitely many possible choices for and m. For example, one can choose = 9 and m = 11.

Define φ(x 1 , x 2 ) = θ m (x 1 )θ m (x 2 ), ψ1 1 (ω) = (i) √ 2 sin πω 2 θm (ω 2 ) θm (ω 1 )
and

ψ2 1 (ω) = (i) sin πω 2 2 θm ( ω 2 2 
) θm (ω 1 ).

Then similar arguments show that ψ 1 1 and ψ 2 1 generate a frame Ψ 1 c for c ≤ c 0 with some c 0 > 0. Furthermore, the functions φ, ψ i for = 0, 1 and i = 1, 2 generate a frame Ψ 2 c with c ≤ c 0 for some c 0 > 0.

Discrete Shearlet Transform

In the previous section, we constructed compactly supported shearlets generated by separable functions associated with a multiresolution analysis. In this section, we will show that this multiresolution analysis leads to the fast DST which computes f, ψ i, jkm . To be more specific, we let a = 4 and q = 1 in (1) and ( 2). For notational convenience, we let n

= (n 1 , n 2 ), m = (m 1 , m 2 ), d = (d 1 , d 2 ) ∈ Z 2 and
I 2 be a 2 by 2 identity matrix. Let θ ∈ L 2 (R) be a compactly supported function such that {θ(• -n 1 ) : n 1 ∈ Z} is an orthonormal sequence and

θ(x 1 ) = n 1 ∈Z h(n 1 ) √ 2θ(2x 1 -n 1 ). (6) 
Define

γ(x 1 ) = n 1 ∈Z g(n 1 ) √ 2θ(2x 1 -n 1 ) (7) 
such that γ has sufficient vanishing moments and the pair of the filters h and g is a pair of conjugate mirror filters. We assume that γ and θ satisfy decay conditions ( 4) and ( 5) in Theorem 3.1. We also define

φ(x 1 , x 2 ) = θ(x 1 )θ(x 2 ), ψ 1 (x 1 , x 2 ) = γ(x +1 )θ(x 2-) (8) 
and

ψ 2 (x 1 , x 2 ) = 2 -1 2 γ( x +1 2 )θ(x 2-) (9) 
for = 0, 1. Then Theorem 3.1 can be easily generalized to show that the functions ψ 1 0 , ψ 2 0 , ψ 1 1 , ψ 2 1 and φ generate a shearlet frame Ψ 2 c with c < c 0 for some c 0 > 0. Let J be a positive odd integer. Based on a multiresolution analysis associated with the two-scale equation ( 6), we can now easily derive a fast algorithm for computing shearlet coefficients f, ψ i, jkm for = 0, 1,j = 1, . . . , J-1 2 , and -2 j ≤ k ≤ 2 j as follows. First, assume that where

f = n∈Z 2 f J (n)D 2 -J I2 T n φ (10)
f J (n) = f, D 2 -J I 2 T n φ . For h = 0, 1, let us define maps D k,j h : 2 (Z 2 ) → 2 (Z 2 ) by (D k,j h x)(d) = m∈Z 2 d k,j h (d, m)x(m)
where

d k,j h (d, m) = D B k/2 j h T m φ, T d φ and x ∈ (Z 2 ).
Also we define

H(ω 1 ) = n1 h(n 1 )e -2iπω 1 and G(ω 1 ) = n 1 g(n 1 )e -2iπω1 .
Finally, we let h j , g 0 j and g 1 j be the Fourier coefficients of

       H j (ω 2 ) = J-j-1 k=0 H 2 k ω 2 for J -j > 0, G 0 j (ω 1 ) = J-2j-2 k=0 H(2 k ω 1 )G(2 J-2j-1 ω 1 ), G 1 j (ω 1 ) = J-2j-1 k=0 H(2 k ω 1 )G(2 J-2j ω 1 ), (11) respectively 
. Then we obtain          f, ψ 1,0 jkm = (((D k,j 0 f J ) * r h j ) ↓2 J-j * c g 0 j ) ↓2 J-2j (m), f, ψ 2,0 jkm = (((D k,j 0 f J ) * r h j ) ↓2 J-j * c g 1 j ) ↓2 J-2j+1 (m), f, ψ 1,1 jkm = (((D k,j 1 f J ) * c h j ) ↓2 J-j * r g 0 j ) ↓2 J-2j (m), f, ψ 2,1 jkm = (((D k,j 1 f J ) * c h j ) ↓2 J-j * r g 1 j ) ↓2 J-2j+1 (m), (12) 
where * c and * r are convolutions along the vertical and horizontal axes respectively, ↓ 2 j is the downsampling by 2 j and h(n) = h(-n) for given filter coefficients h(n). From (12), we observe that the shearlet transform f, ψ i, jkm is the application of the shear transformation D B k/2 j to f ∈ L 2 (R 2 ) followed by the wavelet transform associated with anisotropic scaling matrix A . In this case, applying D k,j to f J ∈ 2 (Z 2 ) corresponds to applying the shear transform D B k/2 j in the discrete domain. Thus we simply replace the operator D k,j by the discrete shear transform P k,j for f J ∈ 2 (Z 2 ), where we define the discrete shear transforms P 0 k,j and P 1 k,j as follows:

(P 0 k,j f J )(n) = f J n 1 + (k/2 j )n 2 , n 2 , (P 1 k,j f J )(n) = f J n 1 , n 2 + (k/2 j )n 1 . ( 13 
)
Let M be a fixed positive integer. Since P 0 k,j and P 1 k,j are unitary operators on (Z 2 ), we can extend the shearlet transform defined in (12) to a linear transform S consisting of finitely many orthogonal transforms S M k and SM k where

S M k (f J ) = WP 0 k,M (f J ) and SM k (f J ) = WP 1 k,M (f J )
and W and W are the wavelet transform associated with an anisotropic sampling matrices A 0 and A 1 , respectively. For the precise definitions of W and W, we refer to [START_REF] Lim | Compactly Supported Shearlet Frames and Their Applications[END_REF].

In this case, the linear transform S, which we call DST, is defined by 

S = (S M -2 M , . . . , S M 2 M , SM -2 M , . . . , SM 2 

Image Approximation Using DST

In this section, we present some results of the DST in image compression applications. In this case, we use adaptive image representation using the DST. The main idea of this is similar to the matching pursuit introduced by Mallat and Zhong [START_REF] Mallat | Matching Pursuits With Time-Frequency Dictionaries[END_REF]. The matching pursuit selects vectors one by one from a given basis dictionary at each iteration step. On the other hand, our approximation scheme searches the optimal directional index k 0 at each iteration step so that corresponding the orthogonal transform S M k0 or SM k0 provides an optimal nonlinear approximation with P nonzero terms among all possible 2 M +2 + 2 orthogonal transforms in S. For a detailed description of this algorithm, we refer to [START_REF] Lim | Compactly Supported Shearlet Frames and Their Applications[END_REF]. For numerical tests, we compare the performance of the DST to other transforms such as the discrete biorthogonal CDF 9/7 wavelet transform (DWT) [START_REF] Cohen | Biorthogonal bases of compactly supported wavelets[END_REF] and contourlet transform (CT) [START_REF] Do | The contourlet transform: An efficient directional multiresolution image representation[END_REF] in image compression (see Figure 3). We used only 2 directions (horizontal and vertical) and 4 level decomposition for our DST. In this case, our numerical tests indicate that only a few iterations (1-5) can give significant improvement over other transforms and computing time is comparable to the wavelet transform. For more results, we refer to [START_REF] Mallat | Matching Pursuits With Time-Frequency Dictionaries[END_REF].

Conclusion

We have constructed compactly supported shearlet systems which can provide efficient directional image representations. We also have developed the fast discrete implementation of shearlets called the DST. This algorithm consists of applying the shear transforms in the discrete domain followed by the anisotropic wavelet transforms. Applications of our proposed transform in image approximation and denoising were studied. In image approximation, the results obtained with our adaptive image representation using the DST are significantly superior to those of other transforms such as the DWT and CT both visually and with respect to PSNR. In denoising, we studied the performance of the DST coupled with a (partially) translation invariant hard tresholding estimator. Our results indicate that the DST consistently outperforms other competing transforms. For detailed numerical results, we refer to [START_REF] Lim | Compactly Supported Shearlet Frames and Their Applications[END_REF]. 
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 1 Figure 1: Examples of shearlets in the spatial domain. The top row illustrates shearlet functions ψ i,0 jk0 associated with matrices A 0 and B 0 in (1). The bottom row shows shearlet functions ψ i,1 jk0 associated with matrices A 1 and B 1 in (2)..

Figure 2 :

 2 Figure 2: Examples of anisotropic discrete wavelet decomposition: (a) Anisotropic discrete wavelet decomposition by W, (b) Anisotropic discrete wavelet decomposition by W.

  M ) for a given M ∈ Z + . Notice that redundancy of the DST is K = 2 M +2 + 2 and the DST merely requires O(KN ) operations for an image of N pixels. It is obvious that the inverse DST is simply the adjoint of S with normalization.

Figure 3 :

 3 Figure 3: Compression results of 'Barbara' image of size 512 × 512: The image is reconstructed from 5024 most significant coefficients. Top left: Zoomed original image, Top right: Zoomed image reconstructed by the DWT (PSNR = 25.11), Bottom left: Zoomed image reconstructed by the CT (PSNR = 25.88), Bottom right: Zoomed image reconstructed by the DST with only 1 iteration step (PSNR = 26.73).