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Abstract This paper explores the impact that landmark paMonte Carlo error and consistency analyses), with simula-
rametrization has in the performance of monocular, EKFtions and real imagery data, using the standard and the robo-
based, 6-DOF simultaneous localization and mapping (SLA8&ntric EKF-SLAM formulations.

in the context of undelayed landmark initialization.

Undelayed initialization in monocular SLAM challenges
EKF because of the combination of non-linearity with thel Introduction
large uncertainty associated with the unmeasured degfees o
freedom. In the EKF context, the goal of a good landmarkSimultaneous localization and mapping (SLAM) is the prob-
parametrization is to improve the model’s linearity as mucHem of concurrently estimating in real time the structure
as possible, improving the filter consistency, achieving roof the surrounding world (thenap), perceived by moving
buster and more accurate localization and mapping. exteroceptive sensors, while simultaneously gettowal-

This work compares the performances of eight differ-ized in it. The seminal solution to the problem by Smith
ent landmark parametrizations: three for points and five foRnd Cheeseman (1987) employs an extended Kalman filter
straight lines. It highlights and justifies the keys for sati (EKF) as the central estimator, and has been used exten-
factory operation: the use of parameters behaving propofively. In EKF-SLAM, the map is a large vector stacking
tionally to inverse-distance, and landmark anchoring. A un Sensors and landmarks states, and it is modeled by a Gaus-
fied EKF-SLAM framework is formulated as a benchmarksian variable. This map, usually called ts@chastic map
for points and lines that is independent of the parametrizaS Maintained by the EKF through the processes of predic-
tion used. The paper also defines a generalized linearity iflon (the sensors move) and correction (the sensors observe
dex suited for the EKF, and uses it to compute and compaﬁé‘e landmarks in the environment that had been previously
the degrees of linearity of each parametrization. Finally, Mapped).
eight parametrizations are benchmarked employing analyti  In order to achieve true exploration, the EKF machin-

cal tools (the linearity index) and statistical tools (lthee  ery is enriched with an extra steplahdmark initialization
where newly discovered landmarks are added to the map.

7. Sola Landmark initialization is performed by inverting the obse

1. CNRS; LAAS; 7 avenue du Colonel Roche, F-31077 ToulouseYation function and using it and its Jacobians to compute,
France from the sensor pose and the measurements, the observed
Université de Toulouse; UPS, INSA, INP, ISAE; LAAS-CNRS - F |andmark state and its necessary co- and cross-variances

31077 Toulouse, France, . .
2. Ictineu Submarins SL, Barcelona, Catalonia, with the rest of the map. These relations are then appended

jsola@ictineu.net . to the state vector and the covariances matrix.

T. Vidal-Calleja Monocular SLAM refers to the case where the exte-
University of Sydney, ACFR, Australia. roceptive sensing means are limited to a single projective
t.vidal@acfr.usyd.edu.au camera. Monocular SLAM gained popularity back in 2003
J. Civera and J. M. M. Montiel thanks to the first full real-time implementation by Davi-
I3A, Universidad de Zaragoza, Spain. son (2003), based on Smith and Cheeseman’s EKF solu-

{iosemari, jcivera }@unizar.es tion. Davison’s technique elegantly solved a great number



of problems, but there still remained one that occupied references in performance. In this work, we fix the algorithmic
searchers on visual SLAM for some years (Chiuso et aland experimental aspects of the problem and center our at-
2002; Bailey, 2003; Kwok and Dissanayake, 2003; Lemairgention to the effect that landmark parametrization hagsby
et al, 2005): the problem of landmark initialization. own right, on monocular EKF-SLAM performance. For this,
Landmark initialization in monocular SLAM is difficult the paper retakes the problem from a unified perspective that
because, due to the projective nature of the sensor, this cagonsiders points and lines alike (edgelets are not covered)
not provide the distance to the perceived landmarks: th@nd presents and analyzes a compendium of eight different
measurements are rank-deficient and the observation funparametrizations, three for points and five for lines, among
tions are not invertible. This means that a full 3D estimatevhich three are innovative to the best of our knowledge.
of the landmarks just discovered is not available for map-
ping, because the uncertainty in the unobserved degrees L
of freedom (DOF) is infinite and, being the measuremen?l'1 Undelayed landmark initialization (UL)

equations non_—linear, EK_F c_annot def"" With_ it. Early aP-To overcome the drawbacks of delayed initializationgde-
proaches (Davison, 2003; Bailey, 2003; Lemaire et al, 200%\yed landmark initializatiofULI, also known apatrtial in-

took advantage of the sensor motion to achieve fully 3D eSg;aization, Sola et al, 2005) incorporates the partially mea-
timates before actually initializing the landmarks. TlasF

; i ) i sured landmarks at the first observation, that is, before all
ily of methods introducesdelayuntil the sensor motion has of their DOF are determined (aufficiently estimated In

gained enough parallax for triangulation_, during_ which thebearings—only systemeg.a monocular camera, see Fig. 1),
landmarks, not yet mapped, cannot provide any informatioqy) | 4jiows landmarks showing low parallax (those that are
for localization. at remote distances or close to the motion direction of the

Monocular EKF-SLAM reached maturity with the ad- camera) to contribute to SLAM from the first observation,
vent ofundelayed landmark initializatiotechniques (ULI,  providing precious bearing information that helps coristra
explained in more detail in the next section), a need of parne camera orientation. In other words, ULI allows us to ex-
tial initialization firstly stated by Sola et al (2005). They ploit the full field of view of the camera up to the infinity
to ULI is to substitute the unmeasured DOF by a Gaussiapange, regardless of the sensor trajectory, which results i
prior: the objective then is to find a way to allow this prior to 5ccurate localization with very low angular drifts.
possess an infinite uncertainty while still being manageabl ¢ example, when turning a corner in a corridor, a vi-
by the EKF. Sola et al describe a preliminary solution based 5 s AM system with ULI can immediately initialize a
on an exponentially distributed multi-hypotheses depth panoint or two at the other end of the corridor, which have just
rametrization, which was inspired on a previous work byhecome visible and will most likely remain visible along the
Kwok and Dissanayake (2004). The problem was succesgghole corridor. During this time, the conditions for triang
fully solved for the first time with the inverse-depth land- |ation are bad, as there is no significant increase in paralla
mark parametrization (IDP) by Montiel et al (2006), which \yjthout ULI, these landmarks must be ignored with the con-
has become very popular. More recently, Marzorati et akequence of the robot accumulating angular errors that afte
(2008) and Haner and Heyden (2010) have presented nextew meters may become the primary source of filter failure
parametrizations for which the authors claim better perforq e to inconsistency. Thanks to ULI, observing these land-
mances than IDP. Sola (2010) presents a comparative studyarks serves to constrain the camera orientation, meaning
of three parametrizations for point landmarks. that the robot can reach the end of the corridor without ac-

A smaller number of works incorporate line landmarkscumulating angular drift. The total angular drift for a wéol
or segmentso the EKF-SLAM framework. Gee and Mayol |oop closure (say, 4 corridors and 4 corners) is thus lim-
(2006), Smith et al (2006) and Lemaire and Lacroix (2007)ted to only the drift accumulated during the transitions in
use delayed techniques for initialization. Sola et al @f)0 the corners. We encourage the reader to consult (Sola et al,
reports the only ULI solution for infinite lines we are aware 2005; Civera et al, 2008; Sola et al, 2008) for discussions
of, which uses the Pliicker line. Edgelets (very short lineon delayed/undelayed initializations and their imporeanc
fragments associated to a 3D point) were introduced by Ead@ monocular SLAM, and (Bailey et al, 2006; Huang and
and Drummond (2006a), also in an undelayed manner, usir@issanayake, 2007; Huang et al, 2008) for insights on the
IDP as the supporting point type. sources of inconsistency in EKF-SLAM.

Overall, the methods here cited have many points in ULl is an interesting challenge in EKF because the filter
common. Unfortunately, their differences lie in many partsneeds to cope with naturally non-linear equations and huge
of the algorithm other than landmark parametrization, & th uncertainty levels associated with the unmeasured DOF (Fig
evaluation methods and/or in the heterogeneity of the expel). The best solutions accepted so far require some degree of
imental setups. This makes it difficult to tell which aspectsover-parametrization of the landmarks’ states. Two aspect
of the proposed solutions are at the base of the observed dhiave been identified as being beneficial (Civera et al, 2008;
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(a) The back-projection of a pointgives place to a semi-infinite (b) The back-projection of a segmengives place to a semi-
line A where the point landmarf must lie. There is 1 unmea- infinite planer where the line landmark must lie. There are
sured DOF: the point’s depth or distance. To observe it, #me-c 2 unmeasured DOF: the line’s depth and its orientatios.in
era needs to gain parallax by moving away from the Ane The camera gains parallax by moving away from the plane

Fig. 1 The problem of undelayed initialization. Back-projectioidetected features in a monocular image at their first @aen. The unmea-
sured DOF have infinite uncertainty and need to be properlgeteal by Gaussian shapes, and manipulated using reasdingalyfunctions.

Sola et al, 2009b): first, the enormous (potentially inéhit 1.2 Points and straight lines

uncertainty must be represented by a single and well-defined

(i.e., bounded) Gaussian. Second, the observation functiorihe problems of points and infinite straight lines are ssrpri

must be reasonably linear inside all this uncertainty rangegngly similar, and one of the aims of this paper is to make

These two severe requirements can be elegantly fulfillethis similarity evident.

by using parametrizations incorporating the non-obsdevab ~ For points Fig. 1(a), ULl means that landmarks must

DOF proportionally to inverse-distance, as it is done withbe initialized so that the uncertainty in distance — the only

e.g.IDP (Civera et al, 2008), homogeneous points (Marzounmeasurable DOF — covers all the visual ray up to infinity.

rati et al, 2008) and Pliicker lines (Sola et al, 2009b)sThi  Forinfinite straight linesFig. 1(b), ULI requires the ini-

is because, on one hand, a bounded Gaussian in inverd&!l uncertainty to cover 2 unmeasurable DOF: distance up

distance including the origin of coordinates naturally sap to infinity, and all possible orientations.

onto an unbounded uncertainty region including the infinity ~ Bounded lines osegmentpresent additional difficul-

and on the other hand, the inverse-distance is key in prdies. Unlike points, lines can be partially occluded, ang th

jective geometry and the projection equations exploiting iedge detectors in use return therefore unstable endpoints.

become quasi-linear precisely with respect to these highlyhis means that the endpoints of a 3D segment cannot be

uncertain DOF. established from single observations, and that they are gen
erally not re-observable. For these (and other possibe) re
sons, it is common practice to employ the stochastic map
to estimate just the infinite lines supporting the segments,
and to keep track of the segment’s endpoints separately. In
this paper, we focus mainly on the estimation of infinitegine
supporting arbitrarily long segments (not edgelets), arig o

A third aspect that has proved positive is landmark angeneral guidelines are given about the management of the

choring. Although not explicitly stated, anchoring was al-segments’ endpoints.

ready used in the delayed method of Davison (2003), and

later in IDP. Recently, it has been explicitly evaluated by

Sola (2010), who compares three different point parametril.3 Alternative approaches to monocular EKF-SLAM

zations. Anchoring allows the landmark uncertainty to be

referenced to a point close-by (thachoi), which is chosen There exist a significant amount of research investigaktiag t

to be the optical center at initialization time. This allothe  possibilities of using estimation techniques other thafrEK

system to get rid of many linearization errors accumulatedVe find IDP used in Bayesian frameworks such as Fast-

since the start of the map, and to consider instead mainly theLAM2.0 (Eade and Drummond, 2006b) and the unscented

local motion since the initialization of each particulanda ~ Kalman filter (UKF, Sunderhauf et al, 2007; Holmes et al,

mark. More complex anchoring uses the whole camera pos2008). Very recently, methods based on Bundle Adjustment

(position and orientation), achieving a higher degree of deoptimization (BA, Triggs et al, 2000; Engels et al, 2006)

coupling between global and local motions (Gee and Mayolover a sparse set of keyframes on the sequence are gaining

2006; Gee et al, 2008). These last schemes use shared aopularity (Klein and Murray, 2007; Konolige and Agrawal,

choring to keep the map size small, and thus require that th2008). Real-time operation has been achieved by dividing

landmarks be initialized in groups. the SLAM operation into a Bundle Adjustment thread, us-



ing mainly the software in (SBA, Lourakis and Argyros, robocentric SLAM where the local operation of the filter re-
2004) and a camera tracking thread using pairwise geomeaults in significant linearity improvements. A more concise
try. Those keyframe approaches have also been successfudijudy of inconsistency is given by Bailey et al (2006), where
used with edgelets (Klein and Murray, 2008). the normalized estimation error squared (NEES) is averaged

Very recently, (Strasdat et al, 2010) has proved a cleapver a number of conditionally independent Monte Carlo
advantage of keyframe SLAM algorithms: while the domi-runs and used to evaluate consistency. This work shows that
nant computation for EKF-SLAM (a complexi®(n?) in  using ground truth Jacobians guarantees filter consistency
the state covariance update) has to be performed at eveapd thus that inconsistency comes from the unavoidable er-
step, the cost of the non-linear optimization in keyframerors produced when linearizing the system. More theoret-
SLAM is amortized among several frames. As a conseically sound insights have been provided by a remarkable
guence, keyframe algorithms are able to include and meavork by Huang et al (2008), where it is shown that, using the
sure more features in their maps, hence improving the gerauthors’ words, “the observable subspace of the linearized
eral accuracy of the keyframe estimation with respect tsystem is of higher dimension than that of the actual, non-
the EKF one. Then, while there exist EKF-based algorithmdinear one, leading to covariance reductions in directoins
with performances comparable to keyframe-based ones (P#zre state where no information is available, which is a pri-
et al, 2008; Civera, 2009), they present a higher computanary cause of inconsistency”.

tional cost per map landmark. All the studies mentioned above assume 2D implemen-
Still, EKF-SLAM (or other similar approaches based ontations using range-and-bearing sensing and Euclidea poi
filtering and Gaussians such as UKF-SLAM or extended i”parametrizations, exactly as they appear in the origind&-£K
formation filter (EIF)-SLAM) is still widely used by major 5] AM solution. Our case of study differs from them in at
robotics and vision laboratories and is at the core of other | |aast four aspects. The first one is 3D operatia, (6 DOF
calization, mapping or modeling systems, with points (Pazygtion). The second one is that we are dealing with monoc-
etal, 2008; Civera, 2009) (with performances comparable tg|ar observations, which convey rank-deficient informatio
those of SBA), lines (Gee and Mayol, 2006), and even introgpoyt the landmark locations. The third aspect, which is a
ducing planes (Gee et al, 2008). The opinion of the authorgsnsequence of the previous one, is that landmark param-
is that EKF-SLAM can have an important niche of appli- etrization can no longer be the trivial, minimal, Euclidean
cations: as stated in (Strasdat et al, 2010), EKF monoculgjne, hut something more or less complicated and redundant

SLAM presents computational advantages in cases Whekgat seeks an improvement of linearity. The fourth and last
the computational budget is low. This particular case coulgspect is that we also incorporate lines.

be of importance now that smart mobile devices are populat- o ) ith thi h ) h ical
ing our lives. Also, the EKF keeps an uncertainty estimation ur aim with this paper, however, is not a theoretica

for the map features that would be expensive to extract frorﬂmthemat'c"le analysis (in the style especially of (Huang

a keyframe algorithm. This is especially valuable in situa-St al, 2008)) but a performance comparison that visualizes

tions where only a few landmarks are visible, as the filtellhe, imp.act that Iandmgrk parametrization has on Iinearlity,
keeps a coherent estimate thanks to the prediction stage %§tlmatlon error and filter conS|stenc>/. We show that m-
EKF, which is missing in non-linear optimization schemes fonsistency comes mo;tly from covariance over-estimation
Finally, and apart from the fact that EKF-SLAM is the im- rather than error magnitude, which corroborates Huang’s

plementation with the longest tradition, two other techhic conclusions.
reasons in our opinion keep it alive: its (relative) simipyic Because inconsistency has its roots in non-linearity, we
of implementation, and the fact that large maps are usuallgorrelate our evaluation with measurements of the degree
being built by means of small sub-maps, thus circumventingf linearity of each parametrization. We define for this pur-
most of the EKF drawbacks: one is the mentioned computgrose a linearity index that on one hand is pertinent to EKF
tional burden; the other is filter consistency, presenteden (i.e, it accounts for non-linearitgnd uncertainty), and on
following paragraphs. the other hand it defines its metric in the measurement space
and therefore allows us to compare parametrizations having
state representations of different sizes and natures.

1.4 Linearity and EKF consistency The choice of the classical EKF engine for SLAM is not
casual: as a well-known algorithm, it serves the purpose of a
The consistency issues of EKF-SLAM are well known andstandard workbench through which to evaluate performance
have been the subject of numerous studies in the last yeadifferences that have their roots in non-linearity. As agiin
Castellanos et al (2004) showed that inconsistency appeagsting counterpoint, we additionally show with large-scal
even before the computational burden of the problem beexperiments that algorithms robuster to non-linearityhsuc
comes prohibitive, and proposed in (Castellanos et al, 200&s robocentric EKF-SLAM also benefit from the linearity



improvements of the landmark parametrizations proposed ifor EKF-SLAM initialization and updates. We start witu-

this article. clidean points(EP, not suited for ULI) just as a matter of
completeness and to introduce some notation. The discourse
evolves througlhomogeneous poin(siP),anchored homo-

1.5 Contributions geneous point$AHP), andinverse-distance pointdDP),
which we refer to here aanchored modified-polar points
We provide several contributions: (AMPP) for reasons that will be explained soon.

1. A compendium of eight landmark parametrizations for
ULL, three for points (homogeneous points HP, anchored _ )
homogeneous points AHP, and anchored modified-polaf-1 Euclidean points (EP)
points AMPP) and five for lines (Plucker lines PL, an- ) ) ) S )
chored Pliicker lines APL, homogeneous-points lined* Euclidean pointp (EP, Fig. 2(a)) is trivially coded with
HPL, anchored homogeneous-points lines AHPL, andNrée Cartesian coordinates
anchored modified-polar-points lines AMPPL). Three of
these parametrizations (APL, HPL and AMPPL) are in-LEP =P =
novative to the best of our knowledge.

2. A unified methodology to tackle all eight parametri-
zations emphasizing the two keys to satisfactory ULI,
namely landmark anchoring and inverse-distance beha
ior.

3. An analytical measure of linearity of multi-dimensiona
functions that takes into account the time-varying sup- T 5
port of probability. u=KR (p-T)eP, 1

4. A statistical evaluation of root mean squared (RMS) er- . . . .
rors and average normalized estimation error square hI_Ch we use [o introduce some notapon. Qnd_erllned fents

indicate homogeneous coordinates in projective sp&tes

(NEES) consistency, based on Monte-Carlo simulation . LS .
K is the intrinsic matrix,

[xyz}—reﬂ@,

where we uselyayp to represent a landmark of type
NAME

_ Transformation to camera frame and perspective (pin-
hole) projection are performed with the well-known expres-
Ision

runs.
5. Abenchmark with real outdoors imagery of the point pa- ow 0 up
rametrizations on a robocentric SLAM implementation,K & [ 0 ay vo] ; (2)
showing that our proposed solutions achieve error lev- 0 0 1

els typical of state-of-the-art SLAM based on non-linear

optimization. R = R(Q) andT are the rotation matrix and the translation

vector defining the camera franig which is coded by the
vectorC = (T, Q), Q being an orientation representation of
1.6 Outline our choice suitable for EKF filtering.
Euclidean points lead to severely non-linear observation

This paper is organized as follows. In Section 2 we defunctions in bearings-only systems and are not suited for
scribe three parametrizations for points and give details oundelayed initialization, as it has been extensively demon
the necessary algebra to support them. In Section 3 we rétrated, (Chiuso et al, 2002; Bailey, 2003; Davison, 2003;
peat the process with five types of infinite lines. Section 4wok and Dissanayake, 2004; Eade and Drummond, 2006b;
describes the initialization and updating proceduresii@ec Sola et al, 2008) and most particularly (Sola et al, 2005;
5 describes the methods we use for linearity and consistenéyivera et al, 2008). In brief, the problem of ULI with EP
evaluation, with simulation results in Section 6. Furtheer r can be explained as follows. In EKF, the requirements of
sults with real images are presented in Section 7. The papé#nction linearity must hold inside the whole uncertairgy r
continues with a discussion in Section 8 and the conclusiorgion of the state variable. Because in Euclidean paranaetriz

in Section 9. A final appendix gives accessory details on sedions the uncertainty region of partially observed landksar
ments endpoints management. is unbounded (it reaches the infinity in parameter space), th

observation functions’ linear approximation should hald f
a whole unbounded interval, and this is impossible.

2 Parametrizations for 3D points : : : : —
1 We use normalized quaternions for encoding orientatioriniya

. . . . because of the absence of gimbal lock, and because theabiliela-
This section presents some parametrizations for 3D point§ons appearing in the expression of the rotation matrixartale com-

with their projection and back-projection operations rezed putation of Jacobians very easy.
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Fig. 2 Point parametrizations. (a) EP is minimal but not suitedfbt. (b,c) HP and AHP do not require to be a unit vector. (d) In AMPP the

observed ray is coded by two angles: the derived directiatovés unitary and henceis exactly inverse-distance. The anchor pgiptin AHP
and AMPP corresponds to the optical center at initializatime.

2.2 Homogeneous points (HP)

Remark 1 (Inverse-distanc&yYhen the pointis expressedin

A homogeneous poifHP, Fig. 2(b)) is coded by a 4-vector
in projective spac®3. It is composed of a 3D vectan and
a scalap (usually referred to as tHeomogeneous pgrt

m

£::
HPE|:p

]:[mmmymzp]TE]P’SCR4. 3)
A HP refers to the following EP:

p=m/p. 4

the camera frame, the vectai corresponds to a director
vector of the observed optical ray, and the scaldepends
linearly with the inverse of the distanekefrom the optical
center to the 3D point,

p = |ml/d. (%)

The unbounded distance uncertainty, which spans from a
minimal distanced,,,;, to infinity, is transformed into a
bounded intervap € (0, ||m||/dmqn] In parameter space.
This is of central importance as this is precisely the factor
that will allow us to use such parametrization for ULI (see

A|th0ugh HP have been 0n|y recenﬂy introduced for mo-Section 4.2 for further justification and details). The same
nocular EKF-SLAM by Marzorati et al (2008), they have concept of inverse-distance is found in all the parametriza
been extensively used in computer vision for years. In hotions described here (except of course EP), even the ones for
mogeneous coordinates, a point in 3D space is representd@es.

by an equivalence class, under proportionality transfoahs

a 4-vector(im, p). Based on this equivalence several canon-

ical choices are possible. The chojee= 1 is the original
Euclidean point representation; the choieg = 1 is the
conventional inverse-depth choice; and the chdieg| = 1

is the inverse-distance choice. Note that the last two are n& —

absolutely equivalent, although they are very similar.ikénl

Homogeneous points have the additional interesting
property of presenting a bi-linear frame-transformatiguae
tion:

RT
Hp© £ [0 J pc. (6)

depth (or inverse-depth), which is defined with respect to 4/here the super-inde- indicates the local framé where

particular direction in space, inverse-distance has tharad
tage of being isotropic, that is, its properties are indejgen
of the orientation of the reference frame.

the pointis referenced to, aiflis the homogeneous motion
matrix specifying this frame.
Homogeneous points project into perspective cameras

In this paper, however, we do not make a canonicaf¢cording to

choice, and let the four parameterspfree to move to the

values determined by the different steps of the EKF esti

mator? In HP we rather exploit the fact that the scafeis

u=Pp=KPH 'p,

(7)

with P £ KP,H !, and wheréP, is the canonical projec-

proportional toinverse-distance, as stressed in the followingtion matrix

remark.

1000
0100
0010

Py £

2 In fact, we make use of other kinds of redundancy in our param-This can be expressed in termsTgfR, m andp,

etrizations, with very positive results. Refer to SectiofoB further
discussion on redundant parametrizations in EKF.

u=KR"(m—Tp) e P?, (8)



which is linear inp. Notice that when the point is expressed (12)
in camera framep® = (m©, o), only the non-homoge-
neous parin® appears in the projection expression, An AHP refers to the following EP:
u= K'mc ) (9)
, _ S P=Po+m/p. (13)
meaning that 1 DOF, the point’s range intrinsically con-
tained inp®, is not measurable. Transformation to camera frame and projection resume to
On back-projection, the observed pan© in camera
frame is obtained by just inverting (9), u—=KRT (m —(T- po)p) cP?. (14)
m“ =K 'u. (10)

The non-observed pagt cannot be obtained from any data
in the system, and must be provided as prior (see Section 4Remark 3 (Landmark anchoringdnchoring the landmarks
about defining Gaussian priors appropriate for EKF). Overat the optical center at initialization time has the effefct o
all, the back-projection and frame-transformation coniypos decoupling the uncertainty of the term multiplying the most
tion necessary for landmark initialization (see Sectio® 4. uncertain parameter, the inverse-distancEhis term wash

for the initialization algorithm) is performed with in HP and has becom& —py) in AHP —see (8) and (14). It
. . c is easily seen that the uncertainty(df — po) is small after
Lyp=p= {m] —H [K CH] - {RK u Tp ] , initialization, while the current camera pogés not far from
I P P the anchomp, and their cross-correlation is significant. See

(11)  Remark 2 for the unanchored case, and Section 5.1 for the
wherepC depends inversely with the distanéeto the cam- impact that uncertainty has on the degree of linearity seen
era, viap® = ||K~'u||/d". It must be provided as prior. by EKF.

Remark 2 (Inverse-distance and frame transformation)
HP, the interpretation o as the inverse-distance from the ,
point to the camera is lost after frame transformation (6)Performed with
as p becomes an inverse-distance to the origin of coordi-

The back-projection and transformation composition is

nates. Due to the bilinear character of this transformation Po 1:1
this might have more or less adverse effects on the perforQAHP = |m = RKC up (15)
mance of tools such as the EKF (which demand reason- P P

ably linear systems). On one hand, whie (that is, rota-

tion R and translationT) is accurately estimatedle, after ~ Wherep® must be provided as prior; its proportionality to
small camera motions, bilinearity can be considered quasinverse-distance is given by = K~ "u]|/d.

linearity and the system is expected to work. On the other

hand, wherH is no longer accuratég., after large camera

motions, the system is prone to failure. See also Remark 32 4 Anchored modified-polar points (AMPP)

We lighten the previous AHP from 7 to 6 parameters by en-
coding the direction vectom with just elevation and az-
imuth anglege, «) of the observed optical ray joining, to
nP- When these angles are appended with the inverse of the
distancep = 1/d, the result is a 3D point in modified-polar
coordinates(e, «, 1/d). Adding the anchop, leads to the
anchored modified-polar poifAMPP, Civera et al, 2008,
Fig. 2(d)), coded by the 6-vector

2.3 Anchored homogeneous points (AHP)

We add an anchor to the HP parametrization to improve li
earity, as it is done in the well-known inverse-depth param
etrization (IDP, Civera et al, 2008), which we will see later
Anchoring the HP means referencing it to a pgitin 3D
space different from the origin (Fig. 2(c)). Thachor point
Po is chosen to be the optical center at initialization time.

This leads to thenchored homogeneous po{&HP, Sola, Po T G
; : ; L = |(e,a)| = [0 yo 20 e p] €R°. (16)
2010, Fig. 2(c)), parametrized with the 7-vector AMPP )
p
Po T
Lagp= |m| = [a:o Yo 20 Mg My M, p} eR.

p



3.1 Plucker lines (PL)
Remark 4 (Inverse-depth point#) this article we refer to

the originally named “inverse depth points” (IDP) in (Ciger Thijs sub-section devoted to the Pliicker line is long. We
etal, 2008; Eade and Drummond, 2006bgeshored modi-  decided to include all this material because, for the sake
fied-polar point{AMPP). There is absolutely no difference of providing a coherent picture, it is important to hightigh
between IDP and AMPP, and the name change is justifieghany interesting connections between homogeneous points
by two facts: on one hand, our name better explains the ngHp) and Plucker lines (PL), notably the existence of bilin
ture of the parametrization as it recalls the previously eXgar transformation and projection equations reprodutieg t
isting “modified polar coordinates” term (Aidala and Ham- strycture of those of HP, and the inverse-distance behavior
mel, 1983, and possibly earlier). On the other hand, all oupf the homogeneous part of the Pliicker vector. These con-
parametrizations share the concept of inverse-depth {or ithections clearly arise with the adoption of a discourse that
verse-distance), rendering the term “IDP” ambiguous angetraces the one we used for HP. They allow us to propose

non-informative.

An AMPP refers to the following EP:
p=po+mi(ea)/p, 17)
wherem* (g, «) is a unit vector in the direction dt, «),

cos(e) cos(a)
cos(e) sin(«)
sin(e)

m*(e,a) =

(18)

the Plucker line as an interesting starting candidateridied
layed initialization of lines in monocular EKF-SLAM. Most
of the material here can be found in (Sola et al, 2009b).
The geometry of the Plucker line is taken from (Bartoli and
Sturm, 2001).

3.1.1 The Ricker coordinates

Transformation to camera frame and pin-hole projectiorf* i€ in PP can be defined from two pointsandb of the

to the homogeneous plane are composed to give

u=KR" (m*(e,a) = (T = po)p) - (19)

line by thePlucker matrix

L=ba' —ab' e R¥*, (22)

The back-projection and transformation composition is

performed with

Po T
Lavpp = |(g,0) = |0 (RK™a)| , (20)
P p©

wherep* (m) gives elevation and azimuth angles«) of a
director vectotm = (mg, my, m.),

arctan(m.//m2 +mz2)

9 imemema=|

«

arctan(my /my)
(21)

The parametep® is now exactly the inverse-distan¢gd
becausen* is unitary. It must be provided as prior.

3 Parametrizations for infinite straight 3D lines

witha = (a, a) € P? and the same fds. This is adx4 skew-
symmetric matrix (with 12 off-diagonal entriég = —[;;)
subject to théPlucker constraint
det(L) =0. (23)
The Plucker matrix is independent of the two selected goint
of the line (more exactly, any two points of the same line
give place to a matriX.’ ~ L, i.e., equivalent up to scale).
This line is coded as a homogeneous 6-vettey € P°
with the so calledPlicker coordinatesThese coordinates
are any linearly-independent selection of the enttgg,
and have been defined in the literature in a number of dif-
ferent ways, some of them more fortunate (intuitive, easy to
understand or manipulate) than others. In order to make the
similarities with HP visible, it is handy to choose the rep-
resentation suggested by Bartoli and Sturm (2001), that we

This section mimics the structure of Section 2, now forname here thélicker |ine(PL’ introduced to monocular
the case of infinite straight lines. We remark the numergkF-SLAM by Lemaire and Lacroix (2007), and then by

ous parallelisms that can be established among them, angh|3 et al (2009b) implementing ULI, Fig. 3(a)),
also between points and lines. We start with a quite ex-

haustive introduction to th@lucker line (PL), which be-

haves surprisingly similar to HP, and where the concept ofPL =

{S] = [nz Ny Ny Vg Uy UZ]T eP’CR® . (24)

inverse-distance is associated to a 3D vector instead of a

scalar. The discourse evolves through déimehored Plicker
line (APL), the homogeneous-points lingHPL), the an-
chored homogeneous-points lig®HPL), and theanchored
modified-polar-points linéAMPPL).

which corresponds to writing the Pliicker matfas

L= [[H]KFB’}’ n,veR?,

'

(25)



T =

L L
2O
(a) Plucker line (PL). The lin&€ and the origin® define the (b) Back-projection of a Plucker line. The prigrfor initiali-
support planer. zation is expressed in the bage; , e }.

Fig. 3 Geometrical interpretations of the Plicker line, withlbacojection details. The 3-vecteris not observable at initialization time. Its initial
covariance, however, must be defined in the plahéy means of a 2D Gaussian priér See Fig. 10 for further details.

with [n],, the skew-symmetric matrix associated with the3.1.2 Frame transformations and projection
cross-productife., [n], m =n x m),
Itis easy to see, via (6) and (22), that the Plicker matrix is

0 —n, n, .
ml, 2 |n o _;’z . (26) transformed according to
—ny ng 0

L=HL“HT.

This choice and the definition (22) allow us to write

n = axb (27)  This expression s linear in the component&.6fand there-
(28) fore alinear expression exists for its vector countergai.
Having definedCp;, = (n,v), the expression of the trans-
formation is amazingly simple (Bartoli and Sturm, 2001):

v = ab —ba,
with which the Plicker constraint becomes the orthogonali
conditionn v = 0.
The Plucker coordinates, when defined as in (27-28), C
. . . . . . C A R [T]x R n
admit a comprehensible geometrical interpretation (in thdr =H-Lpr = | g° || c| - (29)

Euclidean sense, Fig. 3(a)):
— The vectom is a vector normal to the plamecontaining | N€ inverse transformation is performed with

the line£ (hence the points andb) and the originO. RT _RT[T
— The vectorv is a director vector of the line, oriented £$, = H'-Lp;, = { 0 a RT[ ]X} [n} (30)
fromatob.

— The ratio|\n_||/|\v|| is the I_Eu_clidean orthogonal distance Similarly, the Plucker matrix is projected into a pin-hole
d from the lineL to the originO. camera according to

— The point of the line closest to the origin (at the distance
d) is given byq = (vxn)/|v|]? € R? orq = (vx N, =P-LP'
n,v'v) € P3. x ’
— The Plucker constraint trivially says that | v. which is again linear ifl. (see (26) for the meaning @ ).
The corresponding linear expression for the projectediine
Remark 5 (Rlicker and inverse-distancéjhe third property homogeneous coordinatds; P?, is also very simple:
above, saying = ||n||/||v||, is crucial for undelayed initial-
ization in SLAM, notably because of the inverse-distancd = P-Lpr = K-Po-H ' -Lpr (31)
behavior of the sub-vector. This is not possible with the . o .
Euclidean Pliicker coordinatés = (n, u) in (Lemaire and with intrinsic and canonical projection Plucker matrices

Lacroix, 2007) because its director vectois normalized,

. T aw 0 0 100000
i.e, [[u| = 1 and hencel = ||n||. Iqstead (_)f normallzmg K=| 0 a o0 |, Py=|010000
v (or u), it would have been more interesting to normalize — QU — VD Qg gy 001000

n, yielding an exact inverse-distange| = 1/d. Anyway, _ o
normalization is not really necessary: as we will see in thisl "€ Whole transformation and projection process (31) can

paper, just proportionality to inverse-distance is enciogh € expressed in terms @t R, n andv,

achieving ULI. See also Remark 6. T
I1=K-R'-(n—Txw). (32)
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Notice that when the line is expressed in camera frame, AB, B N\ Da=sa/lal?
£, = (n¢,v©), only the plane’s normah® appears in o T
the projection expression, unit circle ——— Ba 5 A 5
/ B e
[l C el
1=Kn", 33 ) , ez
(33) — \
. . . . C S~e -7
meaning that 2 DOF, the line’s range and orientation con- 1Be Wye
. . A B
tained inv®, are not measurable. el
We can now fully observe the revealing parallelisms be- Ba=(04,02) Bp=(1,0) Bc=(0,-2)

tween PL and HP by comparing equations (29) with (6), (31):ig. 4 Different lines in the representation plan€, defined by the

with (7), (32) with (8) and (33) with (9). Roughly speaking,
the vectom in PL plays the role ofn in HP, andv plays the
role of p. We will exploit this fact to achieve ULI operation.

3.1.3 Pin-hole back-projection

A segmenl detected in an imagdg uniquely determines the
planer® containing the 3D line and the optical center (Fig.
3(b)). The plane’s normal in camera framg;, constitutes

the measured part; it is obtained by simply inverting (33),
nc=K""'1. (34)

The director vector* is meant to lie on the plane®

base{ei, ez} in camera frame, as a function of3. The directione;
is parallel to the image plane. Giveh obtain the pointD = 3/|| 5|2
and pass a line over it in the direction orthogonalstoThree exam-
ples: first, the lineA is defined by34 = (0.4, 0.2); its closest point

to Cis D4 = (2,1), at a distanca/||84]| = ||Dal|| = V/5; it has
directionv§ = (0.4e1,0.2e2). Second, the line3 is parallel to the
image plane, at a distance of||g|| = ||Dg|| = 1 from the optical

centerC. And third, the lineC' is orthogonal to the detected segment
in the image (the image plane is not shown in this figure, pleater

to Fig. 3(b)). Notice that the lin€ ¢ is generally not orthogonal to the
image plane, because the platfeis generally not orthogonal to it.

— B8 = (p1, B2) is aline in the direction of /32, —51) pass-
ing over the pointD = 3/|3||* which is the point of the
line closest to the optical center.

and has therefore only 2 DOF, which are not measured. We- The orthogonal Euclidean distance from the line to the
need to isolate them to be able to provide the necessary optical centelC is given byd = 1/||3||.

Gaussian prior for initialization. For this, we consider

Fig. 4 shows some examples of parametgend their

to be generated by a linear combination of the vectors of aBorresponding lines in the representation plafe

orthogonal bas& = [e;, e;] of the planer, i.e.,

vC = Bi-e1 + Ba-eq, B1,B2€R,

with {e;, ez, n®} mutually orthogonal. Doing = (51, 32) €
R? we get the matrix form
vE=E-3, (35)
andv® ¢ 7€ for any value of3. The baséE spans the null
space om®, thus the Pliicker constraint | v is satisfied
by construction.

The mutual orthogonality condition betwegey , e, n“}
gives us some freedom of choice for the bEsé-or conve-
nience, we arbitrarily buil@ so that|| 3|| is exactly inverse-
distance and; is parallel to the image plane. This yields

T

C_nfo C
e = [nz ny } HnCH and ey, = L>Z631 . (36)
(n§)? + (n5)? €l

With this base choice the vect@radmits the following
geometrical interpretation:

— B = (01,0)isaline parallel td, thus to the image plane,
passing over the poidd = (1/54,0).
— 8 = (0,52) is a line perpendicular td (but gener-

Remark 6 (Role of) The planais-space is well-suited for
defining our Gaussian prior. Wheéh— (0, 0), the line tends
to infinity. Its orientation is given by the relative strehgif

(1 with respect tgs,, and it easily covers the full circumfer-
ence. The valuég|| is the inverse of the Euclidean distance
from the line to the origin. When assigning a prmdf to 5

at initialization time (see Fig. 10 in Section 4 on initiatig
the pdf of 3), this will be properly mapped to the 3D space
as a planapdf on the planer®. The support of high prob-
ability of this pdf covers from a specified minimal distance
to infinity.

Summarizing, back-projection and transformationis per-
formed by composing (29), (34) and (35), yielding

=[] =[] - |

Ej
wheres must be provided as prior.

RK—'1+ TxRES
RES ’
(37)

3.2 Anchored Plucker lines (APL)

ally not to the image plane), passing over the pointAs we did with points, we add an anchor to the Plucker

D =(0,1/52).

parametrization to improve linearity. Ttaachored Plicker
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Fig. 5 Anchored Pliicker line (APL).

line (APL, introduced here for the first time, Fig. 5) is then

the 9-vector:

Po
n| eR?.
v

Lapr = (38)

[mall/p2

’bl ~<

| R N

Fig. 6 Homogeneous-points line (HPL) defined with two HP that sup-
port it.

Transformation and pin-hole projection require the pro-

jection of the two support pointse., for i € {1, 2},

Transformation and projection are accomplished by tran§his €xpression (which is obviously equal to HP's (8)) may
forming the line to the camera frame, unanchoring it, and®® prgctpal to de§|gn appropriate updating algor|thm-$ as|
projecting it into the pin-hole camera. This can be done irffontains information about the segment’s support points in

one single expression with:

1=K-R"-(n— (T —po)xv) € P?, (39)

in which we notice:

— The linear character with respectiio

— For accurate estimates OF — pg), which is true for ob-
servations shortly after initialization, the linear chetea
also with respect to the non-obserwedvhich addition-
ally exhibits inverse-distance behavior.

Back-projection and transformation resume to

-
RK-11| |
RES

Lapr = (40)

wheres must be provided as prior.

3.3 Homogeneous-points lines (HPL)

the image. However, for the sake of comparing HPL against
other line parametrizations, we join the two projected f®in
into a homogeneous 2D line,

l=u, xu,. (42)
This yields after a few arrangemehts
1= ICRT((ml ><m2) —Tx(p1m2 —pgml)) . (43)

This last expression is important in the sense that it al-
lows us to observe the parallelisms between parametriza-
tions. Comparing HPL (43) against PL (32), and remember-
ing equations (27-28) defining the Plicker sub-vectors, we
observe that:

— The producin; xm; is a vector orthogonal to the plane
m, and it can be identified with the PL sub-vector

— The term(p;ms— pom, ) is a vector joining the two sup-
port points of the line. It is therefore its director vector
and can be identified with the PL sub-vector

This and the following parametrizations are based on the fac — With these two identifications, equations (32) and (43)
that a line in 3D space can be represented by two points sup- coincide (using (27-28) this coincidence can be easily
porting it. We will use the point parametrizations explored  proved to hold exactly).
in Section 2 to build lines, in the hope that this will preserv
most of the properties of the formers.

A homogeneous-points lingiPL, introduced here for
the first time, Fig. 6) is coded by two HP that support it:

Obtaining the expression for back-projection and trans-
formation should be trivial after the one used for HP. See
Table 1 in page 12 for details.

3 To prove (43) we use the distributive property of the crasspct,

m
! the identity(Ma)x(Mb) = det(M)M™ T (axb), the fact that regular
LupL = P c RS . (41)  and Plicker intrinsic matrices are related By« K~ T, and remind
myo thatl € P? and therefore it remains equivalent under proportionality

P2 transforms.
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Table 1 Summary of landmark parametrizations with their main malaifions

Lmk (size) | back-projection + transformation — g() transformation + projection — h()
EP (3) p=tRKlu+T u=KRT(p—-T)
HP (4) (’;‘) - (RK by T”C) u=KRT(m~Tp)
(2] (rs)
AHP (7) m | = | RK lu u=KR" (m —(T - po)p)
P p©
Po T
AMPP (6) ((8,04)) = (M*(RK12)> u=KRT(m* — (T - po)p)
P p°
-1
PL (6) (3) = (R’C 1R+E;X REB) 1= KRT(n— Txv)
o) T
APL (9) (n) = (R/Cll) 1=KRT (n— (T —po)xv)
v RESA
mi RK’lg1 + Tp%
C
HPL (8) oo | = | R 100, TS 1= KRT ((my xmz) — Tx (map1 —mip2))
P2 S
Po T
m; RKilg1
AHPL (11) p1 | = p% 1=KRT ((m1 xmz) — (T — po) X (ma2p1 — mlpg))
mo RK’lg2
p2 pS
Po T
(e1, 1) p*(RK™ ')
AMPPL (9) Pl = 0§ 1=KRT((mj xm3) — (T — po) x (mjp1 — mJp2))
(g2, a2) p*(RK™'uy)
p2 S
3.4 Anchored homogeneous-points lines (AHPL) 3.5 Anchored modified-polar-points lines (AMPPL)

The anchored homogeneous-points liGgHPL, used by The anchored modified-polar-points linBAMPPL, intro-
Smith et al (2006) with delayed initialization, and intro- duced here for the first time, Fig. 7(b)) is coded by two
duced here for the first time implementing ULI, Fig. 7(a)) AMPP that support it, which share a common anchor:

can be built either by adding an anchor to the HPL or by

joining two AHP with a shared anchor: (alp?xl)
LavprrL = | p1 eRY. (46)
PO (52, 042)
ml P2
Lagpr = |p1| €R™. (44) . o
my Transformation and projection resume to
P2 1= /cRT((m;xm;)_(T_po)x(plm;_pgm;)), (47)

Transformation and pin-hole projection require the pro\where we used the shortauit! £ m*(¢;, a;), which corre-
jection of the two support points, andu,, which are joined  sponds to the trigonometric transform (18).
into a homogeneous link= u, xu,. As before, this can be See Table 1 in page 12 for the back-projection and trans-
rearranged as formation equation.

_ T _ _ _
I=AR ((mlme) (T=po)x(p1m, mel)) - 49 3.6 Final comment - points and lines

See Table 1 in page 12 for the back-projection and transA/e summarize in Table 1 all points and lines parametriza-
formation equation. tions with their main manipulation expressions. On comple-
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[[m2|l/p2

(a) Anchored homogeneous-points line (AHPL) (b) Anchored modified-polar-points line (AMPPL)

Fig. 7 Anchored point-supported lines. The lines are defined bysuaport points like the ones in Section 2. The anchor is comtadoth
points.

RECTANGULAR )

POINT-SUPPORTED
DIRECT ENCODING

POLAR

DISTANCE INVERSE-DISTANCE

UNANCHORED s ANCHORED

Fig. 8 Links between all proposed parametrizations and more. Rbaxes are points; square boxes are lines. Single-stral@esdpoxes are
directly-coded lines. Double-stroke square boxes aretyzuipported lines. Gray boxes are anchored parametnizatirrows indicate the links
that we established within the discourse. The dashed amdases all parametrizations benchmarked in this paper.eSatimer possible pa-
rametrizations, in thin line, have not been studied hereréttare some repeated acronyms): polar pointi(BP|s, «, d]), modified-polar point
(MPP,[e, o, p]); the point-supported lines: Euclidean-points line (ERL, y1, 21, 2, y2, 22]), polar-points line (PPUg1, a1, d1, €2, a2, dz2]), and
modified-polar-points line (MPPL); and the directly-codees: polar line (PL]¢, ¢, «, d]), modified-polar line (MPL[¢, ¢, a, p]), and anchored
modified-polar line (AMPL). There is no such thing as a digecbded Euclidean line (EL). Elements in the first columntfwdashed boxes)
do not benefit from the inverse-distance property and aresumited for undelayed initialization. Minimal paramettioas are marked with an
asterisk.

tion of their descriptions we have seen many parallelismg Landmark initialization and updates

that should help building a coherent picture of a number of

parametrizations suited for undelayed initialization in-m

nocular EKF-SLAM. These relations are represented in Fig. o . )

8. We have seen anchored and unanchored representatiod§delayed landmarkiinitialization with partial measuretse
We have seen the surprising similarities between homogdhimics the algorithm for full measurements and incorpo-
neous points and Pliicker lines. We have highlighted the pafétes the unmeasured magnitudes as Gaussian priors. We
allelisms between point-supported and Pliicker-bases lin first detail the way we express physical measurements on
We have finally situated the modified-polar parametrization the image plane, and the way to define the unmeasured pri-
as lightened versions of homogeneous entities. The figur®'s: We finally proceed with details on the |n|t|gllzat|OMan
shows further parametrizations that fall out of our interes UPdating procedures related to the EKF machinery. For the

refer to the figure’s caption for further justification. initialization and updates of the segments endpoints, but o
the Kalman filter, please refer to App. 9. (For details on cam-

era motion models, refer &g.(Davison, 2003, for constant
velocity), (Sola, 2007, for odometry) or (Piniés et al0Z0Q
for inertial aiding).)
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4.1 2D measurements in the image plane

The previous discourse assumed homogeneous parametri-
zations of points and lines in the projective image pl&he
We detail here how to obtain them from real point and line
measurements defined in the Euclidean pixels image. Unfor-
tunately, going from homogeneous space to Euclidean can
only be made at the price of some linearity loss. We decou-
pled the two stages of projection to the homogeneous plane
and transformation to Euclidean because only projectien de _
pends on the landmark parametrization. Transformation t§'9: 9 Inverse-distancepdf for HP, AHP, AMPP, HPL, AHPL and
MPPL. A Gaussiam(p) = N(p — p,o2) is defined in inverse-dis-
Euclidean only depends on the generic type of landmarkgnce (vertical axes). We have ample choice: in one extreoiid(
that s, if it is a point or a line. n = 0) we may define it so thgt = 0; the other extreme (dotted,
n = 2) takesp— 20, = 0. In all cases, we haug + 20,) = K/dpmin.-

) o ) _ They result inpdfsin distance (bottom) that cover from a minimal dis-
Points: A 2D point is measured as two Cartesian coordi-tanced,;,, to infinity. K is just a proportionality constarg,g. K = 1

nates in pixel space, and modeled as a Gaussian variabfer AMPP, ands = K~ u]| for AHP and HP. We can also normalize

Please note that the numeric value of the measurement cdf- 4 tinitialization time and takés = 1, in which case is exactly
equal to inverse-distance.

responds to the mean valueof the distribution:

I 203 B 4

- M ~ N'{a,U}. (48)

B2 4
N/
Its homogeneous counterpart is built with ; .
N

ﬂ - '
u u| (UO
= ~ u U = . 49 AN
(a) Isotropic Gaussiapdf with (b) Non-isotropicpdf penaliz-
Lines: A bounded 2D segment is measured as a 4-vectof"e’s mean atinfinity. ing lines at negative depths.
stacking its two endpoints: Fig. 10 Defining a prior3 ~ N{3; B} for PL and APL. (a) The
isotropic Gaussian witl = (0,0) andB = o3I contains all possible
o 1 Uuo lines at a minimum distance a@f,,;,: it has central symmetry, it in-
8= LJ ~ N{S S} N{ [ ] {0 U] } (50) cludes the origin which represents the line at infinity, ajd,,,, is at

20. For reference, a Gaussian shape is superimposed on tizerttati

. iieor axis to evaluate the probability values at @nd 3. (b) An interesting
The segments homogeneous endpainisused for initial alternative that penalizes lines at the back of the came@agpprox-

ization of point-supported lines, are built like the regula imate just the right-hand half of thadf in (a) (here shadowed) by a
points (Eq. (49)). The homogeneous line, used for initéaliz new Gaussian. A good fit is obtained with= (1/3d,nn,0) and an

tion of Plucker lines, is built with (42), yielding a Gauasi  anisotropic covariancB = diag(c3, ,03,) Withog, = 1/3dpn and

pdf A/{I, L} with 8y = 1/2dmin.
1=1,x1a, (51) o . o
- T T A good practice is to choose = 1, although this choice is
L =[], U], +[u,], Ulmy], . (52) not critical as it will be revealed by the benchmarking. With
n = 1 we obtain
4.2 Defining the unmeasured Gaussian priors p=1/3dmin, 0p=1/3dmin . (55)

For point-supported lines HPL, AHPL and AMPPL, we
jUSt need to stack two stochastically indepengénpriors,
i.e., if we note such prior witt© ~ A'{t; T}, we have

Two basic rules apply to the definition of the prior, beft
for points or3¢ for Plucker lines: the origin must be well
inside the2o support of thepdf, and the minimum consid-
ered distancé,,,;, must (approximately) match the upper _ b g§ 0
20 bound. For points and point-supported lines, this resumefs [p} , T= {0 05}
to (see Fig. 9)

(56)

B Defining the 2D Gaussian prios ~ N{j3;B} for
p—no, =0, 0<n<2 (53)  Pliicker lines PL and APL is a bit trickier, as it is difficutt t
p+20, =1/dnin - (54) express the conditions as straightforward equations ik (
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and (54). We prefer to refer the reader directly to the explaThe complete observation function is therefdrgx) =
nations of Fig. 10. For all the implementations presented i2e(h(x)). Point updates follow the standard EKF-SLAM

this paper we use the solution in Fig. 10(b),

e R T e

(57)

4.3 Landmark initialization

The ULI algorithm valid for all parametrizations is detalle
below.

1. Identify the mapped magnitudes~ N'{x, P}, where

o C — C P— Pcc Pcwu
X=iMml T M T T [ Puc Puwl

with C = (T, Q) the cameraframeard = (L4, ...,Ln)

formulation,
Innovationmean: y = z— h(x) (59)
Innovation covariance: Y = R+ H-P-H' (60)
Kalmangain: K= P-H'.-Y ! (61)
State update: x <+ x+ K-y (62)
Covariance update: P+ P - K-H-P , (63)

with R = U the measurement noise covariance (see (48)),
and the JacobiaHl = 22| .

4.4.2 Line updates

It is convenient to represent the matched segment by its two
endpointss = (u;,uz) € R*. Due to the aperture problem,
only the measurement components that are orthogonal to the

the set of mapped landmarks (points, lines or a mixtur@XpeCted line projection can be used for correction. There-

of them).

2. ldentify the measurement~ A{z, R} (Section 4.1%
is eitheru or s).

3. Define a Gaussian priar ~ N{7; II} for the unmea-
sured DOF (Section 4.2; is eitherp®, t© or 5°).

fore, a proper measurement space that accounts for this or-
thogonality and these distances needs to be defined.

We define the measurement space as the set of 2-vectors
containing the signed orthogonal distances from the dedect
endpointay; to a linel. This leads to the measurement func-

4. Back-project the Gaussian measurement; get landmafie"

mean and Jacobians

L = g(C,z,7)
dg dg dg
Gc = =< G,= — , Gr= =
¢ dC C,i,ﬁ" dz Cz,7 dm C,z,7

, 2] IT'Hl/ /112 _|_122 c
) B A YRV A
which is in pixels units. If we name this functidn (L, s),
the full observation function is its composition with thepr

R?, (64)

with g() the composition of the measurement-to-homoJection functiong.() in Table 1,
geneous transforms (Section 4.1) with the back-projec-

tion and transformation function (functiops) in Table
1).
5. Compute landmark co- and cross-variances
P;r = GcPccG{ + G,RG, + G,IIG]
Prx = GcPcx = Ge[Pcc Pew] -

6. Augment the SLAM map

o Ix P P/,
xe{ﬁ—], P%[ngPu]'

4.4 Landmark updates

4.4.1 Point updates

2= h(x,s) = h(B(x),s) . (65)

The EKF innovationy is defined as the difference be-
tween the actual measurement and the expectation,

y=z—h(X,s).

For the measurement this corresponds to the distances
from the detected endpoints to the detectedligeu; xu,.
Because this linkis precisely defined by the two endpoints,
the measured vector is zero by definition, and we just need
to consider a covariancB = U € R? (see (48)) repre-
senting the pixel noise in just two of the four dimensidns.
The expectation corresponds to the distances (64) to the ex-
pected lind = h(C, x) (Fig. 11). This yields an innovation

y = 0 — h(x,s) with covarianceY = R+ H-P-H'. The

The observation functioh() is the composition of the ones Test of the EKF update is as before.
in Table 1 with the homogeneous-to-Euclidean transform The expressiolR = U is only valid if the pixel noise is defined

h2e(),

z = h2e(u) = [Z;?Zj ER?.

(58)

isotropic viaU = o215, which is most generally the case. Otherwise
we need to computR = HsSH_ with Hs the Jacobian of (64) with
respect to the measured segmentn fact, Hs is such that ifS =
diag(U, U) = 0214 thenR = U = ¢2I5.
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5 Linearity and performance evaluation tools
matched

segment . I .
¢ We present here the analytical and statistical tools used in

this article to evaluate the performances of all paranmeetriz
tions.

predicted line

Fig. 11 Plucker line observation update. Direct measurement @f th . . .
two signed orthogonal distances from the detected endpnhe ex- -1 Analytical measure of linearity
pected (or predicted) line.

The EKF requires high degrees of linearity in the measure-
ment and dynamic model equations. Defining an analytic
measure of linearity allowing us to compare the degrees of
linearity of the observation functions for different pamm
trizations is therefore of clear importance. In (Civeralet a
2008), an analytic linearity index is proposed, based on the
variation in the first derivative of the function inside the
95% probability interval of the most uncertain state variable:
the inverse-distance parameter. This measure is restricte

is of course not the optimal way to proceed, we decided tthanks to the particular symmetries of the problem, to just

leave the method as parallel as possible with the others re—DOF’ and it is difficult to generalize to our amalgam of
P P P arametrizations. Very related to this work, the trace ef th

sented here, so that we can impute the differences in erfoEi : . :
P P essian of the measurement model is proposed in (Eade and

mance exclusively to landmark parametrization — thus not t : o
L . . rummond, 2007) as a measure of the degree of linearity in
algorithmic aspects. Refer to Section 8.2 for further discu . :
sion several nodes of a multi-map SLAM. This second measure
' has the drawback of not incorporating the dimensions of the
uncertainty region.
In EKF, linearity must always be evaluated with respect
to the extension of the probability concentration region of

Landmark over-parametrization, which we have defendethe input variable, which is specified by the covariances ma-
for EKF performance so far, is expensive and should only b&ix. We introduce an analytical linearity index for mults
used when justified. Landmarks should be reparametrized #Put/multiple-output (MIMO) functions which accountsfo
their minimal forms after convergence, that is, when the obthis probability region. As a desirable additional qualibe
servation functions of these minimal forms (tthestination ~Proposed index is defined in the measurement space and
forms) are judged linear enough. therefore allows us to compare parametrizations having dif

For points, the natural choice is to reparametrize to gperent state sizes, and even to compare the degree of tineari
The reparametrization is triggered by the linearity test de©f Points againstlines. As in (Eade and Drummond, 2007), it
scribed in Civera et al (2008), which is very cheap to comJinvolves the computation of the Hessian which concentrates
pute and can be easily adapted to HP, AHP and AMPP. the local degree of non-linearity of a function.

For lines, and because of the need of endpoints, it may We are interested in the complete observation functions
be convenient to choose a non-minimal two-points represer% = h(x), i.e,, the composition of the transformation and
tation £ = (p1, p2) (EPL, see Fig. 8), with 6 parameters. pin-hole projection functiongy() in Table 1, with the ap-

In this case we can use the test for points in Civera et apropriate measurement functions, (58) for points and (64)
(2008), which must hold for both support points. We canfor lines. For concision, we define the state= (C, £), i.e,,
also use any of the minimal representations, which are odnly the pair camera-landmark under consideration, whose
size 4 (see also Fig. 8). Tests for these other line represefstimate in the map is a Gaussiai{x, P}. We denote the
tations might be defined from the linearity indices desatibe measurement and state dimensions with= dim(z) and

in the next section, although these indices are not congeive? = dim(x). In our case we have a fixed = 2, and a

for speed. A compromise that would probably lead to satisvariable10 < n < 18 depending on the selected parametri-
factory operation is to use the test for EPL, which is simplezation.

and does indicate that the line has already converged, and Our linearity index is based on the error in the filter in-
then reparametrize to any other form of our conveniencenovationy = z — h(x) due to linearization. For any mea-
We have not explored these last possibilities. surement, this error corresponds to the propagation error

4.4.3 A first comment about theilleker constraint

When dealing with Pliicker lines PL or APL we do not apply
any kind of correction to enforce the Pliicker constraing. W
ensured its satisfaction during landmark initializatiasith
the specification of the initial covariance in theplane, Sec-
tion 3.1.3, and its validity at any later time is only approxi
mately guaranteed through cross-correlations. Althohgh t

4.5 Landmark re-parametrization
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Them-dimensional vectar belongs to the measurement
space and is therefore expressed, in our case, in pixel units
It can be interpreted as the bias introduced in the EKF in-
novation by the non-linearity of the measurement equation.
e ¢ Its norm, the proposed indek, also in pixels, is zero for

h functions showing a linear behavior inside the probability
region, and positively increasing as the validity of this hy

. pothesis vanishes.

p(x) ; As an example, we illustrate in Fig. 13 the fitness of this

: index for a 2-input, 1-output function. Observe that thecfun
E[x] tion is always the same but the evaluation region changes

Fig. 12 Propagation error of the Gaussian mean due to non- IlnearpOSItlon (the evaluation poirt) and dimensions (the co-

ity. For a given non-linear function(), the propagation error —  vVarianceP), greatly affecting the linearity index.

E[h(x)] — h(E[x]) is large for Gaussians with large varianctbic(k
line, leff) and unnoticeable for narrow Gaussiattsr( line, right).

E[n(x)]

H(EX)

5.2 Monte Carlo RMS errors and consistency evaluation
throughh() of the state’s mean (Fig. 12), given by
N E[h(x)] — h(E[x]) € R™ , (66) For pract?cal r_easons and pecause the full SLAM state vector

is of varying size, we restrict the error and consistency-ana
whereE|e] is the expectation operatare., x = E[x|. This  yses to the state variables representing the robot (or @mer
error is a magnitude expressed in the measurement space. goseC, knowing that consistent localization indicates con-
obtain a computable approximationofve use the Taylor- sistent mapping (Huang and Dissanayake, 2007). We sys-

Young expansion for multi-variate functions applied toleac tematically transform mean and covariances matrix of the

component of i(x), pose to a minimal representation (the orientation is trans-
n formed to the Euler angles) to avoid singularities in the co-
hi(x) = hi(%) + Y JijAx; variance.
+ z; kz; 5 HijeAj Az + o[ Ax %) (67)  5.2.1 RMSE evaluation
J= =

We perform a numbel of Monte Carlo runs. At each time
instantk, we evaluate the root mean square error (RMSE) of
d €ach componeritof the camera pose,

whereAx 2 x — X, Agx; are the components alx, h;
are the components &f(), J;; = gh (x) are the compo-
nents of then x n Jacob|an matrlx of first derivatives, an

Hije 2 21 (%) are the components of the x n x n Hes-

Oxjx
sian tensor of second derivatives. Inserting (67) into éB1d) 1 25 o
ignoringo(|| Ax||2) yields the first-order approximation €k = | 3y > (i —Clo2, (71)

J=1

ZZ

€

)+ Z JijAx; + Z Z HijAwj Axy, whereC; ;. is thei-th component, y, z, roll ¢, pitch6 and

J=1 k=1 yaw ) of the true camera pose at tlnke and CJ K IS its
— hi (i) EKF estimate’s mean corresponding to ghth among the
N Monte Carlo runs.
= ZJUE Aj] + ZZ Hij B[A;Awy] . (68) For visualization purposes, these errors are compared

=1 k=1 against the estimated error given by the filter. We take its

Havmg]E[Ax] = 0 and knowing that the covariance»fis  ayerage over all the Monte Carlo runs,
an >< n matrix given byP £ E[AxAx ], with components
ij £ E[Az; Axy], we obtain

N
. ok = >\ Pli 72)
n o n j=1

. Z Z Hijkpjk . (69) ’

€m j=1k=1 wherePl% . 1S thei-th diagonal component of the estimated
covariances matrix of the camera pose, for fuiand at time

k. The RMSE plots in the Results section will show the true
L=ell2 e RT. (70)  errore, i against the 2-sigma bound given 2y, .

N)I»—A

Finally, taking the norm yields the scalar index
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(a) L = 0.0032 (b) L = 0.2269 (c) L = 0.0014 (d) L = 1.5263

Fig. 13 Linearity indexL of the MISO function: = h(z,y) = x-sin(y) for different probability regions. We illustrate the projen (thick black
of the 2-sigma elliptical bound of the probability regidhif black onto the surface& = {(z,v, z) / = = h(z,y)} (mesh. The more elliptic the
projected shape, the more linear is the function and snhiéeindexL. (a) A tiny probability region gives good linearity and ayamall index.
(b) A large probability region usually obliges the ellipsebtend over the surface, meaning high non-linearity andtregun a large index. (c) If
such a large ellipse falls on a planar region of the surfdeeirtdex drops to show good linearity. (d) An extreme casesof igh non-linearity.

5.2.2 Average NEES evaluation attempt to initialize one landmark per frame. Unstable and
inconsistent landmarks are deleted from the map to avoid
We use the average normalized estimation error squaraflap overpopulation and corruption. Data association grror

(NEES) for evaluating consistency. We follow strictly (Bai are not simulated and therefore data association is perfect
ley et al, 2006), which is in turn following (Bar-Shalom et al

2001, pp. 234-235). After a numh&rof Monte Carlo runs,

the averaged NEES value is defined by 6.2 Evaluation of point parametrizations
N
a1 FiNTpi L ~j We benchmark HP, AHP and AMPP using the same simu-
maE = (C,—C)TP, (C,—C), (73) : ' g
FTN ;( k ’“) e (G ) lated scenario, the same software and the same seeds for the

_ _ o random generator. We start with a description of the simula-
whereCy, is the true camera pose at timand{C;,P;} is  tion conditions, then proceed with the results of the (atiraly

its Gaussian estimate corresponding to fft& among the cal) linearity and (statistical) error and consistencylygses.
N Monte Carlo runs. For 6 DOF an¥ = 25 runs, the

upper and lower bounds of the double-sided 95% probabilit)é 2 1 Simulated scenario
concentration region are given by: o

= X?%Xﬁ)(l —0.975)/25 = 7.432 We simulate a robot performing a circular trajectory in an

n = 2 (1 —0.025)/25 = 4.719 . area_of12 m_><12 m populated with _72 Ianc_imarks forming

- (25x6) a cloister (Fig. 14). The robot receives noisy control irsput

If nx < n for some significant amount of time (more than \yhich are used for the prediction stage of the EKF, fixing

2.5% of the time), the filter is conservativesjf > 77 (als0  the scale factor. One noisy image per control step is gathere

by more that 2.5%), the filter is optimistic and therefore in-,ii 4 single camera heading forward. Three sets of param-

consistent. eters have been used for the tests (see Table 2). In the first
set, the robot makes two turns to the cloister (800 frames

6 Simulation results are processed). The second set uses smaller odometry incre-
ments and perturbations, and the trajectory is limited #® on
6.1 Software and SLAM algorithm quarter of a turn (200 frames). Set 3 is like Set 2 but with a

different inverse-distance prior.
We have made available the software used for simulations
(Sola et al, 2009a). It consists in a 6 DOF EKF-SLAM sys-6.2.2 Visual evaluation
tem written in MATLAB®R), with simulation and 3D graph-
ics capabilities. We provide the accompanying vidpoints.mov  (see on-
The algorithm is organized as an EKF-SLAM with ac- line supplementary material &#lomepages.laas.fr/
tive features search (see Davison et al, 2007, for the actijsola ) showing the three methods running in parallel un-
search), which allows us to optimize information gain with ader the conditions of Set 1.
limited number of updates per frame. At each frame, we per- The differences in behavior are not easily visible in the
form updates to the 10 most informative landmarks. We als@D movies, and we need to zoom in to appreciate incorrect
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0.05

0.04

Linearity index L (pix)
(the lower the better)

Fig. 14 Simulated 3D environment for benchmarking point parametri 0 . . . n
zations. 5 10 15 20 25 30 35
. . Fig. 16 Linearity index for the three point parametrizations dgrihe
Table 2 Simulation parameters first 35 frames of a landmark’s life.
Concept Setl Set 2 Set 3
Img. size 640 x 480 pix
Focal 320 pix, HFOV = 90° Fig. 16 shows the linearity indices of one particular land-
Pix. noise 1 pix mark in order to illustrate the typical behavior. The chosen
Pose step | (8cm,0.9°) (4cm, 0.45°) landmark corresponds to the first landmark initializedrafte
Lin. noise, 1o 0.5cm 0.25cm the camera has completed one quarter of a turn (100 frames).
Ang. noise,lo 0.05° 0.025° This is to ensure that the camera uncertainty at initictirat
< prior (07) = (0.01,0.5) m—1 | (1.0,1.0) m—1 time is not null, and.thereforethat the gffect of apchor.mg c
be observed. The index starts very high (bad linearity) due
— — to th_e_huge uncertainty region. It decay_s rapi_dly_ and r(_ﬁ_ache
o 4 > &b a minimum at about fr_ame_ 25. After this point it stabilizes
+ & to very small values (high linearity).
The index of HP is clearly higher than those of AHP
; Hp é; AHP, AVPP and AMPP, indicating a poorer linearity. The reason, as pre-

viously mentioned, is that setting an anchor propagates the
Fig. 15 3D view of some landmark 3 estimates at the end of the camera uncertainty only from the anchor to the currentloca-

first loop. Inconsistency comes mostly from covariance estamation tion, while HP propagates a wider uncertainty with respect
rather than mean errors, as can be seen by the too smalksliipshe
to a world reference frame.

HP caselgft). See the accompanying video.
It is worth remarking in this figure the low values of the

operation (Fig. 15). We see that HP estimates have too smdl[0P0Sed index, two or three orders of magnitude less than
covariances, a clear sign of overconfidence, and therefof¥Pical image noise or EKF innovations (which we recall
inconsistency. This over-estimation, which is in accomtan have been set to 1 pixel in these simulations). Although it is
with (Huang et al, 2008), is attributed exclusively to pagam t'U€ that linearization errors introduce bias in an EKF-esti
trization differences because the information providetieo Mation, especially because they are of systematic origin, o
filter for HP is exactly the same for all methods. Of the osexperiments show that the value for this bias is small enough
HP runs, one diverged, and 35 landmarks had to be deletd@ 9uarantee a good behavior of the EKF filtering for lo-
due to inconsistent observations (22 of which during the di€al monocular SLAM. The same conclusion can be applied
vergent run). to line-based EKF-SLAM, as the quantitative results for the

We do not observe any significant difference betweeriN€Ss index are similar (see the linearity measures forsline
AHP and AMPP. No landmarks were declared inconsistenf! Fi9- 21).

in any of the 25 runs of AHP and AMPP. Another aspect that is worth remarking is that the lin-

earity index refers to the source of the estimation error at a
6.2.3 Linearity measures given moment. This error accumulates over time following

two mechanisms. The first one is just linear integration. The
The linearity index in section 5.1 has been computed fosecond effect is the effect that heading errors at a givea tim
each measured landmark and for the three parametrizatiohave on the position at a later time, due to translation with
of interest (HP, AHP and AMPP), using the parameters ofnaccurate heading. These accumulated errors are visble a
Set 1. errors in the camera pose, as illustrated in the next section
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10 cm X — y —
HP ¢ 9%
AHP
AMPP
0 200 400 0 200 400 0 200 400
0.5 deg roll _ pitch

0 200 400

Fig. 17 RMS errorse of the three point parametrizations HP (red), AHP (greem) ANMPP (blue), averaged over 25 runs. The &timated
bounds are plotted in thicker line. AHP and AMPP have thedstrgstimated bound and the lowest error, leading to theréssits. See Fig. 18
for the corresponding consistency plots.

6.2.4 Error and consistency evaluation 1000

400

Error and consistency evaluations are based on the roo
mean square error (RMSE) of the camera pose, and the av 200
erage normalized estimation error squared (NEES), both de-
scribed in Section 5. We us& = 25 runs for each ex-  {§
periment, each run with a different seed for the random % 4
generator. The random generator affects several aspects < )
the algorithm, namely the process noises and the measure
ment noises. In parallel, one simulated mobile camera with- 10
out process noise, gathering noiseless images of the envi :
ronment, is used to generate the “ideal” or “perfect” run N ]
against which the other “noisy” runs are compared for er- 2
rors. This ideal run is often referred to in the SLAM litera- _ _
ture asground truth Fig. 18 Consistency of HP (top pIo_t), AHP (bottom) and AMPP (bot-
tom). Average normalized estimation error squared (NEESh® 6
The RMSE and average NEES plots in Figs. 17 and 1®0F vehicle posez,y, z, ¢,6,+]T over 25 runs for 800 frames (2
(please notice the logarithmic vertical scales in the NEESurns) and parameters of Set 1. The dotted horizontal baneke ab-

plots) confirm the results seen for the linearity indices. HFSCiSSas) = 4.719 andy = 7.432 mark thegs% consistency region: if
the average NEES is greater than the upper lipfidr more thare, 5%

behaves poorly, and there is no Signiﬁcant difference beéf the time, the filter estimate is considered inconsist€he vertical

tween AHP and AMPP, except for a tiny but appreciabl@ine marks the loop closure at frame 308. The framed are@sponds

difference in favor of AMPP. Both AHP and AMPP behave to the area covered by Fig. 19.

consistently, certainly with a slight tendency to inconsis

tency, until shortly after the first loop closure. During the

second turn the filter is inconsistent but it does not seem to

degrade too quickly. etry steps and noise are cut in half, reducing the measure-
It is now clearly visible that HP inconsistency comesments innovation, and the filter is bootstrapped with 104and

mostly from covariance overestimation: in the RMSE plotsmarks being initialized at the first frame. Here, we focus on

there is a significant decay of the estimated sigma-valueshe first quarter of the first loop (1/8 of the first run’s length

while the error magnitude is indeed larger but to a smalleto see the moment when the filters loose consistency. The

extent. As all methods process the same amount of informaesults in Fig. 19 show no significant improvement with re-

tion, it must be concluded that overestimation comes fronspect to those of Set 1 (these 200 frames correspond to the

the effect that linearization errors have over the Kalmarfirst 100 frames of Set 1, which have been boxed in Fig. 18):

gains. HP is not good, largely inconsistent, and AHP and AMPP
We tuned the algorithms with the second set of parameare again the ones that behave consistently. Interestingly

ters in order to improve the conditions for linearity: odom- AHP and AMPP have the same average NEES values as the

100

100 200 300 400 500 600 700 800
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Fig. 19 Consistency of HP, AHP and AMPP. Average NEES over 25 0 . . . L "
runs for 200 frames (1/4 turn) and 10 initializations in thistfframe. 5 10 15 20 25 30 35
Solid: parameters of Set 2 with prigp,s,) = (0.01,0.5). Dashed:
parameters of Set 3 with an alternative pripro,) = (1.0, 1.0).

Fig. 21 Linearity index for the five line parametrizations during th
first 35 frames of a landmark’s life, showing the superioeérity of
anchored point-supported lines. Compare with Fig. 16.

Ve 7 AN
/ f\ jsola ) showing the five systems running in parallel. At
\ /‘ first sight all parametrizations seem to work correctly. As w
i / did with points, we use the analytical and numerical tools to
2m N i

~ reveal the differences in performance between parametriza
tions.

The linearity indices are shown in Fig. 21. All indices
Fig. 20 Simulated 3D environments for benchmarking the 5 IinefOIIOW essentially the same pattern as we saw for points.
parametrizations. The robot’s trajectory and the housagoe2con- Moreover, their numerical values are similar for points and
structed are shown. (a) Circular trajectory, camera laplsideways  lines (compare Figs. 16 and 21), suggesting that the index
to the house. (b) Arc trajectory, camera looking forwardh® lhouse. can be used for comparing points against lines. Again, unan-

chored parametrizations are the ones showing the poorest
ones observed in the previous test, showing an important rén€arity. APL is better than all unanchored ones but not
bustness against varying operating conditions. good enngh, _p_rqbgbly bepause the Plucker constraint is

A third test consisted in selecting a different prior for the ©Nly @pplied atinitialization time and not enforced on sbs
unmeasurable inverse-distance. The dashed plots in Fig. f¢/€ntupdates (see Section 8 for a more detailed discussion)
show that AMPP and AHP are almost insensitive to large 1 ne average NEES results are shown in Fig. 22 — please
variations of these parameters, while the contrary must paotice the logarithmic vertical scales. We observe that the
said for HP. It seems, even if for AHP and AMPP the differ-only parametrizations that behave consistently are the an-

ence is small, that the filter behaves better with landmarkghored, point-supported lines AHPL an.d AMPPL.
initialized at (or close to) infinity £ = 0.01m~?) than at The RMSE results are shown in Figs. 23 and 24. The

some close distancg{ = 1m~1). Plucker-based lines behave poorly, especially if not arsdh.
Among the point-supported lines, anchored parametriza-
tions exhibit both smaller errors and larger error estimate
6.3 Evaluation of line parametrizations indicating better consistency. We can say that they inherit
the properties of the point parametrizations they are based
We benchmark PL, APL, HPL, AHPL and AMPPL for lin- on.
earity, RMS errors and average NEES consistency, in two The second scenario (Fig. 20(b)) corresponds to a for-
different scenarios. ward motion, a situation that is more challenging for mo-
The first scenario (Fig. 20(a)) consists of a robot mak-nocular SLAM as the parallax increase is slow and therefore
ing a turn around a wireframe model of a house. Occlusionthe scene observability is weak. The camera looks forward
are not simulated and all the house’s edges are visible. 4Qihd the robot performs an arc of a circle towards the house.
frames are processed, and again only the 10 most informd@he sequence is stopped after 100 frames when the robot is
tive segments are processed at each frame. The cameraaistually inside the house and no more segments are in the
looking sideways to the house and, the house being alwayield of view. In this case we just show the average NEES
visible, there is no loop closure. The simulation paranseterresults for the anchored parametrizations (Fig. 25), ngmel
are equivalent to the ones we used for points in Set 1. APL, AHPL and AMPPL - the rest are clearly inconsistent.
We provide the accompanying vidéoes.mov  (see  The results are equivalent to those of the first scenario{com
online supplementary materialladmepages.laas.fr/ pare to the three corresponding plots in Fig. 22), showing an

~ — _ —9» <«— robot

(@) Circular trajectory. (b) Arc trajectory.
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5cm X y — z
PL
APL ¢ 2
2 0 200 400

0 00 400 0 200 400

™~ 0.3deg roll pitch yaw

0 200 400 0

Fig. 23 Averaged RMS errors of the Plucker-based line parametrizations PL and APLresjdhe2o estimated bounds. Anchoring the Plucker
line helps improving the estimates, but none of these Rltiparametrizations seem to work correctly. See discussi@ection 8 about the
Plicker constraint.

200 400 0 200 400

0.3 deg roll

Fig. 24 Averaged RMS errors of the three point-based line parametrizations HPL, AHPIL ANMPPL against theo estimated bounds. Anchor-
ing has produced both a larggr bound and a smaller errer AHPL and AMPPL behave almost exactly.

important robustness in face of large variations of the operchor to generate ipp = T = 0, with null covariance. We

ating conditions. could then think of dropping it from the parametrization; ob
taining ine.g.the AHP case, pure homogeneous points HP.
This combination of HP and robocentric SLAM constitutes

7 Experimental results exactly the algorithm proposed by Marzorati et al (2008).

7.1 Robocentric EKF-SLAM with points We have run robocentric SLAM using HP, AHP and
AMPP on a sequence of more than 68.000 images taken
An interesting alternative to the algorithm here benchradrk during an outdoors run of over 1600m, covering an area
is robocentric EKF-SLAM (Castellanos et al, 2007; Mar- of some250 mx 250 m (the Bovisa dataset from Rawseeds
zorati et al, 2008; Civera, 2009). Robocentric EKF-SLAM (Bonarini et al, 2006; Ceriani et al, 2009)). Figure 26 shows
performs the composition of the current frame and the locahn aerial view of the covered trajectory, along with two rep-
motion after the landmarks update. This greatly helps reduaesentative images of the sequence. The algorithm is set to
ing linearization errors, improving accuracy and consisye  visual odometry mode, meaning that landmarks exiting the
(Castellanos et al, 2007; Huang et al, 2008). The transformdield of view are deleted. This way, one single EKF can be
tion affects the full landmarks map, with the consequence ofised for the whole run of 1.600m. Furthermore, the algo-
making the robot pos& become the origin at every step, rithm incorporates a 1-point RANSAC outlier rejection step
with null covariance, and hence thebocentricterm. Im-  (Civera et al, 2009) that discards the negative effect intro
mediately after, at initialization time, we have that the an duced by outlier correspondences. With all these features
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(a) RTK-GPS ground trUfh over an aerial Google Maps view

(c) Image from the sequence

Fig. 26 Bovisa urban image sequence data. (a) Ground truth of thiend i8ajectory. (b, c) Two representative images from theisaege.
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Fig. 25 Average NEES over 25 runs for 100 frames (frontal trajegtory
for APL, AHPL and AMPPL. Again, only anchored point-supyatt
lines behave close to consistency.

2 . . . . . . . The results in Fig. 27 show that HP performs much

0 %0 100 150 200 250 300 350 400 worse than AHP and AMPP, agreeing with our previous sim-
Fig. ﬁéggnsisteggy of Pfl-, Qgcl)-,f HPL, AHPLt and AMP:II_H Aver- ylation results. Using HP, the trajectory is off by 167 m in
2?i?cker-basc()e\(/1erlinesn(JSE :r:d API_r;“(]jq(? Sn(()ctmbeehlg\?eaégﬁgiste:rgr? “mean (8.'0% of t he a.rea dimensions) with r?SpECt to RTK-
when anchored. Lines based on homogeneous points (HPeneit CPS (With centimetric accuracy). AMPP derived 20 m, and
as expected from the HP behavior. Anchored point-suppdites ~ AHP only 13 m averaging the three runs. We can draw the
(AHPL and AMPPL) behave similarly and close to consistency. same conclusions as in the previous simulations: anchoring
is the major factor of improvement, and the difference be-
tween modified-polar and homogeneous representations can
be considered negligible.

we can attribute the outcome differences uniquely to land- We observe with this evaluation that the analysis per-
mark parametrization. Three different runs have been madermed in this paper is valid also for this improved EKF-
for each parameterization, each one of them initializing an based estimation algorithm. Known algorithms improving
measuring different features of the sequence, randomly chdhe degree of linearity with respect to classic EKF-SLAM
sen in order to increase independence between runs. aresubmappingwhere a map is divided into a set of local



24

!

\

(a) Average error HP: 167m (b) Average error AHP: 13m (c) Average error AMPP: 20m

1 L 3 1

Fig. 27 Robocentric EKF visual odometry (red) against RTK-GPSdgjeover an outdoors run of around 1.600 m and more than G&@éges.
The figure shows 3 runs for each parameterization. (a) Hibeghooor performances, and the estimated trajectory iByff67 m in average. (b)
AHP completes the run successfully with an averaged drift3sh, an order of magnitude less. (c) AMPP, with an averagidadi20 m, is only
slightly outperformed by AHP. Notice that these resultsiaragreement with the simulation results (figs. 17, 18 andd8gre AMPP and AHP
show a very similar performance and clearly outperform HP.

maps, andobocentric where the map is always referred to supported lines. The most remarkable difference is thelemal
the sensor frame. In both cases the covariance of the locaize of the uncertainty ellipsoids for point-supportec$in
motion (T — py) is small and the effect of anchoring must due to the superior representativeness of these parametriz
be smaller than in the standard formulation. We see with th&ons. This issue is discussed in more detail in Section 8.
current experiment that even in these cases anchoringj is sti

necessary. Table 3 Reconstruction accuracy of the segments maps. DTP: destanc
to plane; ATP: angle to plane; ABP: angle between planes.

| | PL [ APL | HPL | AHPL | AMPPL

DTP (lo,mm)| 75 | 27 | 31 | 16 15
ATP (1o, deg) | 1.02 | 054 | 058 | 019 | 0.20
ABP (deg) | 88.26 | 89.89 | 88.95| 90.00 | 90.00

7.2 Classical EKF-SLAM with segments

We have implemented EKF-SLAM with real images for the
line parametrizations PL, APL, HPL, AHPL and AMPPL,
using the segment detector and tracker of Berger and Lacroix

(2010). The scene contain®@° dihedral with several seg-

ments on its planes (Fig. 28). The camera, controlled by a

rQbOtIC arm,_performs 30530 cm Squ"_"re trf’j‘JeCtory perpgn- Table 4 Reconstruction accuracy of the segments maps with all ini-
dicularly to its optical axis. The position increments give tjalizations at the origin.

by the arm are corrupted and used as odometry inputs to the
system, thus providing the metrics for scale observability |

| PL | APL [ AHPL |
DTP (lo,mm) | 20 [ 21 [ 15

The videoplucker-based-lines.mov andpoint-
. . ATP (10, deg) | 0.49 | 0.49 0.20
supported-lines.mov (see online supplementary ma-
. ) ABP (deg) | 89.34| 89.52 | 90.00
terial athomepages.laas.fr/jsola ) show the meth-

ods PL, APL, HPL and AHPL running in parallel (the AMPPL

video, indistinguishable from the AHPL one, is not shown

for space reasons). A selection of snapshots of the AMPPL To evaluate the accuracy of the resulting maps we iden-
run is shown in Fig. 28. It is worth mentioning the enor- tify the two planes of the dihedral by optimally fitting them
mous size of the uncertainty ellipsoids (in yellow color in on the segments endpoints, and compute two different co-
the movies) shortly after initialization, a consequencthef  planarity errors. The first one is defined by the standard de-
undelayed initialization of unobserved DOF. As it happenediation of the distances from the segments midpoints ta thei
with simulations, to the naked eye there are not big differsupport plane. The second one is defined by the angles be-
ences between PL and APL, or between HPL and AHPLtween the segments and their support plane. Finally, we re-
However, Plicker-based lines behave differently froompoi  port the angle between the two planes. The results are sum-
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(d) Final, top view (e) Final, front view (f) Final, side view

Fig. 28 Monocular EKF-SLAM with ULI of AMPPL segments. (a) A samplaage with the tracked 2D segments. (b) The set of initialized
lines, all at a distance of 1 m from the camera, correspontbntpe selected prior, thus defining a spherical distributi@) The final map,
from a viewpoint close to the camera (compare with (a)). @) View, (e) fromt view, and (f) side view, of the final map, slrg the correct
reconstruction of the scene, with the dihedral planes aiggeight angles. The grid in the 3D views has 10 cm steps.

marized in Table 3. We observe a progressive improvemer® Elements of discussion

of all of the map accuracy indicators as we adopt point-sup-

ported parametrizations and incorporate anchors. AHPL and.1 Redundancy and constraints in the EKF

AMPPL, the two parametrizations incorporating both fea-

tures, exhibit an equivalent performance, the best of ah w There exist recurrent discussions on whether estimatordgh

coplanarity errors of as low as5mm (notice that the seg- employ minimal state parametrizations or not, and the ef-
ments are at some20 cm from the camera). Even when an- fects that redundancy and constraints have in EKF estimates
chored, the Pliicker lines exhibit a poorer performanca thalt is not our aim now to provide a detailed analysis of these

point-supported lines. Refer to Section 8 for a discussion. issues here, but this paper has clearly showed that redun-
dancy can be exploited to our benefit. With a little insight

we discover that not all redundancies are the same, neither

To further emphasize the effect of anchoring, we havq .
. he constraints, and that they do not always come together.
repeated PL, APL and AHPL runs with the segment detec; y Y 9

tor set to initialize lines only at the first frame. This skua Some ideas to situate these concepts follow.

tion is generally unrealistic because it assumes that all th1. Using redundant parametrizations is possible in EKF
world is visible from the first sensor location, but when the  because of its Bayesian character. Bayesian estimators
hypothesis is valid (as is the case for this experiment)it co use predictions to generate priors that constrain the re-

stitutes for this precise fact the ideal situation, from ethi dundant DOF that otherwise would make convergence
the best possible mapping results have to be expected-It pro difficult or even impossible (we think especially on it-
duces anchors that are exactly zgsg,= T = 0, and with erative optimizers such as BA where prediction is not

null covariance. Results in Table 4 show, when compared present and a good canonical choice of the parametriza-
to Table 3, that the effect of anchoring disappears to make tions used is crucial for a quick convergence — see for
unanchored parametrizations equivalent to anchored ones. example (Engels et al, 2006)).

It is worth noticing that only point-supported anchored pa-2. Homogeneous vectors are redundamqprivalenunder
rametrizations perform in the general situation similarth proportionality transforms. This equivalence has conti-
in this ideal one, and therefore that anchoring contribtges nuity in all dimensions of the state space, and thus it im-
keeping a performance comparable to the best case. poses no constraint to the filter: the new states resulting



26

from EKF updates are always valid homogeneous veceonstraint satisfaction. Unfortunately, in EKF the conabin
tors. tion of uncertainty and non-linearity prevents non-linieas

3. Quaternions are redundant only with respect to symmeplicit equality constraintsi(x) = 0 from being enforced
try: a quaternion and its negative are equivalent. Theyhis straightforwardly. This problem has been treated and
are also constrained by a unity norm which defines aolved by Lemaire and Lacroix (2007) for the Euclidean
unit spheroid inR%. In EKF, this normalization con- Pliicker lines i(e., with normalized director vector) using
straint can be applied explicitly, viQ < Q/||Q]|, its  the smoothly constrained Kalman Filter (Geeter et al, 1997)
JacobianJ and the EKF prediction equations, result- The idea is to apply a number of relaxed constraints over
ing in a projection of the covariance onto the hyper- time, with an EKF updaté = h(x) + n, wheren is a noise
planeS = nuli(J) tangent to the unit spheroid. Sub- vector with a variance decreasing with time, to make the fil-
sequent EKF updates, constrainedtaesult in quater- ter gradually converge to a state satisfying the equality co
nions escaping the spheroid and violating the sphericadtraint. This method is directly applicable to PL and APL.
constraint, and thus renormalization is needed. However, it requires several tuning parameters (initial co

4. Anchored landmarks are redundant in the sense thaariance ofn, rate of decay ofi, at which times and/or un-
landmarks with different anchors may be equivalentder which conditions to apply it, when to stop) and, for this
There exists a continuity of solutions, in this case not rereason, we do not feel the solution to be satisfactory enough
lated to proportionality, with no constraints. As we have  These facts might very well be at the base of the poor re-
seen, this redundancy allows us to arbitrarily select theults of APL, which otherwise would be expected to perform
anchor with the most beneficial effects. similarly to its point-counterpart AHP. According to our-ex

5. Plucker lines are defined in the projective spBt@and  perience, the improvements produced by enforcing the con-
are therefore equivalent under proportionality transforstraint with the methods here explained are small, and in any
mations. This DOF is not constrained. However, theycase not sufficient. This is possibly due to tuning issues, or
contain a second redundant DOF affected by the Pliickés maybe a matter of the method itself: the constraint is only
constraintn L v. The Plicker constraint is more deli- truly enforced at the end of the process, when the nolsas
cate than the normalization constraint in the quaternioronverged to zero, and the errors produced during conver-
because it can only be applied implicitly, viel v = 0 gence must most possibly have adverse effects. We have not
and the EKF correction equations. The application of theénvestigated this hypothesis fully, mainly because there e
EKF correction equations means that the covariance ist other strong reasons to prefer point-supported lines ov
intersected witl{not projected tg as it was in the quater- Pliicker-based lines, as we discuss in the following sactio
nion) the constraint manifold, with the subsequent risk
of collapse of the covariances matrix. This does have %

noticeable impact on the filter and is further discussed in 3 Endpoints mz_;\nagement In Plicker-based and
the next section. point-supported lines

In addition to an accurate estimation of the infinite lines
8.2 The Pluicker constraint supporting the segments, a proper endpoints managementis

crucial to produce meaningful maps of segments. The meth-
We have seen in Section 3.1 that for a pai;v) to be  ods for endpoints management require some information to
a Plucker line the Plucker constraint v = 0 is manda- be stored out of the map. We limit this to the two abscissas of
tory. We have ensured its satisfaction at initializationdi  the endpoints expressed in a local reference frame of the lin
by defining the inverse-distance prior in theplane, but we  (see the Appendix for details on endpoints management).
have not enforced it further during landmark updates, for Plicker-based lines PL and APL condensate all the in-
several reasons. One reason is our desire to use a commfmnmation of the initial observation in the plane normah vi
algorithm for all parametrizations so that the differenices n = m; x m», Eq. (27), and all other information on the
performance can be better interpreted. A second reason éndpoints’ initial view is lost. This constitutes an impzont
that we did not find a clean and convincing method for endrawback: the local line origin (poini, Fig. 3), where the
forcing such constraints in the EKF framework. In the lin-abscissas are referenced to, moves with the line’s orienta-
ear case, enforcing implicit equality constraidix = 0  tion, which is initially unobserved and therefore undeigoe
can be done by performing a KF update with a synthetidarge variations during the convergence phase. Fig. 29(a)
measuremerii = z = Hx with infinite information. This  shows that not even the cross-correlations in the covaggnc
has the consequence of producing singular covariances miaratrix are able to account for this information. In other
trices. The directions of the state space being affected bwords, the endpoints cannot be assumed to remain stable
this singularity become blocked and no more evolution orfrom one frame to the next one. Because choosing an alter-
them can be expected, creating a lifelong guarantee of theative local origin for the line with better properties does
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(a) APL (b) AMPPL

Fig. 29 Endpoints covariance ellipsoids in Plicker-based andtgaipported lines, showing the superior representatofithe latter. The snap-
shots are taken 30 frames after initialization, before it @& the convergence phase. In APL, the ellipsoids are Sdiscthe plane defined by
the segment and the landmark anchor. In AMPPL, the elligsaid “pencils” pointing to the anchor.

seem to be trivial, the only reasonable strategy for mamgagin 2. Implementing ULI within EKF is difficult because of the
endpoints is to reset them at each frame using the currentob- combination of non-linearity and unbounded uncertainty
servation, potentially losing information about the segime regions.

extension observed in previous frames. — Linearity and Gaussiannity are the two keys to sat-
On the contrary, anchored point-supported line param- isfactory EKF operation. Astute transformations and
etrizations AHPL and AMPPL have the ability to respect redundancy in the parametric descriptions of the sys-
the initial view of the two endpoints via the anchay and tem produce analytic expressions and probability
the director vectorém;, m,), as it can be observed in Fig. densities that are well adapted to the estimator in use.
29(b). This information is part of the state and is avail- — Inverse-distance behavior of the unmeasurable pa-
able even after large updates thanks to the role that cross- rameters is the key that makes undelayed initializa-
correlations play in the EKF update. This allows us to use tion of landmarks possible when they are perceived
more elaborate ways of updating the segments endpoints — from projective sensors.
see the Appendix for further reference. — Once ULl is achieved, landmark anchoring has shown

to be the major actor in further improving linearity to
reach satisfactory levels.

9 Conclusions — Manipulations on the measurable parameters, such
as the use of rectangular or polar coordinates for the
This paper was initially conceived as a compendium of land- director vectors, have shown to produce no remark-
mark parametrizations for monocular SLAM. Our very first able effects. This is because, being these parameters
aim was to show that all these methods are very intimately measured with good accuracy, their degree of uncer-
related, as we have exposed amply. As the work evolved, tainty is small and the functions in which they appear
we realized that the material and insights provided should are regarded by EKF as being linear.
also be a good basis for establishing good practices for ap-  _ therefore, AMPP and AMPPL parametrizations are
proaching a more general problem, that is, the problem of preferred over AHP and AHPL because of their lower
accurately estimating high-dimensional dynamic systeins o computation cost for an equivalent performance.
non-linear nature and huge uncertainty levels with the fise 03 gecause of the higher representativeness of anchored
relatively simple analytic tools such as the EKF. point-supported lines over unanchored and Pliicker-based
We summarize here the main concepts and results pre- jines, and because of the absence of constraints to be
sented in this work: guaranteed, the anchored point-supported lines consti-

tute the preferred choice for undelayed monocular EKF-
SLAM. Therefore, AMPPL is the preferred parametri-
zation for infinite straight lines.

A great number of parametrizations can be regarded as a
sequence of small modifications of ones with respect to

1. Undelayed landmark initialization (ULI) is fundamental
in the sense that it is the way we can make use of all
the geometrical information provided by the landmarks:
from the first observation, up to the infinity range, and 4.
independently of the sensor trajectory.
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the others (Fig. 8). We have traversed a family of eight
parametrizations and established quasi-trivial links be-
tween them. We have shown that estimating points and
lines is fundamentally the same problem and admits fun-
damentally the same solutions. Estimating other para-
metric entities such as conic sections, splines or planes
should also be feasible as long as we can take good ad-
vantage of the principles exposed here.

5. Measuring non-linearity for high-dimensional MIMO
functions is an interesting but difficult task, especially
if we want the measure to be useful for comparing pa-
rametrizations of different dimensionality.

— We defined a linearity index that incorporates the lo-
cal knowledge of the uncertainty region, which is
well suited for EKF usage.

— The index is expressed in the measurement space,
which is common to all parametrizations and allows
us to compare them with each other.

6. Visual inspection, linearity analysis, RMS errors and av
erage NEES consistency, all give a coherent picture ofig. 30 Segment endpoints in the local ordinate frame of Pliicker-
the performance of each parametrization. based and point-supported lines.

7. Using more evolved algorithms such as robocentric EKF-

SLAM has not altered the relative performances of theappendix: Segment endpoints management
parametrizations. This is because the superiority of some
parameterizations over others comes from the severe lif-he segment's endpoints in 3D space are maintained out dfitiéve
earity constraints that the EKF imposes, and hence th%aetwo abscissa§ 1, t2) defined in the local 1D reference frame of the
conclusions drawn in this paper could be extended 0"\ o o baced lines (Fig. 30(a)) the local frame is dfiby a
any EKF-based visual SLAM algorithm. It would be in- single axis with the origin at the poirf = po + (v xn)/||v|[2,
teresting to see if this also applies to iterative optinszer  the closest to the anchor, and the director veetor v/||v|2
such as SBA, and in such case if the improvemeats ( providing the unit length (we make the normwfroportional to
fewer optimizer iterations) are sufficient to compensate ~ distance to improve its projective behavior). Each endppinis
. specified by an abscisgasuch that
for the extra amount of computational powerd.more
operations per iteration) that would be required. pi = q+t;v/|[v|]? =po+

(b) Point-supported lines HL, AHL and AMPPL.

vxn+t;v
vz
— In point-supported lines (Fig. 30(b)) the endpoints arendefiwith

respect to the support poings = po +m;/p;. The origin is aig;
and the unit length is defined feys — q1, leading to the endpoints

(74)

pi = (1= t))a1 + tiaz = po + (1 — ;) o + 1,22 (75)
p1 p2
Acknowlegments The initial abscissas are defined trivially with , £2) = (0, 1).

Before updating, we need to back-project the currently oiesk

. . with the optical rays of the two currently observed 2D endmiTo
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by Spanish MICINN DPI12009-07130 and European RoboEarthgng HPL), simply reflecting the last observation.

FP7-248942. — Once the line has converged, an extending-only policy is ap-
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(a) Keep initial

Fig. 31 The three general strategies for updating 3D segment endG

points. (a) Endpoints are defined at initialization time aeder up-
dated. (b) Endpoints are systematically updated accorinige cur-
rent observation. (c) Endpoints are updated only if thigiieens the
3D segment.
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