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Abstract This paper explores the impact that landmark parametrization has in the perfor-
mance of monocular, EKF-based, 6-DOF simultaneous localization and mapping (SLAM)
in the context of undelayed landmark initialization. The work proposes a unified framework
for points and lines that is independent of the parametrization used. Three parametrizations
for points and five for straight lines are accurately described, emphasizing their similarities
and differences.

Monocular undelayed initialization challenges EKF because of the combination of non-
linearity with large uncertainty associated to the non-measured DOF. In this regard, the goal
of a good landmark parametrization is to improve the system’s linearity as much as possible,
improving the filter consistency, and thus achieving robuster and more accurate localization
and mapping. The paper highlights and justifies the keys for satisfactory operation: inverse-
distance parameters and landmark anchoring. It also defines a generalized linearity index
suited for the EKF, and uses it to compute and compare the degrees of linearity of each par-
ametrization. Finally, all parametrizations are benchmarked employing analytical and sta-
tistical tools, with simulations and real imagery data, using the standard and the robocentric
EKF-SLAM formulations.

1 Introduction

Monocular simultaneous localization and mapping (SLAM) is the problem of concurrently
estimating in real time the structure of the surrounding world (the map) while getting lo-
calized in it, using a single projective camera as the only exteroceptive sensor. Monocular
SLAM gained popularity back in 2003 thanks to the first full real-time implementation by

J. Solà
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Davison (2003), based on Smith and Cheeseman’s (1987) original solution to SLAM which
employs an extended Kalman filter (EKF) as the central estimator. Davison’s technique el-
egantly solved a great number of problems, but there still remained one that occupied re-
searchers on visual SLAM for some years (Chiuso et al, 2002; Bailey, 2003; Kwok and
Dissanayake, 2003; Lemaire et al, 2005): the problem of landmark initialization. Monocular
EKF-SLAM reached maturity with the advent of undelayed landmark initialization tech-
niques (ULI, explained in more detail in the next section), a need of partial initialization
firstly stated by Solà et al (2005), with a preliminary solution based on an exponentially dis-
tributed multi-hipothesized depth parametrization, which was inspired on a previous work
by Kwok and Dissanayake (2004). The problem was successfully solved for the first time
with the inverse-depth landmark parametrization (IDP) by Montiel et al (2006), which has
become very popular. More recently, Marzorati et al (2008) and Haner and Heyden (2010)
have presented new parametrizations for which the authors claim better performances than
IDP. Solà (2010) presented a comparative study of three point parametrizations.

A smaller number of works incorporate line landmarks or segments to the EKF-SLAM
framework. Gee and Mayol (2006), Smith et al (2006) and Lemaire and Lacroix (2007)
used delayed techniques for initialization. Solà et al (2009b) reports the only ULI solution
for infinite lines we are aware of, which uses the Plücker line. Edgelets (very short line
fragments associated to a 3D point) were introduced by Eade and Drummond (2006a), also
in an undelayed manner, using IDP as the supporting point type.

Over all, the methods here cited have many points in common. They have also differ-
ences in parts of the algorithm other than landmark parametrization, rendering the com-
parisons of little or at least relative relevance. Moreover, differences also in the evaluation
methods and the heterogeneity of the experimental setups prevent us to extract definitive
conclusions. In this work, we fix the algorithmic aspects of the problem and center our
attention to the effect that landmark parametrization has, by its own right, on monocular
EKF-SLAM performance. For this, the paper retakes the problem from a unified perspective
that considers points and lines alike (edgelets are not covered), and presents and analyzes
a compendium of eight different parametrizations, among which five are innovative to the
best of our knowledge.

1.1 Undelayed landmark initialization (ULI)

Landmark initialization in monocular SLAM is difficult because, due to the projective na-
ture of the sensor, the measurements are rank-deficient and the observation functions are
not invertible. This means that a full 3D estimate of the landmarks just discovered is not
available for mapping. Early approaches (Davison, 2003; Bailey, 2003; Lemaire et al, 2005)
took advantage of the sensor motion to achieve fully 3D estimates before actually initial-
izing the landmarks. This family of methods introduces a delay until the sensor motion
has gained enough parallax for triangulation, during which the landmarks, not yet mapped,
cannot provide any information for localization. To overcome this, undelayed landmark in-
itialization (ULI, also known as partial initialization, Solà et al, 2005) incorporates these
partially measured landmarks at the first observation, that is, before all of their degrees of
freedom (DOF) are determined (or sufficiently estimated). In bearings-only systems (e.g. a
monocular camera, see Fig. 1), ULI allows landmarks showing low parallax (those that are
at remote distances or close to the motion direction of the camera) to contribute to SLAM
from the first observation, providing precious bearing information that helps constraining
the camera orientation. This allows us to exploit the full field of view of the camera up to
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(a) The back-projection of a point u gives place to
a semi-infinite line λ where the point landmark p
must lie. There is 1 unmeasured DOF: the point’s
depth. To observe it, the camera needs to gain par-
allax by moving away from the line λ.
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(b) The back-projection of a segment l gives place
to a semi-infinite plane π where the line landmark
L must lie. There are 2 unmeasured DOF: the line’s
depth and its orientation in π. The camera gains par-
allax by moving away from the plane π.

Fig. 1 The problem of undelayed initialization. Back-projection of detected features in a monocular image
at their first observation. The unmeasured DOF’s have infinite uncertainty and need to be properly modeled
by Gaussian shapes, and manipulated using reasonably linear functions.

the infinity range, regardless of the sensor trajectory, which results in accurate localization
with very low angular drifts.

For example, when turning a corner in a corridor, a visual SLAM system with ULI can
immediately initialize a point or two at the other end of the corridor, which have just become
visible and will most likely remain visible during the whole traversal of the corridor. During
this time, the triangulation conditions for these landmarks are bad, as they experience no
significant increase in parallax. Without ULI, these landmarks must be ignored with the
consequence of the robot accumulating angular errors that after a few meters may become
the primary source of filter failure due to inconsistency. Thanks to ULI, observing these
landmarks serves to constrain the camera orientation, meaning that the robot can reach the
end of the corridor without accumulating angular drift. We encourage the reader to consult
(Solà et al, 2005; Civera et al, 2008; Solà et al, 2008) for discussions on delayed/undelayed
initializations and their importance in monocular SLAM, and (Bailey et al, 2006; Huang
and Dissanayake, 2007; Huang et al, 2008) for insights on the sources of inconsistency in
EKF-SLAM.

ULI is an interesting challenge in EKF because the filter needs to cope with naturally
non-linear equations and huge uncertainty levels associated with the non-measured DOF
(Fig. 1). The best solutions accepted so far require some degree of over-parametrization of
the landmarks’ states. Two aspects have been identified as being beneficial (Civera et al,
2008; Solà et al, 2009b): first, the enormous (potentially infinite) uncertainty must be repre-
sented by a single and well-defined (i.e., bounded) Gaussian. Second, the observation func-
tions must be reasonably linear inside all this uncertainty range. These two severe require-
ments can be elegantly fulfilled by using parametrizations incorporating the non-observable
DOFs proportionally to inverse-distance, as it is done with e.g. IDP (Civera et al, 2008),
homogeneous points (Marzorati et al, 2008) and Plücker lines (Solà et al, 2009b). This is
because, on one hand, a bounded Gaussian in inverse-distance including the origin of coordi-
nates naturally maps into an unbounded uncertainty region including the infinity, and on the
other hand, the inverse-distance is key in projective geometry and the projection equations
exploiting it become quasi-linear precisely with respect to these highly uncertain DOF.

A third aspect that has proved positive is landmark anchoring. Although not explicitly
stated, anchoring was already used in the delayed method of Davison (2003), and later in
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IDP. Recently, it has been explicitly evaluated by Solà (2010), who compares three different
point parametrizations. Anchoring allows the landmark uncertainty to be referenced to a
point close-by (the anchor), which is chosen to be the optical center at initialization time.
This allows the system to get rid of many linearization errors accumulated since the start
of the map, and to consider instead mainly the local motion since the initialization of each
particular landmark. More complex anchoring uses the whole camera pose (position and
orientation), achieving a higher degree of decoupling between global and local motions
(Gee and Mayol, 2006; Gee et al, 2008). These last schemes use shared anchoring to keep
the map size small, and thus require that the landmarks be initialized in groups.

1.2 Points and straight lines

The problems of points and infinite straight lines are surprisingly similar, and one of the
aims of this paper is to make this similarity evident.

For points, Fig. 1(a), ULI means that landmarks must be initialized so that the uncer-
tainty in distance – the only non-measurable DOF – covers all the visual ray up to infinity.

For infinite straight lines, Fig. 1(b), ULI requires the initial uncertainty to cover 2 non-
measurable DOF: distance up to infinity, and all possible orientations.

Bounded lines or segments present additional difficulties. Unlike points, lines can be
partially occluded, and the edge detectors in use return therefore unstable endpoints. This
means that the endpoints of a 3D segment cannot be established from single observations,
and that they are generally not re-observable. For these (and other possible) reasons, it is
common practice to employ the stochastic map to estimate just the infinite lines supporting
the segments, and to keep track of the segment’s endpoints separately. In this paper, we focus
mainly on the estimation of infinite lines supporting arbitrarily long segments (not edgelets),
and only general guidelines are given about the management of the segments’ endpoints.

1.3 Alternative approaches to monocular SLAM

There exist a significant amount of research investigating the possibilities of using estima-
tion techniques other than EKF. We find IDP used in Bayesian frameworks such as Fast-
SLAM2.0 (Eade and Drummond, 2006b) and the unscented Kalman filter (UKF, Sunder-
hauf et al, 2007; Holmes et al, 2008). More modern methods are based on smoothing, using
sparse bundle adjustment (SBA) (Klein and Murray, 2007; Konolige and Agrawal, 2008),
which is at this moment the technique that shows the clearest future perspectives because of
its better accuracy and scalability (Strasdat et al, 2010). SBA has also been successfully used
with edgelets (Klein and Murray, 2008). These works are often motivated by the inconsis-
tency and computational burden issues associated with EKF-SLAM. However, EKF-SLAM
(or other similar approaches based on filtering and Gaussians such as UKF- or EIF-SLAM)
is still widely used by major robotics and vision laboratories and is at the core of other lo-
calization, mapping or modeling systems, with points (Paz et al, 2008; Civera, 2009) (with
performances comparable to those of SBA), lines (Gee and Mayol, 2006), and even intro-
ducing planes (Gee et al, 2008). Apart from the fact that EKF-SLAM is the implementation
with the longest tradition, two technical reasons in our opinion keep it alive: its (relative)
simplicity of implementation, and the fact that large maps are usually being built by means
of small sub-maps, thus circumventing most of the EKF drawbacks.
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1.4 Linearity and EKF consistency

The consistency issues of EKF-SLAM are well known and have been the subject of nu-
merous studies in the last years. Castellanos et al (2004) showed that inconsistency appears
even before the computational burden of the problem becomes prohibitive, and proposed in
(Castellanos et al, 2007) robocentric SLAM where the local operation of the filter results
in significant linearity improvements. A more concise study of inconsistency is given by
Bailey et al (2006), where the normalized estimation error squared (NEES) is averaged over
a number of conditionally independent Monte Carlo runs and used to evaluate consistency.
This work shows that using ground-truth Jacobians guarantees filter consistency, and thus
that inconsistency comes from the unavoidable errors produced when linearizing the sys-
tem. More theoretically sound insights have been provided by a remarkable work by Huang
et al (2008), where it is shown that, using the authors words, “the observable subspace of
the linearized system is of higher dimension than that of the actual, non-linear one, leading
to covariance reductions in directions of the state where no information is available, which
is a primary cause of inconsistency”.

All the studies mentioned above assume 2D implementations using range-and-bearing
sensing and Euclidean point parametrizations, exactly as they appear in the original EKF-
SLAM solution. Our case of study differs from them in four aspects. The first one is 3D
operation (i.e., 6 DOF motion). The second one is that we are dealing with monocular ob-
servations, which convey rank-deficient information about the landmark locations. The third
aspect, which is a consequence of the previous one, is that landmark parametrization can no
longer be the trivial, minimal, Euclidean one, but something more or less complicated and
redundant that seeks an improvement of linearity. The fourth and last aspect is that we also
incorporate lines.

Our aim with this paper, however, is not a theoretical mathematical analysis (in the style
especially of (Huang et al, 2008)) but a performance comparison that visualizes the impact
that landmark parametrization has on linearity, estimation error and filter consistency. We
show how inconsistency comes from covariance over-estimation rather than error magni-
tude, which confirms Huang’s conclusions.

Because inconsistency has its roots in non-linearity, we correlate our evaluation with
measurements of the degree of linearity of each parametrization. We define for this purpose
a linearity index that on one hand is pertinent to EKF (i.e., it accounts for non-linearity
and uncertainty), and on the other hand it defines its metric in the measurement space and
therefore allows us to compare parametrizations having state representations of different
sizes and natures.

The choice of the classical EKF engine for SLAM is not casual: as a well-known algo-
rithm, it serves the purpose of a standard workbench through which to evaluate performance
differences that have their roots in non-linearity. As an interesting counterpoint, we addi-
tionally show with large scale experiments that algorithms robuster to non-linearity such
as robocentric EKF-SLAM also benefit from the linearity improvements of the landmark
parametrizations proposed in this article.

1.5 Contributions

We provide several contributions:

1. A compendium of eight landmark parametrizations for ULI, three for points and five for
lines, where five of them are innovative to the best of our knowledge.
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2. A unified methodology to tackle all eight parametrizations. This is achieved through a
unified discourse that we use to emphasize the two keys to satisfactory ULI, namely
landmark anchoring and inverse-distance behavior.

3. An analytical measure of linearity of multi-dimensional functions that takes into account
the time-varying support of probability.

4. A statistical evaluation of root mean squared (RMS) errors and normalized estimation
error squared (NEES) consistency, based on Monte-Carlo simulation runs.

5. A benchmark with real outdoors imagery of the point parametrizations on a robo-centric
SLAM implementation, showing that our proposed solutions achieve error levels typical
of state-of-the-art SLAM based on non-linear optimization.

1.6 Outline

This paper is organized as follows. In Section 2 we describe three parametrizations for points
and give details on the necessary algebra to support them. In Section 3 we repeat the process
with five types of infinite lines. Section 4 describes the initialization and updating proce-
dures. Section 5 describes the methods we use for linearity and consistency evaluation, with
simulation results in Section 6. Further results with real images are presented in Section 7.
The paper continues with a discussion in Section 8 and the conclusions in Section 9. A final
appendix gives accessory details on segments endpoints management.

2 Parametrizations for 3D points

This section presents some parametrizations for 3D points, with their projection and back-
projection operations needed for EKF-SLAM initialization and updates. We start with Eu-
clidean points (EP, not suited for ULI) just as a matter of completeness and to introduce
some notation. The discourse evolves through homogeneous points (HP), anchored homoge-
neous points (AHP), and inverse-distance points (IDP), which we refer to here as anchored
modified-polar points (AMPP) for reasons that will be explained soon.

2.1 Euclidean points (EP)

A Euclidean point p (EP, Fig. 2(a)) is trivially coded with three Cartesian coordinates

LEP = p =
[
x y z

]> ∈ R3 .

Transformation to camera frame and perspective (pin-hole) projection are performed
with the well-known expression

u = KR>(p− T) ∈ P2 , (1)

which we use to introduce some notation. Underlined fonts • indicate homogeneous coordi-
nates in projective spaces Pn; K is the intrinsic matrix,

K ,

[
αu 0 u0
0 αv v0
0 0 1

]
; (2)



7

O X

Y

Z

p

(a) Euclidean point (EP)

O
X

Y

Z

m

p =
m

ρd = ||m||/ρ

(b) Homogeneous point (HP)
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(c) Anchored homogeneous point (AHP)
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(d) Anchored modified-polar point (AMPP)

Fig. 2 Point parametrizations. (a) EP is minimal but not suited for ULI. (b,c) HP and AHP do not require
m to be a unit vector. (d) In AMPP the observed ray is coded by two angles: the derived direction vector is
unitary and hence ρ is exactly inverse-distance. The anchor point p0 in AHP and AMPP corresponds to the
optical center at initialization time.

R = R(Q) and T are the rotation matrix and the translation vector defining the camera frame
C, which is coded by the vector C = (T,Q), Q being an orientation representation of our
choice suitable for EKF filtering (we use normalized quaternions).

Euclidean points lead to severely non-linear observation functions in bearings-only sys-
tems and are not suited for undelayed initialization, as it has been extensively demonstrated,
(Chiuso et al, 2002; Bailey, 2003; Davison, 2003; Kwok and Dissanayake, 2004; Eade and
Drummond, 2006b; Solà et al, 2008) and most particularly (Solà et al, 2005; Civera et al,
2008). In brief, the problem of ULI with EP can be explained as follows. In EKF, the re-
quirements of function linearity must hold inside the whole uncertainty region of the input
variable. Because in Euclidean parametrizations the uncertainty region of partially observed
landmarks is unbounded (it reaches the infinity in parameter space), the observation func-
tions’ linearity should hold for a whole unbounded interval, and this is impossible.

2.2 Homogeneous points (HP)

A homogeneous point (HP, Fig. 2(b)) is coded by a 4-vector in projective space P3. It is
composed of a 3D vector m and a scalar ρ, usually referred to as the homogeneous part,

LHP = p =

[
m

ρ

]
=
[
mx my mz ρ

]> ∈ P3 ⊂ R4 . (3)

A HP refers to the following EP:

p = m/ρ . (4)
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Remark 1 (Inverse-distance): When the point is expressed in the camera frame, the scalar ρ
depends linearly with the inverse of the distance d from the optical center to the 3D point,

ρ = ‖m‖/d . (5)

The unbounded distance uncertainty, which spans from a minimal distance dmin to infinity,
is transformed into a bounded interval in ρ ∈ (0, ‖m‖/dmin] in parameter space. This is
of central importance as this is precisely the factor that will allow us to use such paramet-
rization for ULI (see Section 4.2 for further justification and details). The same concept of
inverse-distance is found in all the parametrizations described here (except of course EP),
even the ones for lines.

Homogeneous points have the additional interesting property of presenting a bi-linear
frame-transformation equation:

p = HpC ,

[
R T

0 1

]
pC , (6)

where the super-index •C indicates the local frame C where the point is referenced to, and
H is the homogeneous motion matrix specifying this frame.

Homogeneous points project into perspective cameras according to the bilinear expres-
sion

u = Pp = KP0H−1p , (7)

with P , KP0H−1, and where P0 is the canonical projection matrix

P0 ,

[
1 0 0 0
0 1 0 0
0 0 1 0

]
.

This can be expressed in terms of T, R, m and ρ,

u = KR>(m− Tρ) ∈ P2 , (8)

which is proportional to ρ. Notice that when the point is expressed in camera frame, pC =

(mC, ρC), only the non-homogeneous part mC appears in the projection expression,

u = K·mC , (9)

meaning that 1 DOF, the point’s range intrinsically contained in ρC, is not measurable.
On back-projection, the observed part mC in camera frame is obtained by just inverting

(9),
mC = K−1u . (10)

The non-observed part ρC cannot be obtained from any data in the system, and must be
provided as prior (see Section 4.2 about defining the priors). Overall, the back-projection
and frame-transformation composition necessary for landmark initialization is performed
with

LHP = p =

[
m

ρ

]
= H

[
K−1u

ρC

]
=

[
RK−1u1 + TρC

ρC

]
, (11)

where ρC depends inversely with the distance dC to the camera, via ρC = ‖K−1u‖/dC.
Once transformed to the global frame with H, this meaning of ρC is lost and ρ becomes the
inverse-distance to the global origin O.
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Remark 2 (Inverse-distance and frame transformation): In HP, the inverse distance to the
camera becomes after frame transformation (6) an inverse distance to the origin of coor-
dinates. This, when the camera is far from the origin, perverts in some way the desired
geometry of the system. However, due to the bilinear character of the transformation, this
effect is small and allows us to use HP to implement ULI. The other term of this bilinearity
is the motion matrix H. While H is accurately estimated, i.e., after small camera motions,
bilinearity can be considered quasi-linearity and the system is expected to work. When H is
no longer accurate, i.e., after large camera motions, the system is prone to failure. See also
Remark 3.

2.3 Anchored homogeneous points (AHP)

We add an anchor to the HP parametrization to improve linearity, as it is done in the well-
known inverse-depth parametrization (IDP, Civera et al, 2008), which we will see later.
Anchoring the HP means referencing it to a point p0 in 3D space different from the origin
(Fig. 2(c)). The anchor point p0 is chosen to be the optical center at initialization time. This
leads to the anchored homogeneous point (AHP, Fig. 2(c)), parametrized with the 7-vector

LAHP =

p0

m

ρ

 =
[
x0 y0 z0 mx my mz ρ

]> ∈ R7 . (12)

An AHP refers to the following EP:

p = p0 + m/ρ . (13)

Transformation to camera frame and projection resume to

u = KR>
(
m− (T− p0)ρ

)
∈ P2 . (14)

Remark 3 (Landmark anchoring): Anchoring the landmarks at the optical center at initial-
ization time has the effect of decoupling the uncertainty of the term multiplying the most
uncertain parameter, the inverse-distance ρ. This term was T in HP and has become (T−p0)

in AHP – see (8) and (14). It is easily seen that the uncertainty of (T − p0) is small after
initialization, while the current camera pose T is not far from the anchor p0 and their cross-
correlation is significant. See Remark 2 for the unanchored case, and Section 5.1 for the
impact that uncertainty has on the degree of linearity seen by EKF.

The back-projection and transformation composition is done with

LAHP =

p0

m

ρ

 =

 T

RK−1u

ρC

 , (15)

where ρC must be provided as prior; its proportionality to inverse-distance is given by ρC =

‖K−1u‖/d.
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2.4 Anchored modified-polar points (AMPP)

We lighten the previous AHP from 7 to 6 parameters by encoding the direction vector m

with just elevation and azimuth angles (ε, α) of the observed optical ray joining p0 to p.
When these angles are appended with the inverse of the distance ρ = 1/d, the result is a 3D
point in modified-polar coordinates, (ε, α, 1/d). Adding the anchor p0 leads to the anchored
modified-polar point (AMPP, Fig. 2(d)), coded by the 6-vector

LAMPP =

 p0

(ε, α)

ρ

 =
[
x0 y0 z0 ε α ρ

]> ∈ R6 . (16)

Remark 4 (Inverse-depth points): In this article we refer to the originally named “inverse
depth points” (IDP) in (Civera et al, 2008) as anchored modified-polar points (AMPP).
There is absolutely no difference between IDP and AMPP, and the name change is jus-
tified by two facts: on one hand, our name better explains the nature of the parametriz-
ation as it recalls the previously existing “modified polar coordinates” term (Aidala and
Hammel, 1983, and possibly earlier). On the other hand, all our parametrizations share the
concept of inverse-depth (or inverse-distance), rendering the term “IDP” ambiguous and
non-informative.

An AMPP refers to the following EP:

p = p0 + m∗(ε, α)/ρ , (17)

where m∗(ε, α) is a unit vector in the direction of (ε, α),

m∗(ε, α) =

cos(ε) cos(α)

cos(ε) sin(α)

sin(ε)

 . (18)

Transformation to camera frame and pin-hole projection to the homogeneous plane are com-
bined to give

u = KR>
(
m∗(ε, α)− (T− p0)ρ

)
. (19)

The back-projection and transformation composition is performed with

LAMPP =

 p0

(ε, α)

ρ

 =

 T

µ∗(RK−1u)

ρC

 , (20)

where µ∗(m) gives elevation and azimuth angles (ε, α) of a director vector m = (mx,my,mz),[
ε

α

]
= µ∗(mx,my,mz) =

[
arctan(mz/

√
m2
x +m2

y)

arctan(my/mx)

]
. (21)

The parameter ρC is now exactly the inverse-distance 1/d because m∗ is unitary. ρC must
be provided as prior.
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3 Parametrizations for infinite straight 3D lines

This section mimics the structure of Section 2, now for the case of infinite straight lines.
We remark the numerous parallelisms that can be established among them, and also be-
tween points and lines. We start with a quite exhaustive introduction to the Plücker line
(PL), which behaves surprisingly similar to HP, and where the concept of inverse-distance
is associated to a 3D vector instead of a scalar. The discourse evolves through the anchored
Plücker line (APL), the homogeneous-points line (HPL), the anchored homogeneous-points
line (AHPL), and the anchored modified-polar-points line (AMPPL).

3.1 Plucker lines (PL)

This sub-section devoted to the Plücker line is long. We decided to include all this mate-
rial because, for the sake of providing a coherent picture, it is important to highlight many
interesting connections between homogeneous points (HP) and Plücker lines (PL), notably
the existence of bilinear transformation and projection equations reproducing the structure
of those of HP, and the inverse-distance behavior of the homogeneous part of the Plücker
vector. These connections clearly arise with the adoption of a discourse that retraces the one
we used for HP. They allow us to propose the Plücker line as an interesting starting can-
didate for undelayed initialization of lines in monocular EKF-SLAM. Most of the material
here can be found in (Solà et al, 2009b).

3.1.1 The Plücker coordinates

A line in P3 can be defined from two points a and b of the line by the Plücker matrix,

L = b·a> − a·b> ∈ R4×4 , (22)

with a = (a, a) ∈ P3 and the same for b. This is a 4×4 skew-symmetric matrix (with 12
off-diagonal entries lij = −lji) subject to the Plücker constraint,

det(L) = 0 . (23)

The Plücker matrix is independent of the two selected points of the line (more exactly, any
two points of the same line give place to a matrix L′ ∼ L, i.e., equivalent up to scale).

This line is coded as a homogeneous 6-vector LPL ∈ P5 with the so called Plücker
coordinates. These coordinates are any linearly-independent selection of the entries ±lij ,
and have been defined in the literature in a number of different ways, some of them more
fortunate (intuitive, easy to understand or manipulate) than others. In order to make the
similarities with HP visible, it is handy to choose the representation suggested by Bartoli
and Sturm (2001), that we will name here the Plücker line (PL, Fig. 3(a)),

LPL =

[
n

v

]
=
[
nx ny nz vx vy vz

]> ∈ P5 ⊂ R6 , (24)

which corresponds to writing the Plücker matrix L as

L =

[
[n]× v

−v> 0

]
, n,v ∈ R3 , (25)
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d =
‖n‖
‖v‖

π

n

v

LO

q

a

b

(a) Plücker line (PL). The line L and the originO
define the support plane π.

nC

vC

LC
C

I
e1

e2

l

πC

(b) Back-projection of a Plücker line. The prior
β for initialization is expressed in the base
{e1, e2}.

Fig. 3 Geometrical interpretations of the Plücker line, with back-projection details. The 3-vector v is not
observable at initialization time. Its initial covariance, however, must be defined in the plane πC by means of
a 2D Gaussian prior β. See Fig. 10 for further details.

with [n]× the skew-symmetric matrix associated with the cross-product (i.e., [n]×m ≡
n×m),

[n]× ,

[
0 −nz ny
nz 0 −nx
−ny nx 0

]
. (26)

This choice and the definition (22) allow us to write

n = a×b (27)

v = ab− ba , (28)

with which the Plücker constraint becomes the orthogonality condition n>v = 0.
The Plücker coordinates, when defined as in (27–28), admit a comprehensible geomet-

rical interpretation (in the Euclidean sense, Fig. 3(a)):

– The vector n is a vector normal to the plane π containing the line LPL (hence the points
a and b) and the origin O.

– The vector v is a director vector of the line, oriented from a to b.
– The ratio ‖n‖/‖v‖ is the Euclidean orthogonal distance d from the line L to the origin
O.

– The Plücker constraint trivially says that n ⊥ v.
– The point of the line closest to the origin is given by q = (v×n)/‖v‖2 ∈ R3 or

q = (v×n,v>v) ∈ P3.

Remark 5 (Plücker and inverse-distance): The third property above, saying d = ‖n‖/‖v‖,
is crucial for undelayed initialization in SLAM, notably because of the inverse-distance
behavior of the sub-vector v. This is not possible with the Euclidean Plücker coordinates
LE = (n,u) in (Lemaire and Lacroix, 2007) because its director vector u is normalized,
i.e., ‖u‖ = 1 and hence d = ‖n‖. Instead of normalizing v (or u), it would have been
more interesting to normalize n, yielding an exact inverse-distance ‖v‖ = 1/d; although
no normalization is really necessary: as we will see in this paper, just proportionality to
inverse-distance is enough for achieving ULI. See also Remark 6.
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3.1.2 Frame transformations and projection

It is easy to see, via (6) and (22), that the Plücker matrix is transformed according to

L = H·LC ·H> .

This expression is linear in the components of LC and therefore a linear expression exists
for its vector counterpart LPL. Having defined LPL = (n,v), the expression of the trans-
formation is amazingly simple (Bartoli and Sturm, 2001):

LPL = H·LCPL ,

[
R [T]× R

0 R

]
·LCPL . (29)

The inverse transformation is performed with

LCPL = H−1 ·LPL =

[
R> −R> [T]×
0 R>

]
·LPL . (30)

Similarly, the Plücker matrix is projected into a pin-hole camera according to

[l]× = P·L·P> ,

which is again linear in L (see (26) for the meaning of [l]×). The corresponding linear
expression for the projected line in homogeneous coordinates, l ∈ P2, is also very simple:

l = P·LPL = K·P0 ·H−1 ·LPL , (31)

with intrinsic and canonical projection Plücker matrices

K =

[
αv 0 0
0 αu 0

−αvu0 −αuv0 αuαv

]
, P0 =

[
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

]
.

The whole transformation and projection process (31) can be expressed in terms of T, R, n

and v,

l = K·R> ·(n− T×v). (32)

Notice that when the line is expressed in camera frame, LCPL = (nC,vC), only the plane’s
normal nC appears in the projection expression,

l = K·nC , (33)

meaning that 2 DOF, the line’s range and orientation contained in vC, are not measurable.
We can now fully observe the revealing parallelisms between PL and HP by comparing

equations (29) with (6), (31) with (7), (32) with (8) and (33) with (9). Roughly speaking, the
vector n in PL plays the role of m in HP, and v plays the role of ρ. We will exploit this fact
to achieve ULI operation.
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β1

β2

unit circle LA

LB

LC

βA

βB

↓ βC

βC = (0,−2)

βB = (1, 0)

βA = (0.4, 0.2)

C

βA/�βA�2

Fig. 4 Different lines in the representation plane π in camera frame C, as a function of β. The circle is of unit
radius. Given β, the line is such that its closest point to C is β/‖β‖2. The line is orthogonal to the vector β.

3.1.3 Pin-hole back-projection

A segment l detected in an image I uniquely determines the plane πC containing the 3D line
and the optical center (Fig. 3(b)). The plane’s normal in camera frame, nC, constitutes the
measured part; it is obtained by simply inverting (33),

nC = K−1 ·l . (34)

The director vector vC is meant to lie on the plane πC and has therefore only 2 DOF,
which are not measured. We need to isolate them to be able to provide the necessary Gaus-
sian prior for initialization. For this, we consider vC to be generated by a linear combination
of the vectors of an orthogonal base E = [e1, e2] of the plane πC, i.e.,

vC = β1 ·e1 + β2 ·e2 , β1, β2 ∈ R ,

with {e1, e2,n
C} mutually orthogonal. Doing β = (β1, β2) ∈ R2 we get the matrix form

vC = E·β , (35)

and vC ∈ πC for any value of β. The base E spans the null space of nC, thus the Plücker
constraint n ⊥ v is satisfied by construction.

For convenience, we arbitrarily build the base E so that ‖β‖ is exactly inverse-distance
and e1 is parallel to the image plane. This yields

e1 =

[
nC2 −nC1 0

]>√
(nC1 )2 + (nC2 )2

·‖nC‖ and e2 =
nC×e1

‖nC‖
. (36)

With this base choice the vector β admits the following geometrical interpretation (Fig. 4):

– β = (β1, 0) is a line parallel to l, thus to the image plane, passing over the point D =

(1/β1, 0).
– β = (0, β2) is a line perpendicular to l (but generally not to the image plane), passing

over the point D = (0, 1/β2).
– β = (β1, β2) is a line in he direction of (β2,−β1) passing over the point D = β/‖β‖2

which is the point of the line closest to the optical center.
– d = 1/‖β‖ is the orthogonal Euclidean distance from the line to the optical center C.
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Fig. 5 Anchored Plücker line (APL).

L

O

π

p1

p2

m1

m2
||m2||/ρ2

||m1||/ρ1

Fig. 6 Homogeneous-points line (HPL) defined with
two HP that support it.

Remark 6 (Role of β): The planar β-space is well-suited for defining our Gaussian prior.
When β → (0, 0), the line tends to infinity. Its orientation is given by the relative strength
of β1 with respect to β2, and it easily covers the full circumference. The value ‖β‖ is the
inverse of the Euclidean distance from the line to the origin. When assigning a prior pdf
to β at initialization time (see Fig. 10 in Section 4 on initializing the pdf of β), this will
be properly mapped to the 3D space as a planar pdf on the plane πC. The support of high
probability of this pdf covers from a specified minimal distance to infinity.

Summarizing, back-projection and transformation are performed with

LPL = H
[
K−1l

Eβ

]
=

[
RK−1l + T×REβ

REβ

]
, (37)

where β must be provided as prior.

3.2 Anchored Plucker lines (APL)

As we did with points, we add an anchor to the Plücker parametrization to improve linearity.
The anchored Plücker line (APL, Fig. 5) is then the 9-vector:

LAPL =

p0

n

v

 =
[
x0 y0 z0, nx ny nz , vx vy vz

]> ∈ R9 . (38)

Transformation and projection are accomplished by transforming the line to the camera
frame, un-anchoring it, and projecting it into the pin-hole camera. This can be done in one
single expression with:

l = K·R> ·(n + (p0 − T)×v) ∈ P2 , (39)

in which we notice:

– The linear character with respect to n.
– For accurate estimates of (T − p0), which is true for observations shortly after initiali-

zation, the linear character also with respect to the non-observed v, which additionally
exhibits inverse-distance behavior.
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Back-projection and transformation resume to

LAPL =

 T

RK−1l

REβ

 , (40)

where β must be provided as prior.

3.3 Homogeneous-points lines (HPL)

This and the following parametrizations are based on the fact that a line in 3D space can
be represented by two points supporting it. We will use the point parametrizations explored
in Section 2 to build lines, in the hope that this will preserve most of the properties of the
formers.

A homogeneous-points line (HPL, Fig. 6) is coded by two HP that support it:

LHPL =


m1

ρ1

m2

ρ2

 =
[
m1x m1y m1z ρ1 m2x m2y m2z ρ2

]> ∈ R8 . (41)

Transformation and pin-hole projection require the projection of the two support points,
i.e., for i ∈ {1, 2},

ui = KR>
(
m(εi, αi)− Tρi)

)
.

This expression (which is obviously equal to HP’s (8)) may be practical to design appropriate
updating algorithms as it contains information about the segment’s support points in the
image. However, for the sake of comparing HPL against other line parametrizations, we
join the two projected points into a homogeneous 2D line,

l = u1×u2 . (42)

This yields after a few arrangements1

l = KR>
(

(m1×m2)− T×(ρ1m2 − ρ2m1)
)
. (43)

This last expression is important in the sense that it allows us to observe the parallelisms
between parametrizations. Comparing HPL (43) against PL (32), and remembering equa-
tions (27–28) defining the Plücker sub-vectors, we observe that:

– The product m1×m2 is a vector orthogonal to the plane π, and it can be identified with
the PL sub-vector n.

– The term (ρ1m2 − ρ2m1) is a vector joining the two support points of the line. It is
therefore its director vector and can be identified with the PL sub-vector v.

– With these two identifications, equations (32) and (43) coincide (using (27–28) this co-
incidence can be easily proved to hold exactly).

Back-projection and transformation should be trivial from the one used for HP. See
Table 1 in page 18 for details.

1 To prove (43) we use the distributive property of the cross-product, the identity (Ma)× (Mb) =
det(M)M−>(a×b), the fact that regular and Plücker intrinsic matrices are related by K ∝ K−>, and
remind that l ∈ P2 and is therefore equivalent under proportionality transforms.
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m1

m2
||m2||/ρ2

||m1||/ρ1

(a) Anchored homogeneous-points line (AHPL)

Lp0

O

π

1/ρ1

1/ρ2

ε1

ε2

α1
α2

p1

p2

(b) Anchored modified-polar-points line (AMPPL)

Fig. 7 Anchored point-supported lines. The lines are defined by two support points like the ones in Section 2.
The anchor is common to both points.

3.4 Anchored homogeneous-points lines (AHPL)

The anchored homogeneous-points line (AHPL, Fig. 7(a)) can be built either by adding an
anchor to the HPL or by joining two AHP with a shared anchor:

LAHPL =


p0

m1

ρ1

m2

ρ2

 = [x0 y0 z0 m1x m1y m1z ρ1 m2x m2y m2z ρ2]> ∈ R11 . (44)

Transformation and pin-hole projection require the projection of the two support points
u1 and u2, which are joined into a homogeneous line, l = u1×u2. As before, this can be
rearranged as

l = KR>
(

(m1×m2)− (T− p0)×(ρ1m2 − ρ2m1)
)
, (45)

where the same parallelisms that we highlighted between PL and HPL can now be observed
between APL and AHPL: equations (39) and (45) are equivalent after identifying (m1×m2)

with n and (ρ1m2 − ρ2m1) with v.
See Table 1 in page 18 for the back-projection and transformation equation.

3.5 Anchored modified-polar-points lines (AMPPL)

The anchored modified-polar-points line (AMPPL, Fig. 7(b)) is coded by two AMPP that
support it, which share a common anchor:

LAMPPL =


p0

(ε1, α1)

ρ1

(ε2, α2)

ρ2

 =
[
x0 y0 z0 ε1 α1 ρ1 ε2 α2 ρ2

]> ∈ R9 . (46)
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Table 1 Summary of landmark parametrizations with their main manipulations

Lmk
(size)

back-proj. + transf. g() transformation + projection h()

EP (3) p = tRK−1u + T u = KR>(p− T)

HP (4)
(
m
ρ

)
=

(
RK−1u1 + TρC

ρC

)
u = KR>(m− Tρ)

AHP
(7)

p0

m
ρ

 =

 T
RK−1u
ρC

 u = KR>
(
m− (T− p0)ρ

)

AMPP
(6)

 p0

(ε, α)
ρ

 =

 T
µ∗(RK−1u)

ρC

 u = KR>
(
m∗ − (T− p0)ρ

)

PL (6)
(
n
v

)
=

(
RK−1l + T×REβ

REβ

)
l = KR>(n− T×v)

APL
(9)

p0

n
v

 =

 T
RK−1l
REβ

 l = KR>
(
n− (T− p0)×v

)

HPL
(8)

m1

ρ1
m2

ρ2

=


RK−1u1 + TρC1

ρC1
RK−1u2 + TρC2

ρC2

 l = KR>
(
(m1×m2)− T×(m2ρ1 −m1ρ2)

)

AHPL
(11)


p0

m1

ρ1
m2

ρ2

 =


T

RK−1u1
ρC1

RK−1u2
ρC2

 KR>
(
(m1×m2)−(T−p0)×(m2ρ1−m1ρ2)

)

AMPPL
(9)


p0

(ε1, α1)
ρ1

(ε2, α2)
ρ2

=


T

µ∗(RK−1u1)
ρC1

µ∗(RK−1u2)
ρC2

 KR>
(
(m∗1×m∗2)−(T−p0)×(m∗2ρ1−m∗1ρ2)

)

Transformation and projection resume to

l = KR>
(

(m∗1×m∗2)− (T− p0)×(ρ1m∗2 − ρ2m∗1)
)
, (47)

where we used the shortcut m∗i , m∗(εi, αi), which corresponds to the trigonometric trans-
form (18).

See Table 1 in page 18 for the back-projection and transformation equation.

3.6 Final comment - points and lines

We summarize in Table 1 all points and lines parametrizations with their main manipula-
tion expressions. On completion of their descriptions we have seen many parallelisms that
should help building a coherent picture of a number of parametrizations suited for undelayed
initialization in monocular EKF-SLAM. These relations are represented in Fig. 8. We have
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Fig. 8 Links between all proposed parametrizations and more. Round boxes are points; square boxes are
lines. Single-stroke square boxes are directly-coded lines. Double-stroke square boxes are point-supported
lines. Gray boxes are anchored parametrizations. Arrows indicate the links that we established within the
discourse. The dashed area encloses all parametrizations benchmarked in this paper. Some other possi-
ble parametrizations, in thin line, have not been studied here (there are some repeated acronyms): polar
point (PP, i.e., [ε, α, d]), modified-polar point (MPP, [ε, α, ρ]); the point-supported lines: Euclidean-points
line (EPL, [x1, y1, z1, x2, y2, z2]), polar-points line (PPL, [ε1, α1, d1, ε2, α2, d2]), and modified-polar-
points line (MPPL); and the directly-coded lines: polar line (PL, [φ, ε, α, d]), modified-polar line (MPL,
[φ, ε, α, ρ]), and anchored modified-polar line (AMPL). There is no such thing as a directly-coded Euclidean
line (EL). Elements in dashed boxes do not benefit from the inverse-distance property and are not suited for
undelayed initialization. Minimal parametrizations are marked with an asterisk.

seen anchored and un-anchored representations. We have seen the surprising similarities
between homogeneous points and Plücker lines. We have highlighted the parallelisms be-
tween point-supported and Plücker-based lines. We have finally situated the modified-polar
parametrizations as lightened versions of homogeneous entities. The figure shows further
parametrizations that fall out of our interest – refer to the figure’s caption for further justifi-
cation.

4 Landmark initialization and updates

Undelayed landmark initialization with partial measurements mimics the algorithm for full
measurements and incorporates the non-measured magnitudes as Gaussian priors. We first
detail the way we express physical measurements on the image plane, and the way to define
the non-measured priors. We finally proceed with details on the initialization and updating
procedures related to the EKF machinery. For the initialization and updates of the segments
endpoints, out of the Kalman filter, please refer to App. A. (For details on camera motion
models, refer to e.g. (Davison, 2003, for constant velocity), (Solà, 2007, for odometry) or
(Piniés et al, 2007, for inertial aiding).)
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4.1 2D measurements in the image plane

The previous discourse assumed homogeneous parametrizations of points and lines in the
projective image plane P2. We detail here how to obtain them from real point and line mea-
surements defined in the Euclidean pixels image. Unfortunately, going from homogeneous
space to Euclidean can only be made at the price of some linearity loss. We decoupled the
two stages of projection to the homogeneous plane and transformation to Euclidean because
only projection depends on the landmark parametrization. Transformation to Euclidean only
depends on the generic type of landmark, that is, if it is a point or a line.

Points: A 2D point is measured as two Cartesian coordinates in pixel space, and modeled
as a Gaussian variable. Please note that the numeric value of the measurement corresponds
to the mean value ū of the distribution:

u =

[
u

v

]
∼ N{ū,U} . (48)

Its homogeneous counterpart is built with

u =

[
u

1

]
∼ N{ū,U} = N

{[
ū

1

]
,

[
U 0

0 0

]}
. (49)

Lines: A bounded 2D segment is measured as a 4-vector stacking its two endpoints:

s =

[
u1

u2

]
∼ N{s̄,S} = N

{[
ū1

ū2

]
,

[
U 0

0 U

]}
. (50)

The segments homogeneous endpoints ui, used for initialization of point-supported lines,
are built like the regular points (Eq. (49)). The homogeneous line, used for initialization of
Plücker lines, is built with (42), yielding a pdf N{̄l,L} with

l̄ = ū1×ū2 (51)

L = [ū1]×U [ū1]>× + [ū2]×U [ū2]>× . (52)

4.2 Defining the non-measured Gaussian priors

Two basic rules apply to the definition of the prior, be it ρC for points or βC for Plücker lines:
the origin must be well inside the 2σ support of the pdf, and the minimum considered dis-
tance dmin must (approximately) match the upper 2σ bound. For points and point-supported
lines, this resumes to (see Fig. 9)

ρ̄− nσρ = 0, 0 ≤ n < 2 (53)

ρ̄+ 2σρ = 1/dmin . (54)

A good practice is to choose n = 1, although this choice is not critical as it will be revealed
by the benchmarking. With n = 1 we obtain

ρ̄ = 1/3dmin, σρ = 1/3dmin . (55)
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Fig. 9 Inverse-distance pdf. A Gaussian p(ρ) = N (ρ− ρ̄, σ2
ρ) is defined in inverse-distance (vertical axes).

We have ample choice: in one extreme (solid, n = 0) we may define it so that ρ̄ = 0; the other extreme
(dotted, n = 2) takes ρ̄ − 2σρ = 0. In all cases, we have (ρ̄ + 2σρ) = K/dmin. They result in pdfs in
distance (bottom) that cover from a minimal distance dmin to infinity. K is just a proportionality constant,
e.g. K = 1 for AMPP, and K = ‖K−1u‖ for AHP and HP. We can also normalize K−1u at initialization
time and take K = 1, in which case ρ is exactly equal to inverse-distance.

β1

β2 2σβ

3σβ

1/dmin

β̄

(a) Isotropic Gaussian pdf with
line’s mean at infinity.

β1

β2

1/dmin

β̄

(b) Non-isotropic pdf penalizing
lines at negative depths.

Fig. 10 Defining a prior β ∼ N{β̄;B} for PL and APL. (a) The isotropic Gaussian with β̄ = (0, 0) and
B = σ2

βI contains all possible lines at a minimum distance of dmin: it has central symmetry, it includes the
origin which represents the line at infinity, and 1/dmin is at 2σ. For reference, a Gaussian shape is super-
imposed on the horizontal axis to evaluate the probability values at 2σ and 3σ. (b) An interesting alternative
that penalizes lines at the back of the camera is to approximate just the right-hand half of the pdf in (a) (here
shadowed) by a new Gaussian. A good fit is obtained with β̄ = (1/3dmin, 0) and an anisotropic covariance
B = diag(σ2

β1
, σ2
β2

) with σβ1 = 1/3dmin and σβ2 = 1/2dmin.

For point-supported lines HPL, AHPL and AMPPL, we just need to stack two stochas-
tically independent ρC priors, i.e., if we note such prior with tC ∼ N{t̄; T}, we have

t̄ =

[
ρ̄

ρ̄

]
, T =

[
σ2
ρ 0

0 σ2
ρ

]
. (56)

Defining the 2D Gaussian prior β ∼ N{β̄; B} for Plücker lines PL and APL is a bit
trickier, as it is difficult to express the conditions as straightforward equations like (53)
and (54). We prefer to refer the reader directly to the explanations of Fig. 10. For all the
implementations presented in this paper we use the solution in Fig. 10(b),

β̄ =

[
1/3dmin

0

]
, B =

[
(1/3dmin)2 0

0 (1/2dmin)2

]
. (57)
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4.3 Landmark initialization

The ULI algorithm valid for all parametrizations is detailed below.

1. Identify the mapped magnitudes x ∼ N{x̄,P}, where

x =

[
C

M

]
, x̄ =

[
C̄

M̄

]
, P =

[
PCC PCM

PMC PMM

]
,

with C = (T,Q) the camera frame and M = (L1, . . . ,LN ) the set of mapped landmarks
(points, lines or a mixture of them).

2. Identify the measurement z ∼ N{z̄,R} (Section 4.1, z is either u or s).
3. Define a Gaussian prior π ∼ N{π̄; Π} for the non-measured DOFs (Section 4.2; π is

either ρC, tC or βC).
4. Back-project the Gaussian measurement; get landmark mean and Jacobians

L̄ = g(C̄, z̄, π̄)

GC =
dg

dC

∣∣∣∣
C̄,z̄,π̄

, Gz =
dg

dz

∣∣∣∣
C̄,z̄,π̄

, Gπ =
dg

dπ

∣∣∣∣
C̄,z̄,π̄

with g() the composition of the measurement-to-homogeneous transforms (Section 4.1)
with the back-projection and transformation function (functions g() in Table 1).

5. Compute landmark co- and cross-variances

PLL = GCPCCG>C + GzRG>z + GπΠG>π
PLx = GCPCx = GC[PCC PCM] .

6. Augment the SLAM map

x̄←
[
x̄

L̄

]
, P←

[
P P>Lx

PLx PLL

]
.

4.4 Landmark updates

4.4.1 Point updates

The complete observation function h() is the composition of the ones in Table 1 with the
homogeneous-to-Euclidean transform

z = h2e(u) =

[
u1/u3

u2/u3

]
∈ R2 . (58)

The complete observation function is therefore h(x) = h2e(h(x)). Point updates follow the
standard EKF-SLAM formulation,

Innovation mean: y = z− h(x̄)
(

= z− h(C̄, L̄)
)

(59)

Innovation covariance: Y = R + H·P·H> (60)

Kalman gain: K = P·H> ·Y−1 (61)

State update: x̄← x̄ + K·y (62)

Covariance update: P← P−K·H·P (= P−K·Y ·K>) , (63)

with R = U the measurement noise covariance (see (48)), and the Jacobian H = ∂h
∂x

∣∣
x̄

.
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Fig. 11 Plücker line observation update. Direct measurement of the two signed orthogonal distances from
the detected endpoints to the expected (or predicted) line.

4.4.2 Line updates

It is convenient to represent the matched segment by its two endpoints, s = (u1,u2) ∈
R4. Due to the aperture problem, only the measurement components that are orthogonal to
the expected line projection can be used for correction. Therefore, we define the predicted
measurement as a 2-vector containing the signed orthogonal distances from the endpoints
ui to the expected line l̄ = h(C̄, x̄) (Fig. 11). This leads to the measurement function

z =

[
z1
z2

]
=

[̄
l> ·u1/

√
l̄ 2
1 + l̄ 2

2

l̄> ·u2/
√
l̄ 2
1 + l̄ 2

2

]
∈ R2 , (64)

which is in pixels units. If we name this function h1(l, s), the full observation function is its
composition with the projection functions in Table 1,

z = h(x, s) = h1(h(x), s) . (65)

The measured value of these distances is zero (the distance from the detected points
to a line joining them is zero!), and we just need to consider a covariance R = U ∈ R2

(see (48)) representing the pixel noise in just two of the four dimensions2. This yields an
innovation y = 0−h(x̄, s) with covariance Y = R + H·P·H>. The rest of the EKF update
is as before.

4.4.3 Improving the update of multiple landmarks per frame

It is convenient to bufferize all observations and perform a unique update per frame with all
the information. This means considering a unique observation vector z> = [z>1 , · · · , z>n ] in
(59), with n the number of successful observations in the current frame. The result is more
stable and, thanks to the sparsity of the problem, the algorithm runs much faster.

4.4.4 A first comment about the Plücker constraint

When dealing with Plücker lines PL or APL we do not apply any kind of correction to en-
force the Plücker constraint. We ensured its satisfaction during landmark initialization, with
the specification of the initial covariance in the β-plane, Section 3.1.3, and its validity at
any later time is only approximately guaranteed through cross-correlations. Although this

2 The expression R = U is only valid if the pixel noise is defined isotropic via U = σ2I2, which is most
generally the case. Otherwise we need to compute R = HsSH>s with Hs the Jacobian of (64) with respect
to the measured segment s. In fact, Hs is such that if S = diag(U,U) = σ2I4 then R = U = σ2I2.
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is of course not the optimal way to proceed, we decided to leave the method as parallel
as possible with the others presented here, so that we can impute the differences in perfor-
mance exclusively to landmark parametrization – thus not to algorithmic aspects. Refer to
Section 8.2 for further discussion.

4.5 Landmark re-parametrization

Landmark over-parametrization, which we have defended for EKF performance so far, is
expensive and should only be used when justified. Landmarks should be reparametrized
to their minimal forms after convergence, that is, when the observation functions of these
minimal forms (the destination forms) are judged linear enough.

For points, the natural choice is to reparametrize to EP. The reparametrization is trig-
gered by the linearity test described in Civera et al (2008), which is very cheap to compute
and can be easily adapted to HP, AHP and AMPP.

For lines, and because of the need of endpoints, it may be convenient to choose a non-
minimal two-points representationL = (p1,p2) (EPL, see Fig. 8), with 6 parameters. In this
case we can use the test for points in Civera et al (2008), which must hold for both support
points. We can also use any of the minimal representations, which are of size 4 (see also
Fig. 8). Tests for these other line representations might be defined from the linearity indices
described in the next section, although they are not conceived for speed. A compromise that
would probably lead to satisfactory operation is to use the test for EPL, which is simple and
does indicate that the line has already converged, and then reparametrize to any other form
of our convenience. We have not explored these last possibilities.

5 Linearity and performance evaluation tools

We present here the analytical and statistical tools used in this article to evaluate the perfor-
mances of all parametrizations.

5.1 Analytical measure of linearity

The EKF requires high degrees of linearity in the measurement and dynamic model equa-
tions. Defining an analytic measure of linearity allowing us to compare the degrees of lin-
earity of the observation functions for different parametrizations is therefore of clear impor-
tance. In (Civera et al, 2008), an analytic linearity index was proposed based on the variation
in the first derivative of the function inside the 95% probability interval of the most uncer-
tain state variable: the inverse-distance parameter. This measure is restricted, thanks to the
particular symmetries of the problem, to just 1 DOF, and it is difficult to generalize to our
amalgam of parametrizations. Very related to this work, the trace of the Hessian of the mea-
surement model is proposed in (Eade and Drummond, 2007) as a measure of the degree of
linearity in several nodes of a multi-map SLAM. This second measure has the drawback of
not incorporating the dimensions of the uncertainty region.

In EKF, linearity must always be evaluated with respect to the extension of the proba-
bility concentration region of the input variable, which is specified by the covariances ma-
trix. We introduce an analytical linearity index for multiple-input/multiple-output (MIMO)
functions which accounts for this probability region. As a desirable additional quality, the
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h(E[x])

E[h(x)]

h(x)

h(E[x])

E[h(x)]

p(x)

p(h(x))p(h(x))

Fig. 12 Propagation error of the Gaussian mean due to non-linearity. For a given non-linear function h(),
the propagation error ε = E[h(x)]− h(E[x]) is large for Gaussians with large variance (thick line, left) and
unnoticeable for narrow Gaussians (thin line, right).

proposed index is defined in the measurement space and therefore allows us to compare
parametrizations having different state sizes, and even to compare the degree of linearity of
points against lines. As in (Eade and Drummond, 2007), it involves the computation of the
Hessian which concentrates the local degree of non-linearity of a function.

We are interested in the complete observation functions z = h(x), i.e., the composition
of the transformation and pinhole projection functions, h() in Table 1, with the appropriate
measurement functions, (58) for points and (64) for lines. For concision, we define the state
x = (C,L), i.e., only the pair camera-landmark under consideration, whose estimate in the
map is a Gaussian N{x̄,P}. We denote the measurement and state dimensions with m =

dim(z) and n = dim(x). In our case we have a fixed m = 2, and a variable 10 ≤ n ≤ 18

depending on the selected parametrization.
Our linearity index is based on the error in the filter innovation y = z − h(x̄) due to

linearization. For any measurement z, this error corresponds to the propagation error through
h() of the state’s mean (Fig. 12), given by

ε , E[h(x)]− h(E(x)] ∈ Rm , (66)

where E[•] is the expectation operator, i.e., x̄ ≡ E[x]. This error is a magnitude expressed in
the measurement space. To obtain a computable approximation of εwe use the Taylor-Young
expansion for multi-variate functions applied to each component i of h(x),

hi(x) = hi(x̄) +

n∑
j=1

Jij∆xj +

n∑
j=1

n∑
k=1

1

2
Hijk∆xj∆xk + o(‖∆x‖2) , (67)

where ∆x , x − x̄, ∆xj are the components of ∆x, hi are the components of h(), Jij ,
∂hi
∂xj

(x̄) are the components of the m × n Jacobian matrix, and Hijk , ∂2hi
∂xjxk

(x̄) are the

components of them×n×nHessian tensor. Inserting (67) into (66) and ignoring o(‖∆x‖2)
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Fig. 13 Linearity index L of the MISO function z = h(x, y) = x·sin(y) for different probability regions.
We illustrate the projection (thick black) of the 2-sigma elliptical bound of the probability region (thin black)
onto the surface S = {(x, y, z) / z = h(x, y)} (mesh). The more elliptic the projected shape, the more
linear is the function and smaller the index L. (a) A tiny probability region gives good linearity and a very
small index. (b) A large probability region usually obliges the ellipse to bend over the surface, meaning high
non-linearity and resulting in a large index. (c) If such a large ellipse falls on a planar region of the surface,
the index drops to show good linearity. (d) An extreme case of very high non-linearity.

yields the first-order approximation

εi ≈ E

hi(E[x]) +

n∑
j=1

Jij∆xj +

n∑
j=1

n∑
k=1

1

2
Hijk∆xj∆xk

− hi(E[x])

=

n∑
j=1

JijE[∆xj ] +

n∑
j=1

n∑
k=1

1

2
HijkE[∆xj∆xk] . (68)

Having E[∆x] = 0 and knowing that the covariance of x is a n × n matrix given by P ,
E[∆x∆x>], with components Pjk , E[∆xj∆xk], we obtain

ε =

 ε1...
εm

 , εi ≈
1

2

n∑
j=1

n∑
k=1

HijkPjk . (69)

Finally, taking the norm yields the scalar index

L = ‖ε‖2 ∈ R+ . (70)

The m-dimensional vector ε can be interpreted as the bias introduced by a non-linear mea-
surement equation in the EKF innovation. Its norm, the proposed index L, is zero for func-
tions showing a linear behavior inside the probability region, and positively increasing as
the validity of this hypothesis vanishes.

As an example, we illustrate in Fig. 13 the fitness of this index for a 2-input, 1-output
function. Observe that the function is always the same but the evaluation region changes
position (the evaluation point x̄) and dimensions (the covariance P), greatly affecting the
linearity index.

5.2 Monte Carlo RMS errors and consistency evaluation

For practical reasons and because the full SLAM state vector is of varying size, we restrict
the error and consistency analyses to the state variables representing the robot (or camera)
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pose C, knowing that consistent localization indicates consistent mapping (Huang and Dis-
sanayake, 2007). We systematically transform mean and covariances matrix of the pose to
a minimal representation (the orientation is transformed to the Euler angles) to avoid singu-
larities in the covariance.

5.2.1 RMSE evaluation

We evaluate the root mean square error (RMSE) of each component of the camera pose,

εi,k =

√√√√ 1

N

N∑
j=1

(Ci,k − Ĉji,k)2 , (71)

where Ci,k is the i-th component (x, y, z, roll φ, pitch θ and yaw ψ) of the camera pose
at time k, and Ĉji,k is its estimate’s mean corresponding to the j-th among N Monte Carlo
runs.

For visualization purposes, these errors are compared against the estimation error given
by the filter. We take its average over all the Monte Carlo runs,

σ̄i,k =
1

N

N∑
j=1

√
P jii,k , (72)

where P jii,k is the i-th diagonal component of the estimated covariances matrix of the camera
pose, for run j and at time k. The RMSE plots in the Results section will show the true error
εi,k against the 2-sigma bound given by 2σ̄i,k.

5.2.2 Average NEES evaluation

We use the normalized estimation error squared (NEES) for evaluating consistency. We fol-
low strictly (Bailey et al, 2006), which is in turn based on (Bar-Shalom et al, 2001, pp. 234–
235). The averaged NEES value is defined,

ηk ,
1

N

N∑
j=1

(Ck − Ĉjk)>Pjk
−1

(Ck − Ĉjk) , (73)

where Ck is the camera pose at time k and {Ĉjk,P
j
k} is its Gaussian estimate corresponding

to the j-th among N Monte Carlo runs. For 6 DOF and 25 runs, the upper and lower bounds
of the double-sided 95% probability concentration region are given by:

η = χ2
(25×6)(1− 0.975)/25 = 7.432

η = χ2
(25×6)(1− 0.025)/25 = 4.719 .

If ηk < η for some significant amount of time (more than 2.5% of the time), the filter
is conservative. If ηk > η (also by more that 2.5%), the filter is optimistic and therefore
inconsistent.
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Fig. 14 Simulated 3D environment for benchmarking point parametrizations.

6 Simulation results

6.1 Software and SLAM algorithm

We have made available the software used for simulations (Solà et al, 2009a). It consists
in a 6 DOF EKF-SLAM system written in MATLAB R©, with simulation and 3D graphics
capabilities.

The algorithm is organized as an active-search-based EKF-SLAM (see Davison et al,
2007, for the active search), which allows us to optimize information gain with a limited
number of updates per frame. At each frame, we perform updates to the 10 most informa-
tive landmarks. We also attempt to initialize one landmark per frame. Unstable and inconsis-
tent landmarks are deleted from the map to avoid map overpopulation and corruption. Data
association errors are not simulated and therefore data association is perfect.

6.2 Evaluation of point parametrizations

We benchmark HP, AHP and AMPP using the same simulated scenario, the same software
and the same seeds for the random generator. We start with a description of the simulation
conditions, then proceed with the results of the (analytical) linearity and (statistical) error
and consistency analyses.

6.2.1 Simulated scenario

We simulate a robot performing a circular trajectory in an area of 12 m×12 m populated with
72 landmarks forming a cloister (Fig. 14). The robot receives noisy control inputs which are
used for the prediction stage of the EKF, fixing the scale factor. One noisy image per control
step is gathered with a single camera heading forward. Three sets of parameters have been
used for the tests (see Table 2). In the first set, the robot makes two turns to the cloister (800
frames are processed). The second set uses smaller odometry increments and perturbations,
and the trajectory is limited to one quarter of a turn (200 frames). Set 3 is like Set 2 but with
a different inverse-distance prior.
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Table 2 Simulation parameters

Concept Parameters Set 1 Set 2 Set 3

Img. size 640×480 pix
Focal (αu, αv) 320 pix, HFOV = 90◦

Pix. noise σu 1 pix

Pose step (∆X,∆ψ) (8cm, 0.9◦) (4cm, 0.45◦)
Lin. noise (σX , σY , σZ) 0.5cm 0.25cm
Ang. noise (σφ, σθ, σψ) 0.05◦ 0.025◦

ρC prior (ρ̄, σρ) (0.01, 0.5) m−1 (1.0, 1.0) m−1

29

70

34

HP

29

70

34
AHP, AMPP

Fig. 15 3D view of some landmark 3σ estimates at the end of the first loop. Inconsistency comes from
covariance overestimation rather than mean errors, as can be seen by the too small ellipses in the HP case
(left). See the accompanying video.

6.2.2 Visual evaluation

We provide the accompanying video points.mov showing the three methods running in
parallel under the conditions of Set 1. The differences in behavior are not easily visible in
the 3D movies, and we need to zoom in to appreciate incorrect operation (Fig. 15).

We see that HP estimates have too small covariances, a clear sign of overconfidence, and
therefore inconsistency. This is attributed exclusively to parametrization differences because
the information provided to the filter for HP is exactly the same for all methods. Of the 25
HP runs, one diverged, and 35 landmarks had to be deleted due to inconsistent observations
(22 of which during the divergent run).

We do not observe any difference between AHP and AMPP. No landmarks were de-
clared inconsistent in any of the 25 runs of AHP and AMPP.

6.2.3 Linearity measures

The linearity index in section 5.1 has been computed for each measured landmark and for
the three parametrizations of interest (HP, AHP and AMPP), using the parameters of Set
1. Fig. 16 shows the linearity indices of one particular landmark in order to illustrate the
typical behaviour of the index for this experiment. The index starts very high (bad linearity)
due to the huge uncertainty region. It decays rapidly and reaches a minimum at about frame
25. After this point it stabilizes to very small values (high linearity).

The index of HP is clearly higher than those of AHP and AMPP, indicating a poorer
linearity. The reason, as previously mentioned, is that setting an anchor propagates the cam-
era uncertainty only from the anchor to the current location, while HP propagates a wider
uncertainty with respect to a world reference frame.
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Fig. 16 Linearity index for the three point parametrizations during the first 35 frames of a landmark’s life.
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Fig. 17 RMS errors ε of the three point parametrizations HP (red), AMPP (green) and AHP (blue), averaged
over 25 runs. The 2σ estimated bounds are plotted in thicker line. AHP and AMPP have the largest estimated
bound and the lowest error, leading to the best results. See Fig. 18 for the corresponding consistency plots.

It is also worth remarking in this figure the low values of the proposed index, two or
three orders of magnitude less than typical image noise or EKF innovations. Although it is
true that linearization errors introduce bias in an EKF estimation, our experiments show that
the value for this bias is small enough to guarantee a good behaviour of the EKF filtering
for local monocular SLAM. The same conclusion can be applied to line-based EKF local
SLAM, as the quantitative results for the lines index are similar (see figure Fig. 21).

6.2.4 Error and consistency evaluation

The RMSE and NEES plots in Figs. 17 and 18 (please notice the logarithmic vertical scales
in the NEES plots) confirm the results seen for the linearity indices. HP behaves poorly, and
there is no significant difference between AHP and AMPP, except for a tiny but appreciable
difference in favor of AMPP. Both AHP and AMPP behave consistently, certainly with a
slight tendency to inconsistency, until shortly after the first loop closure. During the second
turn the filter is inconsistent but it does not seem to degrade too quickly.
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Fig. 18 Consistency of HP (top plot), AMPP (bottom) and AHP (bottom). Average NEES of the 6 DOF
vehicle pose [x, y, z, φ, θ, ψ]> over 25 runs for 800 frames (2 turns) and parameters of Set 1. The dotted
horizontal band between abscissas η = 4.719 and η = 7.432 mark the 95% consistency region. The vertical
line marks the loop closure at frame 308. The framed area corresponds to the area covered by Fig. 19.
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Fig. 19 Consistency of HP, AMPP and AHP. Average NEES over 25 runs for 200 frames (1/4 turn) and
10 initializations in the first frame. Solid: parameters of Set 2 with prior (ρ̄, σρ) = (0.01, 0.5). Dashed:
parameters of Set 3 with an alternative prior (ρ̄, σρ) = (1.0, 1.0).

We tuned the algorithms with the second set of parameters in order to improve the con-
ditions for linearity: odometry steps and noise are cut in half, reducing the measurements
innovation, and the filter is bootstrapped with 10 landmarks being initialized at the first
frame. Here, we focus on the first quarter of the first loop (1/8 of the first run’s length) to see
the moment when the filters loose consistency. The results in Fig. 19 show no significant im-
provement with respect to those of Set 1 (these 200 frames correspond to the first 100 frames
of Set 1, which have been boxed in Fig. 18): HP is just not good, and AHP and AMPP are
again the ones that behave consistently. Interestingly, AHP and AMPP have the same NEES
values as the ones observed in the previous test, showing an important robustness against
varying operating conditions.

A third test consisted in selecting a different prior for the unmeasurable inverse-distance.
The dashed superimposed plots in Fig. 19 show that AMPP and AHP are almost insensitive
to large variations of these parameters, while the contrary must be said for HP. It seems, even
if for AHP and AMPP the difference is small, that the filter behaves better with landmarks
initialized at (or close to) infinity (ρ̄C = 0.01m−1) than at some close distance (ρ̄C = 1m−1).
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2m
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(a) Circular trajectory, lateral camera. (b) Arc trajectory, frontal camera.

Fig. 20 Simulated 3D environments for benchmarking the 5 line parametrizations. The robot’s trajectory and
the house being reconstructed are shown. (a) Circular trajectory, camera looking sideways to the house. (b)
Arc trajectory, camera looking forward to the house.
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Fig. 21 Linearity index for the five line parametrizations during the first 35 frames of a landmark’s life,
showing the superior linearity of anchored point-supported lines.

6.3 Evaluation of line parametrizations

We benchmark PL, APL, HPL, AHPL and AMPPL for linearity, RMS errors and NEES
consistency, in two different scenarios.

The first scenario (Fig. 20(a)) consists of a robot making a turn around a wireframe
model of a house. 400 frames are processed. The camera is looking sideways to the house
and, the house being always visible, there is no loop closure. The simulation parameters are
equivalent to the ones we used for points in Set 1.

We provide the accompanying video lines.mov showing the five systems running in
parallel. At first sight all parametrizations seem to work correctly. As we did with points,
we use the analytical and numerical tools to reveal the differences in performance between
parametrizations.

The linearity indices are shown in Fig. 21. All indices follow essentially the same pattern
as we saw for points. Moreover, their numerical values are similar for points and lines (com-
pare Figs. 16 and 21), suggesting that the index can be used for comparing points against
lines. Again, unanchored parametrizations are the ones showing the poorest linearity. APL
is better than all unanchored ones but not good enough, probably because the Plücker con-
straint is only applied at initialization time and not enforced on subsequent updates (see
Section 8 for a more detailed discussion).
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Fig. 22 Averaged RMS errors ε of the Plücker-based line parametrizations PL and APL against the 2σ esti-
mated bounds. Anchoring the Plücker line helps improving the estimates, but none of these Plücker paramet-
rizations seem to work correctly. See discussion in Section 8 about the Plücker constraint.
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Fig. 23 Averaged RMS errors ε of the three point-based line parametrizations HPL, AMPPL and AHPL
against the 2σ estimated bounds. Anchoring has produced both a larger 2σ bound and a smaller error ε.
AMPPL and AHPL behave almost exactly.

The RMSE results are shown in Figs. 22 and 23. The Plücker-based lines behave poorly,
especially if not anchored. Among the point-supported lines, anchored parametrizations ex-
hibit both smaller errors and larger error estimates, indicating better consistency. We can say
that they inherit the properties of the point parametrizations they are based on.

The NEES results are shown in Fig. 24 – please notice the logarithmic vertical scales.
We observe that the only parametrizations that behave consistently are the anchored, point-
supported lines AHPL and AMPPL.

The second scenario (Fig. 20(b)) corresponds to a frontal trajectory, a situation that is
more challenging for monocular SLAM as the parallax increase is slow and therefore the
scene observability is weak. The camera looks forward and the robot performs an arc of a
circle towards the house. The sequence is stopped after 100 frames when the robot is actually
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Fig. 24 Consistency of PL, APL, HPL, AHPL and AMPPL. Average NEES over 25 runs for 400 frames (one
turn around the house). Plücker-based lines (PL and APL) do not behave consistently, even when anchored.
Lines based on homogeneous points (HPL) neither, as expected from the HP behavior. Anchored point-
supported lines (AHPL and AMPPL) behave similarly and close to consistency.

800 20 40 60 100

Av
g.

 N
EE

S

2

4

10

20

40

AHPL
AMPPL

APL

Fig. 25 Average NEES over 25 runs for 100 frames (frontal trajectory). Again, only anchored point-supported
lines behave close to consistency.

inside the house and no more segments are in the field of view. In this case we just show the
NEES results for the anchored parametrizations (Fig. 25), namely APL, AHPL and AMPPL
– the rest are clearly inconsistent. The results are pretty much the same as in the first scenario
(compare to the three corresponding plots in Fig. 24), showing an important robustness in
face of large variations of the operating conditions.

7 Experimental results

7.1 Robocentric EKF-SLAM with points

An interesting alternative to the algorithm here benchmarked is robocentric SLAM (Castel-
lanos et al, 2007; Marzorati et al, 2008; Civera, 2009). Robocentric SLAM performs the
composition of the current frame and the local motion after the landmarks update. This
greatly helps reducing linearization errors, improving accuracy and consistency. The trans-
formation affects the full landmarks map, with the consequence of making the robot pose
T become the origin at every step, with null covariance, and hence the robocentric term.
Immediately after, at initialization time, we have that the anchor to generate is p0 = T ≡ 0,
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(a) RTK-GPS ground truth over an aerial Google Maps view

(b) Image from the sequence

(c) Image from the sequence

Fig. 26 Bovisa urban image sequence data. (a) Ground truth of the 1.6 km trajectory. (b, c) Two representative
images from the sequence.

with null covariance. We can then drop it from the parametrization, obtaining, in e.g. the
AHP case, simple homogeneous points HP. This combination of HP and robocentric SLAM
constitutes exactly the algorithm proposed by Marzorati et al (2008).

We are curious to see if robocentric SLAM can indeed make anchoring unnecessary and
achieve lower parametrization costs, or if, on the contrary, it still benefits from the extra
degree of linearity that anchoring provides. We have run robocentric SLAM using HP, AHP
and AMPP on a sequence of more than 68.000 images taken during an outdoors run of over
1600 m, covering an area of some 250 m×250 m (the Bovisa dataset from Rawseeds (Bonar-
ini et al, 2006; Ceriani et al, 2009)). Figure 26 shows an aerial view of the covered trajectory,
along with two representative images of the sequence. The algorithm is set to visual odome-
try mode, meaning that landmarks exiting the field of view are deleted. This way, one single
EKF can be used for the whole run of 1.600 m. This allows us to see how each system be-
haves in the long run, without having to interpret the effects of other algorithmic solutions
necessary for large-area mapping, notably the use of multiple local maps. Furthermore, the
algorithm incorporates a 1-point RANSAC outlier rejection step (Civera et al, 2009) which
enables us to consider the matching problem solved. With all these features we can attribute
the outcome differences uniquely to landmark parametrization. Three different runs have
been made for each parameterization, each one of them initializing and measuring different
features of the sequence.

The results in Fig. 27 show that HP performs much worse than AHP and AMPP, agreeing
with our previous simulation results. Using HP, the trajectory is off by as much as 200 m
(80% of the area dimensions) with respect to RTK-GPS (with centimetric accuracy). AMPP
derived 33 m, and AHP only 11 m. These results corroborate the need of the highest degrees
of linearity possible. We can draw the same conclusions as in the previous simulations:
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(a) Mean error HP: 167m (b) Mean error AMPP: 20m (c) Mean error AHP: 13m

Fig. 27 Robocentric EKF visual odometry (red) against RTK-GPS (green), over an outdoors run of 1.600 m
and more than 68.000 images. The figure shows 3 runs for each parameterization. (a) HP shows poor perfor-
mances, and the estimated trajectory is off by 200 m, as much as 80% of the dimensions of the explored area.
(b) AMPP completes the run successfully with a maximum drift of 33m (13.2% of the area dimensions). (c)
AHP outperforms AMPP with 11m maximum drift (4.4% of the area dimensions).

(a) Image and 2D segments (b) Lines initialized at 1m distance (c) Final, perspective view

(d) Final, top view (e) Final, front view (f) Final, side view

Fig. 28 Monocular EKF-SLAM with ULI of AMPPL segments. (a) A sample image with the tracked 2D
segments. (b) The set of initialized lines, all at a distance of 1 m from the camera, corresponding to the
selected prior, thus defining a spherical distribution. (c) The final map, from a viewpoint close to the camera
(compare with (a)). (d, e, f) Top, front and side views of the final map, showing the correct reconstruction of
the scene, with the dihedral planes at precise right angles. The grid in the 3D views has 10 cm steps.

anchoring is the major factor of improvement, and the difference between modified-polar
and homogeneous representations can be considered negligible.
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Table 3 Reconstruction accuracy of the generated segments maps for PL, APL and AMPPL

Parametrization distance to plane, 1σ angle with plane, 1σ angle between planes

PL 6.95 mm 1.89◦ 89.34◦

APL 6.92 mm 1.97◦ 89.52◦

AMPPL 6.60 mm 0.79◦ 89.99◦

7.2 Classical EKF-SLAM with segments

We have implemented EKF SLAM with real images for the line parametrizations PL, APL
and AMPPL, using the segment detector and tracker of Berger and Lacroix (2010). The
scene contains a 90◦ dihedral with several segments on its planes (Fig. 28). The camera,
controlled by a robotic arm, performs a 30×30 cm square trajectory perpendicularly to its
optical axis. The position increments given by the arm are corrupted and used as odometry
inputs to the system, thus providing the metrics for scale observability.

The video lines real.mov shows the three methods running in parallel. A selection
of snapshots of the AMPPL run is shown in Fig. 28.

To evaluate the accuracy of the resulting maps we identify the two planes of the dihedral
by optimally fitting them on the segments endpoints, and compute two different co-planarity
errors. The first one is defined by the standard deviation of the distances from the segments
midpoints to their support plane. The second one is defined by the angles between the seg-
ments and their support plane. Finally, we report the angle between the two planes. The
results are summarized in Table 3. For this experiment, because of algorithmic limitations in
the image processing part, all lines are initialized at the first frame, exactly at the origin. As
a consequence, we have p0 = 0 for all landmarks and the effect of anchoring is not visible:
PL and APL give practically the same results. We just observe a slight advantage of AMPPL
with respect to PL and APL.

8 Elements of discussion

8.1 Redundancy and constraints in the EKF

There exist recurrent discussions on whether estimators should employ minimal state para-
metrizations or not, and the effects that redundancy and constraints have in EKF estimates.
It is not our aim now to provide a detailed analysis of these issues here, but this paper has
clearly showed that redundancy can be exploited to our benefit. With a little insight we dis-
cover that not all redundancies are the same, neither the constraints, and that they do not
always come together. Some ideas to situate these concepts follow.

1. Homogeneous vectors are redundant or equivalent under proportionality transforms.
This equivalence has continuity in all dimensions of the state space, and thus it im-
poses no constraint to the filter: the new states resulting from EKF updates are always
valid homogeneous vectors.

2. Quaternions are redundant only with respect to symmetry: a quaternion and its nega-
tive are equivalent. There is no continuity between the two equivalent instances, and
the impossibility of ‘jumping’ along the redundant dimension constitutes a constraint.
This is well known: the quaternion is constrained by a unity norm which defines a unit
spheroid in R4. In EKF, this constraint can be applied explicitly, via Q ← Q/‖Q‖, its
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Jacobian J and the EKF prediction equations, resulting in a projection of the covari-
ance onto the hyperplane S = null(J) tangent to the unit spheroid. Subsequent EKF
updates, constrained to S, result in quaternions escaping the spheroid and violating the
spherical constraint, and thus renormalization is needed. Although not always required,
it is possible to avoid the singularity of the covariance by two means. One is to employ a
modified normalization Jacobian J∗ = I4/‖Q‖, obtaining just an isotropic scaling of the
covariance ellipsoid. We have explored both types of Jacobians with good results and no
significant differences. The other way of avoiding the singularity is to apply a relaxed
constraint Q← Q/‖Q‖+ n, with n noise, which results in inflating the covariance.

3. Anchored landmarks are redundant in the sense that landmarks with different anchors
may be equivalent. There exists a continuity of solutions, in this case not related to
proportionality, with no constraints. As we have seen, this redundancy allows us to ar-
bitrarily select the anchor with the most beneficial effects.

4. Plücker lines are defined in the projective space P5 and are therefore equivalent under
proportionality transformations. This DOF is not constrained. However, they contain a
second redundant DOF affected by the Plücker constraint n ⊥ v. The Plücker constraint
is more delicate because it can only be applied implicitly, via n>v = 0 and the EKF
correction equations. This means that the covariance is intersected with (not projected
to) the constraint manifold, with the subsequent risk of collapse. This does have a no-
ticeable impact on the filter and is further discussed in the next section.

8.2 The Plücker constraint

We have seen in Section 3.1 that for a pair (n,v) to be a Plücker line the Plücker constraint
n>v = 0 is mandatory. We have ensured its satisfaction at initialization time by defining the
inverse-distance prior in the β-plane, but we have not enforced it further during landmark
updates, for several reasons. One reason is our desire to use a common algorithm for all
parametrizations so that the differences in performance can be better interpreted. A second
reason is that we did not find a clean and convincing method for enforcing such constraints
in the EKF framework. In the linear case, enforcing implicit equality constraints Hx = 0

can be done by performing a KF update with a synthetic measurement 0 = z = Hx with
infinite information. This has the consequence of producing singular covariances matrices.
The directions of the state space being affected by this singularity become blocked and no
more evolution on them can be expected, creating a lifelong guarantee of the constraint sat-
isfaction. Unfortunately, in EKF the combination of uncertainty and non-linearity prevents
non-linear implicit equality constraints h(x) = 0 from being enforced this straightforwardly.
This problem has been treated and solved by Lemaire and Lacroix (2007) for the Euclidean
Plücker lines (i.e., with normalized director vector) using the smoothly constrained Kalman
Filter (Geeter et al, 1997). The idea is to apply a number of relaxed constraints over time,
with an EKF update 0 = h(x)+n, where n is a noise vector with a variance decreasing with
time, to make the filter gradually converge to a state satisfying the equality constraint. This
method is directly applicable to PL and APL. However, it requires several tuning parameters
(initial value of n, rate of decay of n, at which times and/or under which conditions to apply
it, when to stop) and, as mentioned, we do not feel the solution to be very elegant.

These facts might very well be at the base of the poor consistency results of APL, which
otherwise would be expected to perform similarly to its point-counterpart AHP. We have not
investigated this hypothesis further, mainly because there exist other strong reasons to prefer
point-supported lines over Plücker-based lines, as we discuss in the following section.
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(a) APL (b) AMPPL

Fig. 29 Endpoints covariance ellipsoids in Plücker-based and point-supported lines, showing the superior
representativity of the latter. The snapshots are taken 30 frames after initialization, before the end of the
convergence phase. In APL, the ellipsoids are “discs” in the plane defined by the segment and the landmark
anchor. In AMPPL, the ellipsoids are “pencils” pointing to the anchor.

8.3 Endpoints management in Plücker-based and point-supported lines

In addition to an accurate estimation of the infinite lines supporting the segments, a proper
endpoints management is crucial to produce meaningful maps of segments. The methods for
endpoints management require some information to be stored out of the map. We limit this
to the two abscissas of the endpoints expressed in a local reference frame of the line (see
Appendix A for details on endpoints management).

Plücker-based lines PL and APL condensate all the information of the initial observation
in the plane normal, via n = m1×m2, Eq. (27), and all other information on the endpoints’
initial view is lost. This constitutes an important drawback: the local line origin (point q,
Fig. 3), where the abscissas are referenced to, moves with the line’s orientation, which is
initially unobserved and therefore undergoes large variations during the convergence phase.
Fig. 29(a) shows that not even the cross-correlations in the covariances matrix are able to
account for this information. In other words, the endpoints cannot be assumed to remain
stable from one frame to the next one. Because choosing an alternative local origin for
the line with better properties does not seem to be trivial, the only reasonable strategy for
managing endpoints is to reset them at each frame using the current observation, potentially
losing information about the segment extension observed in previous frames.

On the contrary, anchored point-supported line parametrizations AHPL and AMPPL
have the ability to respect the initial view of the two endpoints via the anchor p0 and the
director vectors (m1,m2), as it can be observed in Fig. 29(b). This information is part of
the state and is available even after large updates thanks to the role that cross-correlations
play in the EKF update.

Because of the higher representativeness of anchored point-supported lines, and because
of the absence of constraints to be guaranteed, we consider anchored point-supported lines
preferable to Plücker-based lines for undelayed monocular SLAM. The additional cost over
APL is null for AMPPL (size 9 in both cases) and marginal for AHPL (size 11 instead of 9),
and needs to be paid only during the convergence phase. After convergence, the line can be
reparametrized to more economic forms (see Section 4.5 on landmark re-parametrization).
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9 Conclusions

This paper was initially conceived as a compendium of landmark parametrizations for monoc-
ular SLAM. Our very first aim was to show that all these methods are very intimately re-
lated, as we have exposed amply. As the work evolved, we realized that the material and
insights provided should also be a good basis for establishing good practices for boarding
a more general problematic, that is, the problem of accurately estimating high-dimensional
dynamic systems of non-linear nature and huge uncertainty levels with the use of relatively
simple analytic tools such as the EKF.

We summarize here the main concepts and results presented in this work:

1. Undelayed landmark initialization (ULI) is fundamental in the sense that it is the way
we can make use of all the geometrical information provided by the landmarks: from
the first observation, up to the infinity range, and independently of the sensor trajectory.

2. Implementing ULI within EKF is difficult because of the combination of non-linearity
and unbounded uncertainty regions.

– Linearity and Gaussiannity are the two keys to satisfactory EKF operation. Astute
transformations and redundancy in the parametric descriptions of the system pro-
duce analytic expressions and probability densities that are well adapted to the esti-
mator in use.

– Inverse-distance behavior of the non-measurable parameters is the key that makes
undelayed initialization of landmarks possible when they are perceived from pro-
jective sensors. Inverse-distance transforms unbounded regions reaching the infinity
into bounded regions including the origin. It also appears explicitly and linearly in
the homogeneous coordinates used in projective geometry.

– Once ULI is achieved, landmark anchoring has shown to be the major actor in further
improving linearity to reach satisfactory levels. Anchoring produces a term in the
bilinear expression of the frame transformation (the term which multiplies precisely
the non-measured parameters) with an uncertainty corresponding only to the local
motion since initialization. This results in observation equations that are quasi-linear
with respect to these non-measured parameters, which are the most uncertain and
hence the most sensitive to non-linearity.

– Manipulations on the measurable parameters, such as the use of rectangular or polar
coordinates for the director vectors, have shown to produce no remarkable effects.
This is because, being these parameters measured with good accuracy, their degree
of uncertainty is small and the functions in which they appear are regarded by EKF
as being linear. However, when these small effects are integrated over very long
runs, they may become significant.

3. A great number of parametrizations can be regarded as a sequence of small modifica-
tions of ones with respect to the others (Fig. 8). We have traversed a family of eight
parametrizations and established quasi-trivial links between them. We have shown that
estimating points and lines is fundamentally the same problem and admits fundamen-
tally the same solutions. Estimating other parametric entities such as conic sections,
splines or planes should also be feasible as long as we can take good advantage of the
principles exposed here.

4. Measuring non-linearity for high-dimensional MIMO functions is an interesting but dif-
ficult task, especially if we want the measure to be useful for comparing parametrizations
of different dimensionality.
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– We defined a linearity index that incorporates the local knowledge of the uncertainty
region, which is well suited for EKF usage.

– The index is expressed in the measurement space, which is common to all paramet-
rizations and allows us to compare them with each other.

5. Visual inspection, linearity analysis, RMS errors and NEES consistency, all give a co-
herent picture of the performance of each parametrization.

6. Using intrinsically robuster algorithms such as robocentric SLAM has not altered the rel-
ative performances of the parametrizations. This result seems to corroborate that some
parametrizations are indeed better than others, regardless of the algorithm in use. It
would be interesting to see if this also applies to recursive optimizers such as SBA, and
in such case if the improvements (e.g. fewer optimizer iterations) are sufficient to com-
pensate for the extra amount of computational power (e.g. more operations per iteration)
that would be required.

A Segment endpoints management

The segment’s endpoints in 3D space are maintained out of the filter via two abscissas (t1, t2) defined in the
local 1D reference frame of the line.

– In Plücker-based lines (Fig. 30(a)) the local frame is defined by a single axis with the origin at the point
q = p0 + (v×n)/‖v‖2, the closest to the anchor, and the director vector u = v/‖v‖2 providing the
unit length (we make the norm of u proportional to distance to improve its projective behavior). Each
endpoint pi is specified by an abscissa ti such that

pi = q + tiv/‖v‖2 = p0 +
v×n + tiv

‖v‖2
. (74)

– In point-supported lines (Fig. 30(b)) the endpoints are defined with respect to the support points qi =
p0 + mi/ρi. The origin is at q1 and the unit length defined by q2 − q1, leading to the endpoints

pi = (1− ti)q1 + tiq2 = p0 + (1− ti)m1/ρ1 + tim2/ρ2 . (75)

The initial abscissas are defined trivially with (t1, t2) = (0, 1).

Before updating, we need to back-project the currently observed endpoints onto the 3D line. This is
done by triangulating the 3D line with the optical rays of the two currently observed 2D endpoints. To avoid
aberrant results it is advised to update each abscissa only if the triangulation angle between the ray and the
line is greater than a certain value (we use 15◦). The result is a couple of candidate abscissas (t′1, t

′
2) that are

assigned to (t1, t2) depending on the the following rules:

t1

t2
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p2
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p0

0

pi = q + ti
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(a) Plücker-based lines PL and APL.
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p2

p1

p0
m1

m2

q2

q1 0

1pi = (1 − ti)q1 + tiq2

(b) Point-supported lines HL, AHL and AMPPL.

Fig. 30 Segment endpoints in the local ordinate frame of Plücker-based and point-supported lines.
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Fig. 31 The three general strategies for updating 3D segment endpoints. (a) Endpoints are defined at initiali-
zation time and never updated. (b) Endpoints are systematically updated according to the current observation.
(c) Endpoints are updated only if this lengthens the 3D segment.

– During convergence the abscissas are either not updated (Fig. 31(a), used for AHPL and AMPPL), thus
reflecting the initial observation, or systematically updated (Fig. 31(b), used for PL, APL and HPL),
simply reflecting the last observation.

– Once the line has converged, an extending-only policy is applied (Fig. 31(c)): the abscissa is updated
only if this lengthens the 3D segment. It is to note that a converged line is ready for reparametrization to
any minimal (or at least more economical) form.
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