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Impact of landmark parametrization on monocular
EKF-SLAM with points and lines

Joan Solà, Teresa Vidal-Calleja and Javier Civera

Abstract— This paper aims at providing answers to a variety
of questions regarding undelayed initialization of point- and line-
landmarks in monocular EKF-SLAM. It does so by stating the
problem and the necessary conditions for a successful solution,
and by offering a compendium of landmark parametrizations,
including three different methods for points and five other
methods for straight lines. Some of these methods are already
well-known, others are presented here for the first time. The
discourse of the text is chosen to highlight the similarities and
the differences between them, and how all these parametrizations
can be seen as incremental variations of ones with respect to
others. We present a new linearity measure to predict how well a
parametrization will perform in an EKF framework. To confirm
these predictions, we benchmark all the methods by running
Monte-Carlo tests on all algorithms, using the same data and
comparing their performances on filter RMS errors and NEES
consistency. Finally, some results with real imagery are presented
as a means to further analyze their possibilities in view of real
implementations.

TODO: Remove TOC - check intro and abstract for real
contents - check paper outline description -

I. INTRODUCTION

Monocular simultaneous localization and mapping (SLAM)
gained popularity back in 2003 thanks to a real-time im-
plementation due to Davison [1], based on Smith et al.’s
original extended Kalman filter (EKF) solution to SLAM [2].
Davison’s technique elegantly solved a great number of prob-
lems, but there still remained one that occupied researchers on
visual SLAM for some years [3]–[5]: the problem of landmark
initialization. Monocular EKF-SLAM reached maturity with
the advent of undelayed landmark initialization techniques
(ULI), a need of partial initialization firstly stated in 2005
by Solà et al. [6], with a preliminary solution based on a
multi-hipothesized depth parametrization, which was inspired
on a previous work in 2004 by Kwok et al. [7]. The problem
was successfully solved for the first time in 2006 with the
inverse-depth landmark parametrization (IDP) due to Montiel
et al. [8].

The present work aims at contributing several concepts
related to landmark parametrization in monocular, EKF-based
SLAM implementing ULI. The goal is to improve the system’s
linearity, and thus filter consistency, to achieve more robust and
accurate localization and mapping. We present eight different
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methods, three for points and five for lines; we highlight their
similarities and differences, analyze their degree of linearity,
and compare their performances using both analytical and
statistical tools, in both simulated and real setups.

A. Undelayed landmark initialization (ULI)

ULI (also known as partial initialization) is the proc-
cess by which landmarks that have been partially measured
(e.g. with bearings-only —see Fig. 1— or range-only sensors)
are incorporated into the SLAM map at the time of the
first observation, that is, before their full 3D state can be
determined. In bearings-only systems such as those based
on a monocular camera, ULI allows landmarks showing low
parallax (those that are at remote distances or close to the
motion axis of the camera) to contribute to SLAM from the
first observation, contributing precious bearing information
that helps constraining the camera orientation. This allows the
exploitation of the full field of view of the camera up to the
infinity range, regardless of the sensor trajectory, which results
in accurate localizations with very low angular drifts. We
encourage the reader to consult [6], [9], [10] for discussions
on delayed/undelayed initializations and their importance in
monocular SLAM.

In brief, ULI in EKF frameworks must be conceived with
two key properties, namely

1) The full uncertainty range of the non-measured degrees
of freedom (DOF) must be properly represented by a
Gaussian pdf.

2) The subsequent updating procedures must be robust and
accurate when performed with standard EKF machinery.

In order to simultaneously fulfill these requirements with
a simple EKF, some degree of landmark over-parametrization
is required. On one hand, a non-linear mapping is needed for
the DOF encoding distance to transform a bounded Gaussian
in parametrization space into an unbounded density in map
space. In bearings-only systems this leads to parametrizations
incorporating these DOFs proportional to inverse-distance. On
the other hand, we need to make the observation functions as
linear as possible. The inverse-distance helps here too, but
additional over-parametrization may also show beneficial as
we will see.

B. Points and straight lines

The problems of lines and points are somewhat similar, and
one of the aims of this paper is to make this similarity evident.

For points, ULI means that landmarks must be initialized
so that the uncertainty in distance – the only non-measurable
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(a) The retro-projection of a point u gives
place to a semi-infinite line λ where the
point landmark p must lie. There is 1
unmeasured DOF: the point’s depth.
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(b) The retro-projection of a segment l
gives place to a semi-infinite plane π where
the line landmark L must lie. There are 2
unmeasured DOF: the line’s depth and its
orientation in π.
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(c) The retro-projection of an ellipse e
gives place to a semi-infinite coneQ where
the elliptic landmark E must lie. There
are 3 unmeasured DOF: the ellipse’s plane
depth and its two attitude angles.

Figure 1. The problem of undelayed initialization. Retro-projection of detected features in a monocular image I at their first observation. The unmeasured
DOF’s have infinite uncertainty and need to be properly modeled and handled by Gaussian shapes and reasonably linear functions. This paper explores the
possibilities of undelayed initialization of points and straight lines, but not of ellipses.

DOF – covers all the visual ray up to infinity. The problem
knows today two main solutions: inverse-depth points (IDP,
[8], [9]), and homogeneous points (HP, [11]).

Lines present additional difficulties. For lines, ULI requires
the initial uncertainty to cover 2 non-measurable DOF: dis-
tance up to infinity, and all possible orientations. Unlike
points, lines can be partially occluded, and most edge detectors
produce very unstable endpoints. Therefore, the 3D segment’s
endpoints cannot be established from single observations.
Also, line observations suffer from the aperture problem,
which means that only the measured components that are
orthogonal to the line are practicable. The only ULI solution
for infinite lines we are aware of is [12], which uses the
Plücker line. Delayed EKF approaches include [13]–[15].
Edgelets (very short line fragments) are used in [16] in an
undelayed manner. Edgelets are also used in [17], but not with
the EKF but with bundle adjustment techniques.

C. Conics and planes

Points and straight lines are not the only geometrical
primitives that one might use. In perspective cameras, points
project into points, straight lines into straight lines, and conics
such as ellipses project into conics (Fig. 1). In panoramic
cameras governed by the Barreto model [18], points project
into points and straight lines into ellipses. It is convenient
in all these cases to base our observation models in the
functions that relate the geometric parameters defining the
shapes in 3D space to the ones in the 2D images. But a
fundamental difference appears when trying to use planes
as primitives. In perspective cameras a plane does project
into a plane, but this plane is absolutely coincident with the
image plane: the observed plane parameters are always the
same and therefore non-informative. This seems a counter-
intuitive paradox saying “we cannot observe 3D planes with
a projective device”. It is not: planes are observable, but they
must be observed indirectly, by observing either primitives
of the previous kinds (points, lines, curves) that lie on their
surface or that delimit them, or some dense information such
as planar textured patches. The observation models for planes
must be based on indirect methods and cannot be conceived

with the same class of algorithms as the ones for points or
curves. We leave the problem of planes, and the question
of whether the ideas presented in this paper are extrapolable
to them, out of consideration. Besides, our aim is not to be
exhaustive, and we further restrict our study to the cases of
points and straight lines projected into perspective cameras,
which we judge to be the ones with the clearest practical
applications.

D. Alternative approaches

Other authors investigated the possibilities of using differ-
ent estimation techniques. We have seen IDP used in Fast-
SLAM2.0 [19] and UKF [20], [21] frameworks; and methods
based on bundle adjustment [22], [23], which is at this moment
the technique that shows the clearest future perspectives [24].
These works are often motivated by inconsistency and compu-
tational burden issues associated with EKF-SLAM. However,
EKF-SLAM (or other similar approaches based on filtering
and Gaussians such as UKF- or EIF-SLAM) is still widely
used by major robotics and vision laboratories and is at
the core of other localization, mapping or modeling systems
[15], [25]–[27]. Two reasons in our opinion keep it alive: its
(relative) simplicity of implementation, and the fact that large
maps are usually being built by means of small sub-maps, thus
circumventing most of the EKF drawbacks.

E. Contributions

We claim several contributions. First, a compendium of
eight landmark parametrizations especially conceived for ULI,
three for points and five for lines, where five of them are
innovative to our best knowledge. Second, these parametri-
zations are presented in a unified discourse that emphasizes
the two keys to satisfactory ULI, namely landmark anchoring
and inverse-distance behavior. These two keys have already
been proved positive, e.g. in [9], [11], but they have not been
purposely conceptualized and explored to the limit. Third,
an analytical measure of linearity for EKF that takes into
account the time-varying support of probability. Fourth, a
statistical analysis of root mean squared (RMS) errors and
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normalized estimation error squared (NEES) consistency based
on Monte-Carlo simulation runs. The analytical and statistical
approaches presented here should allow the reader to correlate
the discourse of the paper with the linearity indices and with
the performance of each parametrization. We illustrate the two
most performing methods with a couple of experiments using
real imagery. A final discussion serves to relocate the EKF-
SLAM algorithm among other close-by solutions, namely
robo-centric monocular EKF-SLAM [11], [26], and boards
some secondary but important aspects regarding one or other
solution.

F. Outline

In Section II we describe three parametrizations for points
and give details on the necessary algebra to support them. In
Section III we repeat the process with five types of infinite
lines. Section IV describes the initialization and updating
procedures in standard EKF-SLAM with ULI using points
or lines. Section V introduces the analytical and statistical
methods we use for linearity and consistency evaluation, with
results presented in Section VI. The paper continues with a
discussion in Section VII and the conclusions in Section VIII.

II. POINTS

This section presents some parametrizations for 3D points,
with their projection and back-projection operations needed
for EKF-SLAM initialization and updating. We start with
Euclidean points (EP) just as a matter of completeness, and
to introduce some notation. The discourse evolves through ho-
mogeneous points (HP), anchored homogeneous points (AHP),
and inverse-distance points (IDP), which we will refer to here
as anchored modified-polar points (AMPP) for reasons that
will be explained soon.

A. Euclidean points (EP)

A Euclidean point p (EP, Fig. 2(a)) is trivially coded with
three Cartesian coordinates

PE = p =
[
x y z

]> ∈ R3

Transformation to camera frame and perspective (pin-hole)
projection are performed with the well-known expression

u = KR>(p− T) ∈ P2, (1)

which we use to introduce some notation. Underlined fonts •
indicate homogeneous coordinates; K is the intrinsic matrix,

K ,

[
αu 0 u0
0 αv v0
0 0 1

]
;

R = R(Q) and T are the rotation matrix and the translation
vector defining the camera frame C, which is coded by the
vector C = (T,Q), Q being an orientation representation of
our choice suitable for EKF filtering (we use quaternions).

Euclidean points lead to severely non-linear observation
functions in bearings-only systems and are not suited for un-
delayed initialization, as it has been extensively demonstrated,

[3], [7], [10], [11], [19] and most particularly [6], [9]. In brief,
the problem can be described as follows. In EKF, the re-
quirements of function linearity must be stated with respect to
the uncertainty region. Because in Euclidean parametrizations
the uncertainty region of partially observed landmarks is of
infinite size, the observation functions’ linearity should hold
for an infinite variation of the non-measured DOF, which is
not the case. The parametrizations that we present mitigate this
problem by transforming the unbounded uncertainty region
into a bounded one, and can be employed for ULI with just a
few precautions.

B. Homogeneous points (HP)

A homogeneous point (HP, Fig. 2(b)) is coded by a 4-vector
in projective space P3. It is composed of a 3D vector m and
a scalar ρ, usually referred to as the homogeneous part,

PH = p =

[
m
ρ

]
=
[
u v w ρ

]> ∈ R4. (2)

A HP refers to the following EP:

p = m/ρ. (3)

Remark 1 (Inverse-distance): The scalar ρ depends linearly
with the inverse of the distance d from the origin to the 3D
point,

ρ = ‖m‖/d. (4)

The unbounded distance uncertainty, which spans from a
minimal distance dmin to infinity, is coded by a bounded
interval in ρ ∈ (0, ‖m‖/dmin]. This is of central importance
as this is precisely the factor that will allow us to use such
parametrization for undelayed initialization in EKF-SLAM
(see Section IV-B for further justification and details). The
same concept of inverse-distance is found in absolutely all the
parametrizations we present (except of course EP), even the
ones for lines.

Homogeneous points have the additional interesting prop-
erty of presenting a bi-linear transformation equation:

p = HpC ,

[
R T
0 1

]
pC , (5)

where the super-index •C indicates the frame C where the point
is referred to, and H is the homogeneous motion matrix. Bi-
linearity becomes linearity when the localization information
(T,R) is known perfectly. A strict linearity would allow us to
transform covariances from and to different reference frames
with absolutely no degradation, contributing to good EKF per-
formances. If we dispose of a non-perfect but accurate estimate
of (T,R), e.g. in cases of small localization uncertainty, the
resulting quasi-linearity makes the EKF solution to SLAM
practicable.

Homogeneous points project to perspective cameras accord-
ing to the linear expression

u = Pp = KP0H
−1p, (6)
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Figure 2. Point parametrizations. Homogeneous and anchored homogeneous do not require m to be a unit vector. In modified-polar point, the observed ray
is coded by two angles: the derived direction vector is unitary and hence ρ is exactly inverse-distance. The anchor point p0 in AHP and AMPP corresponds
to the optical center at initialization time.

with P , KP0H
−1, and P0 the canonical projection matrix

P0 ,

[
1 0 0 0
0 1 0 0
0 0 1 0

]
.

This can be expressed in terms of T, R, m and ρ,

u = KR>(m− Tρ) ∈ P2. (7)

Notice that when the point is expressed in camera frame, pC =
(mC , ρC), only the non-homogeneous part mC appears in the
projection expression,

u = K·mC , (8)

meaning that 1 DOF, the point’s range intrinsically contained
in ρC , is not measurable.

The back-projection and transformation composition neces-
sary for landmark initialization is done with

PH = p =

[
m
ρ

]
= H

[
K−1u
ρC

]
, (9)

where ρC depends inversely with the distance dC to the camera,
via ρC = ‖K−1u‖/dC . Being ρC not measured, it must be
provided as prior (see Section IV-B). Once transformed to the
global frame with H, this meaning of ρC is lost and ρ becomes
the inverse-distance to the global origin O.

C. Anchored homogeneous points (AHP)

We add an anchor to the HP parametrization to improve
linearity, as it is done in the well-known inverse-depth par-
ametrization [9], which we will see later. Anchoring the HP
means referring it to a point p0 in 3D space different from
the origin (Fig. 2(c)). The anchor point p0 is chosen to be the
optical center at initialization time. This leads to the anchored
homogeneous point (AHP, Fig. 2(c)), parametrized with the
7-vector

PAH =

p0

m
ρ

 =
[
x0 y0 z0 u v w ρ

]> ∈ R7 (10)

Remark 2 (Landmark anchor): The effect of anchoring is
that, on subsequent EKF updates, only the accumulated errors
from the anchor p0 to the current camera position T will
be considered, in contrast with regular HP where the error

accounts for the absolute motion of the sensor from the
origin of coordinates. This results in lower linearization errors
and therefore to more consistent filters, which is one of the
conclusions of this work.

An AHP refers to the following EP:

p = p0 + m/ρ. (11)

Remark 3 (Direction vector): The homogeneous point of the
AHP, (m, ρ) ∈ P3, does not require m to be a unit vector. If it
is not, the parametrization is absolutely valid but ρ is then not
the inverse distance 1/d but proportional to it, ρ = ‖m‖/d.

Transformation to camera frame and projection resume to

u = KR>
(
m− (T− p0)ρ

)
∈ P2. (12)

The back-projection and transformation composition is done
with

PAH =

p0

m
ρ

 =

 T
RK−1u
ρC

 , (13)

where ρC must be provided as prior; its relation to distance d
is given by ρC = ‖K−1u‖/d.

D. Anchored modified-polar points (AMPP)

We lighten the previous AHP parametrization by encoding
the direction vector m with just elevation and azimuth angles
(ε, α) of the observed optical ray joining p0 to p. When these
angles are appended with the inverse of the distance ρ, the
result is a 3D point in modified-polar coordinates, (ε, α, 1/d).
Adding the anchor p0 leads to the anchored modified-polar
point (AMPP, Fig. 2(d)), coded by the 6-vector

PAMP =

 p0

(ε, α)
ρ

 =
[
x0 y0 z0 ε α ρ

]> ∈ R6 (14)
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Remark 4 (Inverse-depth points): In this article we will refer
to the originally named “inverse depth” points (IDP) in [9] as
anchored modified-polar points (AMPP). There is absolutely
no difference between IDP and AMPP, and the name change
is justified by two facts: on one hand, our name better
explains the nature of the parametrization as it recalls the
previously existing “modified polar coordinates” term1. On
the other hand, all our parametrizations share the concept of
inverse-depth (or inverse-distance), rendering the term “IDP”
ambiguous and non-informative.

An AMPP refers to the following EP:

p = p0 + m∗(ε, α)/ρ (15)

where m∗(ε, α) is a unit vector in the direction of (ε, α),

m∗(ε, α) =
[
cos(ε) cos(α) cos(ε) sin(α) sin(ε)

]>
. (16)

Transformation to camera frame and pin-hole projection op-
erations resume to

u = KR>
(
m∗(ε, α)− (T− p0)ρ

)
. (17)

The back-projection and transformation composition is per-
formed with

PAMP =

 p0

(ε, α)
ρ

 =

 T
µ∗(RK−1u)

ρC

 , (18)

where µ∗(m) gives elevation and azimuth angles (ε, α) of a
director vector m = (mx,my,mz),[

ε
α

]
= µ∗(mx,my,mz) =

[
arctan(mz/

√
m2
x +m2

y)

arctan(my/mx)

]
.

(19)
The parameter ρC is now exactly the inverse-distance 1/d
because in AMPP the vector m∗ is always unitary. It is defined
in the camera frame at initialization time and, being non-
measurable, must be provided as prior.

III. INFINITE STRAIGHT LINES

This section mimics the structure of Section II for the case
of infinite straight lines (refer to Section IV-E for details on
defining segment endpoints). We remark the numerous paral-
lelisms that can be established among them, and also between
points and lines. We start with a quite exhaustive introduction
to the Plücker line (PL), that behaves surprisingly similar to
HP, and where the concept of inverse-distance is associated to
a 3D vector instead of a scalar. The discourse evolves through
the anchored Plücker line (APL), the homogeneous-points line
(HPL), the anchored homogeneous-points line (AHPL), and
the anchored modified-polar-points line (AMPPL).

1We do not study here the modified-polar point (MPP) as we judge it un-
interesting for EKF-SLAM. Refer to the discussion in Section VII for further
justification.

A. Plucker lines (PL)

This sub-section devoted to the Plücker line is long. We
decided to include all this material because it is important
here to highlight several interesting connections between ho-
mogeneous points (HP) and Plücker lines (PL), notably the
existence of linear transformation and projection equations
reproducing the structure of those for HP, and the inverse-
distance behavior of the homogeneous part of the Plücker
vector. These connections will clearly arise with the adoption
of a discourse that retraces the one we used for HP. They
allow us to propose the Plücker line as an interesting starting
candidate for undelayed initialization in monocular EKF-
SLAM. Most of the material here can be found in [12], [28].

1) The Plücker coordinates: A line in P3 can be defined
from two points of the line by the Plücker matrix,

L = b·a> − a·b> ∈ R4×4, (20)

with a = (a, a) ∈ P3 and the same for b. This is a 4×4
skew-symmetric matrix (with 12 non-null off-diagonal entries
lij = −lji) subject to the Plücker constraint,

det(L) = 0. (21)

The Plücker matrix is independent of the two selected points
of the line (more exactly, any two points of the same line give
place to a matrix L′ ∼ L, i.e., equivalent up to scale).

This line is coded as a homogeneous 6-vector LP ∈ P5 with
the so called Plücker coordinates. These coordinates are any
linearly-independent selection of the entries ±lij , and have
been defined in the literature in a number of different ways,
some of them more fortunate (intuitive, easy to understand or
manipulate) than others. In order to make the similarities with
HP visible, it is handy to choose the representation suggested
in [28], that we will name here the Plücker line (PL, Fig. 3(a)),

LP =

[
n
v

]
=
[
nx ny nz vx vy vz

]> ∈ P5 ⊂ R6,

(22)
which corresponds to writing L as

L =

[
[n]× v
−v> 0

]
, n,v ∈ R3, (23)

with [n]× the skew-symmetric matrix associated with the
cross-product (i.e., [n]×m ≡ n×m),

[n]× ,

[
0 −nz ny
nz 0 −nx
−ny nx 0

]
. (24)

This choice and the definition (20) allow us to write

n = a×b (25)
v = ab− ba, (26)

with which the Plücker constraint becomes

n>v = 0. (27)

The Plücker coordinates, when defined as in (25–26), admit
a comprehensible geometrical interpretation (in the Euclidean
sense, Fig. 3(a)):
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(b) Back-projection of a Plücker line. The
orthogonal base {e1, e2} of πC permits the
isolation of the 2DOF of the line’s director
vector vC . The base vector e1 is parallel to
the image plane.
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(c) Anchored Plücker line (APL). The closest point
to the anchor is q = p0 + (v×n)/(v>v).

Figure 3. Geometrical interpretations of Plücker-based lines with their back-projection details. The 3-vector v is not observable at initialization time. Its
initial covariance, however, must be defined in the plane πC by means of a 2D Gaussian prior β. See Figs. 8 and 9 for further details.

• The vector n is a vector normal to the plane π containing
the line LP (hence the points a and b) and the origin O.

• The vector v is a director vector of the line, oriented from
a to b.

• The ratio ‖n‖/‖v‖ is the Euclidean orthogonal distance
d from the line L to the origin O.

• The Plücker constraint trivially says that n ⊥ v.
• The point of the line closest to the origin is given by

q = (v×n)/‖v‖2 ∈ E3 or q = (v×n,v>v) ∈ P3.

Remark 5 (Plücker and inverse-distance): The third property
above, saying d = ‖n‖/‖v‖, is crucial for undelayed ini-
tialization in SLAM, notably because of the inverse-distance
behavior of the sub-vector v. This is not possible with the
Euclidean Plücker coordinates LE = (n,u) in [13] because the
director vector u is normalized, ‖u‖ = 1. See also Remark 6.

2) Frame transformations and projection: It is easy to
see, via (5) and (20), that the Plücker matrix is transformed
according to

L = H·LC ·H>.

This expression is linear in the components of LC and
therefore a linear expression exists for its vector counterpart
LP. Having defined LP = (n,v), the expression of the
transformation is amazingly simple [28]:

LP = H·LCP ,

[
R [T]× R
0 R

]
·LCP . (28)

The inverse transformation is performed with

LCP = H−1 ·LP ∼
[
R> −R> [T]×
0 R>

]
·LP. (29)

Similarly, the Plücker matrix is projected into a pin-hole
camera according to

[l]× = P·L·P>,

which is again linear in L. The corresponding linear expression
for the projected line in homogeneous coordinates, l ∈ P2, is
also very simple:

l = P·LP = K·P0 ·H−1 ·LP, (30)

with intrinsic and canonical projection Plücker matrices

K =

[
αv 0 0
0 αu 0

−αvu0 −αuv0 αuαv

]
, P0 =

[
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

]
.

The whole transformation and projection process (30) can be
expressed in terms of T, R, n and v,

l = K·R> ·(n− T×v). (31)

Notice that when the line is expressed in camera frame, LCP =
(nC ,vC), only the plane’s normal nC appears in the projection
expression,

l = K·nC , (32)

meaning that 2 DOF, the line’s range and orientation contained
in vC , are not measurable.

We can now fully observe the revealing parallelisms be-
tween PL and HP by comparing equations (28) with (5), (30)
with (6), (31) with (7) and (32) with (8). Roughly speaking,
we see that PL’s n plays the role of HP’s m, and v plays the
role of ρ. We will exploit this fact to achieve ULI operation.

3) Pin-hole retro-projection: A segment l detected in an
image I uniquely determines the plane πC containing the 3D
line and the optical center C (Fig. 3(b)). This is named the
representation plane. The plane’s normal in camera frame nC

is obtained by simply inverting (32),

nC = K−1 ·l. (33)

The vector vC is meant to lie on the plane πC and has
therefore only 2DOF, which are not measured. We need to
isolate them to be able to provide the necessary Gaussian prior
for initialization. For this, we consider vC to be generated
by a linear combination of the vectors of an orthogonal base
E = {e1, e2} of the plane πC , i.e.,

vC = β1 ·e1 + β2 ·e2, β1, β2 ∈ R,



7

β1

β2

β = (1, 0)

C

β = (0.4, 0.2)

β = (0,−2)

β

β/||β||2

Figure 4. Different lines in the representation plane π (see Fig. 3(b)) in
camera frame C, as a function of β. The circle is of unit radius. Given β, the
line is such that its closest point to C is β/‖β‖2. The line is orthogonal to
the vector β. See also Fig. 9.

with {e1, e2} ⊥ nC . Doing E , [e1 e2] ∈ R3×2 and β =
(β1, β2) ∈ R2 we get the matrix form

vC = E·β, (34)

and vC ∈ πC for any value of β. The base E spans the
null space of nC , thus the Plücker constraint is satisfied by
construction.

For convenience, we arbitrarily build the base E so that
‖β‖ is exactly inverse-distance and e1 is parallel to the image
plane. This yields

e1 =

[
nC2 −nC1 0

]>√
(nC1 )2 + (nC2 )2

·‖nC‖ and e2 =
nC×e1

‖nC‖ . (35)

With this base choice the vector β admits the following
geometrical interpretation (Fig. 4):
• β = (β1, 0) is a line parallel to l, thus to the image plane,

passing over the point D = (1/β1, 0).
• β = (0, β2) is a line perpendicular to l (but generally

not to the image plane), passing over the point D =
(0, 1/β2).

• β = (β1, β2) is a line in he direction of (β2,−β1) passing
over the point D = β/‖β‖2 which is the point of the line
closest to the optical center.

• The orthogonal Euclidean distance from the line to the
optical center C is given by 1/‖β‖.

Remark 6 (Role of β): The planar β-space is well-suited for
defining our Gaussian prior. When β → (0, 0), the line tends
to infinity. Its orientation is given by the relative strength of β1

with respect to β2, and it easily covers the full circumference
[−π, π]. The value ‖β‖ is the inverse of the Euclidean distance
from the line to the origin. When assigning a prior pdf to β at
initialization time (see Fig. 8 in Section IV on initializing the
pdf of β), this will be properly mapped to the 3D space as a
planar pdf on the plane πC . The support of high probability of
this pdf covers from a specified minimal distance to infinity.

Summarizing, retro-projection and transformation are per-
formed with

LP = H
[
K−1l
Eβ

]
=

[
RK−1l + [T]× REβ

REβ

]
, (36)

where β must be provided as prior.

B. Anchored Plucker lines (APL)
As we did with points, we add an anchor to the Plücker

parametrization to improve linearity. The anchored Plücker
line (APL, Fig. 3(c)) is then the 9-vector:

LAP =

p0

n
v

 =
[
x0 y0 z0, nx ny nz, vx vy vz

]> ∈ R9

(37)
Transformation and projection are accomplished by trans-

forming the line to the camera frame, un-anchoring it, and
projecting it into the pin-hole camera. This can be done in
one single expression with:

l = K·R> ·(n + (p0 − T)×v) ∈ P2, (38)

in which we will notice:
• The linear character with respect to n.
• For accurate estimates of (T − p0), which is true for

observations shortly after initialization, the linear char-
acter also with respect to the non-observed v, which
additionally exhibits inverse-distance behavior.

Retro-projection and transformation resume to

LAP =

 T
RK−1l
REβ

 , (39)

where β must be provided as prior.

C. Homogeneous-points lines (HPL)
This and the following parametrizations are based on the

fact that a line in 3D space can be represented by two points
supporting it. We will use the point parametrizations explored
in Section II to build lines, in the hope that this will preserve
most of the properties of the formers.

A homogeneous-points line (HPL, Fig. 5(a)) is coded by
two HP that support it:

LH =


m1

ρ1

m2

ρ2

 =
[
u1 v1 w1 ρ1 u2 v2 w2 ρ2

]> ∈ R8 (40)

Transformation and pin-hole projection require the projec-
tion of the two support points, i.e. for i ∈ {1, 2},

ui = KR>
(
m(εi, αi)− Tρi)

)
.

This expression (which is obviously equal to (7)) may be
practical to design appropriate updating algorithms as it con-
tains information about the segment’s support points in the
image. However, for the sake of comparing HPL against other
line parametrizations, we join the two projected points into a
homogeneous 2D line,

l = u1×u2. (41)

This yields2

l = KR>
(

(m1×m2)− T×(ρ1m2 − ρ2m1)
)
. (42)

2To prove (42) we use the distributive property of the cross-product, the
identity (Ma)×(Mb) = det(M)M−>(a×b), the fact that regular and
Plücker intrinsic matrices are related by K ∝ K−>, and remind that l ∈ P2

and is therefore invariant to proportionality transforms.
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L
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(a) Homogeneous-points line (HPL)

Lp0

O

π

p1

p2

m1

m2
||m2||/ρ2

||m1||/ρ1

(b) Anchored homogeneous-points line (AHPL)

Lp0

O

π

1/ρ1

1/ρ2

ε1

ε2

α1
α2

p1

p2

(c) Anchored modified-polar-points line (AMPPL)

Figure 5. Point-supported lines. The lines are defined by two support points like the ones in Section II. The anchor, if it exists, is common to both points.

This last expression is important in the sense that it allows
us to observe the parallelisms between parametrizations. Com-
paring HPL (42) against PL (31), and remembering equations
(25–26) defining the Plücker sub-vectors, we observe that:

• The product m1×m2 is a vector orthogonal to the plane
π, and it can be identified with the PL sub-vector n.

• The term (ρ1m2 − ρ2m1) is a vector joining the two
support points of the line. It is therefore its director vector
and can be identified with the PL sub-vector v.

• With these two identifications, equations (31) and (42)
coincide (using (25–26) this coincidence can be easily
proved to hold exactly).

Retro-projection and transformation resume to

LH =

H
(
K−1u1

ρC

)
H

(
K−1u2

ρC

)
 , (43)

where ρC must be provided as prior.

D. Anchored homogeneous-points lines (AHPL)

The anchored homogeneous-points line (AHPL, Fig. 5(b))
can be built either by adding an anchor to HPL or by joining
two AHP with a shared anchor to support it:

LAHP =


p0

m1

ρ1

m2

ρ2

 = [x0, y0, z0, u1, v1, w1, ρ1, u2, v2, w2, ρ2]
> ∈ R11

(44)
Transformation and pin-hole projection require the projec-

tion of the two support points u1 and u2, which are joined
into a homogeneous-points line, l = u1×u2. As before, this
can be rearranged as

l = KR>
(

(m1×m2)− (T− p0)×(ρ1m2 − ρ2m1)
)

(45)

where the same parallelisms that we highlighted between PL
and HPL can now be observed between APL and AHPL: equa-
tions (38) and (45) are equivalent after identifying (m1×m2)
with n and (ρ1m2 − ρ2m1) with v.

Retro-projection and transformation resume to

LAHP =


T

RK−1u1

ρC

RK−1u2

ρC

 , (46)

where ρC must be provided as prior.

E. Anchored modified-polar-points lines (AMPPL)

The anchored modified-polar-points line (AMPPL,
Fig. 5(c)) is coded by two AMPP that support it, which share
a common anchor:

LID =


p0

(ε1, α1)
ρ1

(ε2, α2)
ρ2

 =
[
x0 y0 z0 ε1 α1 ρ1 ε2 α2 ρ2

]>
(47)

Transformation and projection resume to

l = KR>
(

(m∗1×m∗2)− (T− p0)×(ρ1m
∗
2 − ρ2m

∗
1)
)

(48)

where we used the shortcut m∗i , m(εi, αi) which corre-
sponds to the trigonometric transform (16).

Retro-projection and transformation resume to

LAMP =


T

µ∗(RK−1u1)
ρC

µ∗(RK−1u2)
ρC

 , (49)

where µ∗() is the trigonometric transform given in (19), and
ρC must be provided as prior.

F. Final comment - points and lines

We summarize in Table I all points and lines parametriza-
tions with their main manipulation expressions. On completion
of their descriptions we have seen a number of parallelisms
that should help building a coherent picture of the para-
metrizations suited for undelayed initialization in monocular
EKF-SLAM. We have summarized these relations in Fig. 6.
We have seen anchored and un-anchored representations. We
have seen the surprising similarities between homogeneous
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Table I
SUMMARY OF LANDMARK PARAMETRIZATIONS AND THEIR MAIN MANIPULATIONS

Lmk parameters size transformation + projection h() back-projection + transform g()

EP P = p 3 u = KR>(p− T) p = tRK−1u + T

HP P = (m, ρ) 4 u = KR>(m− Tρ) PH = p = H

(
K−1u
ρC

)
AHP P = (p0,m, ρ) 7 u = KR>

(
m− (T− p0)ρ

)
PAH =

 T
RK−1u
ρC


AMPP P = (p0, ε, α, ρ) 6 u = KR>

(
m∗ − (T− p0)ρ

)
PAMP =

 T
µ∗(RK−1u)

ρC


PL L = (n,v) 6 l = KR>(n− T×v) LP = H

(
K−1l
Eβ

)
APL L = (p0,n,v) 9 l = KR>

(
n− (T− p0)×v

)
LAP =

 T
RK−1l
REβ


HPL L = (m1, ρ1,m2, ρ2) 8 l = KR>

(
(m1×m2)− T×(m2ρ1 −m1ρ2)

)
LHP =

H

(
K−1u1
ρC

)
H

(
K−1u2
ρC

)


AHPL L = (p0,m1, ρ1,m2, ρ2) 11 l = KR>
(
(m1×m2)− (T− p0)×(m2ρ1 −m1ρ2)

)
LAHP =


T

RK−1u1
ρC

RK−1u2
ρC



AMPPL L = (p0, ε1, α1, ρ1, ε2, α2, ρ2) 9 l = KR>
(
(m∗1×m∗2)− (T− p0)×(m∗2ρ1 −m∗1ρ2)

)
LAMPP =


T

µ∗(RK−1u1)
ρC

µ∗(RK−1u2)
ρC



HP

PL

HPL

AHP

APL

AHPL

AMPP

AMPPL

EP*

MPP*PP*

MPPLPPL

EPL

AMPLMPL*PL*

EL?

Figure 6. Links between all proposed parametrizations and more. Round
boxes are points; square boxes are lines. Single-stroke square boxes are
Plücker-based lines. Double-stroke square boxes are point-supported lines.
Gray boxes are anchored parametrizations. Arrows indicate the links that we
established within the discourse. The dashed area encloses all parametrizations
benchmarked in this paper. Some other possible parametrizations, in thin
line, have not been studied here (there are some repeated acronyms): polar
point (PP, i.e., [ε, α, d]), modified-polar point (MPP, [ε, α, ρ]); the point-
supported Euclidean-points line (EPL, [x1, y1, z1, x2, y2, z2]), polar-points
line (PPL, [ε1, α1, d1, ε2, α2, d2]), and modified-polar-points line (MPPL);
and the directly-coded polar line (PL, [φ, ε, α, d]), modified-polar line (MPL,
[φ, ε, α, ρ]), and anchored modified-polar line (AMPL). There is no such
thing as a directly-coded Euclidean line (EL). Dashed-stroke elements do not
benefit from the inverse-distance property and are not suited for undelayed
initialization. Minimal parametrizations are marked with an asterisk.

points and Plücker lines. We have highlighted the parallelisms
between point-supported and Plücker-based lines. We have fi-
nally situated the modified-polar parametrizations as lightened

versions of homogeneous entities. The figure shows further
parametrizations that fall out of our interest – refer to the
figure’s caption and to the discussion in Section VII for further
justification.

IV. LANDMARK INITIALIZATION AND UPDATES

Undelayed landmark initialization in EKF-SLAM with par-
tial measurements (such as monocular measurements) mimics
the algorithm for full measurements and incorporates the
non-measured magnitudes as Gaussian priors. We first detail
the way we express physical measurements on the image
plane, and the way to define the non-measured priors. We
finally proceed with details on the initialization and updating
procedures related to the EKF-machinery. For the initialization
and updates of parameters not in the Kalman filter, such as
lines endpoints, please refer to Section IV-E.

A. 2D measurements in the image plane

The previous discourse assumed homogeneous parametri-
zations of points and lines in the image plane P2. We detail
here how to obtain them from real point and line measurements
defined in the Euclidean pixels image.
• A point is measured as two Cartesian coordinates, and

modeled as a Gaussian variable. Please note that the
measurement corresponds to the mean value ū of the
distribution:

u =

[
u
v

]
∼ N{ū,U}. (50)
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ρ

ρ̄
ρ =

K

d

ρ̄ = 0

ρ̄ + 2σρ

ρ̄ − 2σρ

p(d)

ρ

p(ρ)

10dmin 20dmindmin

d

d

ρ

Figure 7. Inverse-distance pdf. A Gaussian p(ρ) = N (ρ− ρ̄, σ2
ρ) is defined

in inverse-distance (vertical axes). We have ample choice: in one extreme
(dashed) we may define it so that ρ̄ − 2σρ = 0; the other extreme (solid)
takes ρ̄ = 0. In all cases, we have (ρ̄+2σρ) = K/dmin. They result in pdfs
in distance (bottom) that cover from a minimal distance dmin to infinity. K
is just a proportionality constant, e.g. K = 1 for AMPP, and K = ‖K−1u‖
for AHP and HP. We can also normalize K−1u at initialization time and take
K = 1, in which case ρ is exactly equal to inverse-distance.

Its homogeneous counterpart is built with

u =

[
u
1

]
∼ N

{[
ū
1

]
,

[
U 0
0 0

]}
. (51)

• A bounded segment is measured as a 4-vector stacking
its two endpoints:

s =

[
u1

u2

]
∼ N{s̄,S} = N

{[
ū1

ū2

]
,

[
U 0
0 U

]}
(52)

The segments homogeneous endpoints ui, used for in-
itialization of point-supported lines, are built like the
regular points (Eq. (51)). The homogeneous line, used
for initialization of Plücker lines, is built with

l = u1×u2 ∼ N{̄l,L} (53)

with

l̄ = ū1×ū2 (54)

L = [ū1]×U [ū1]
>
× + [ū2]×U [ū2]

>
× . (55)

B. Defining the non-measured Gaussian priors

The key advantage of the inverse-distance parameters is that
they allow the infinity range to be included in a Gaussian pdf,
and at the same time allowing the observation functions to be
linear with respect to them.

Two basic rules apply to the definition of the prior, be it
ρC for points or βC for Plücker lines: the origin must be
well inside the 2σ support of the pdf, and the minimum
considered distance dmin must (approximately) match the
upper 2σ bound. For points and point-supported lines, this
resumes to (see Fig. 7)

ρ̄C − nσρ = 0, 0 ≤ n < 2 (56)
ρ̄C + 2σρ = 1/dmin. (57)

A good practice is to choose n = 1, although this choice is
not critical as it will be revealed by the benchmarking.

Defining the prior for Plücker lines is a bit trickier, as it is
difficult to express the conditions as straightforward equations
like (56) and (57). We prefer to refer the reader directly to

β1

β2 2σβ

3σβ

1/dmin

β̄

(a) Isotropic Gaussian pdf with
line’s mean at infinity.

β1

β2

1/dmin

β̄

(b) Non-isotropic pdf penalizing
lines at negative depths.

Figure 8. Defining a pdf for β ∼ N{β̄;B}. (a) The isotropic Gaussian with
β̄ = (0, 0) and B = σ2

βI contains all possible lines at a minimum distance
of dmin: it has central symmetry, it includes the origin which represents
the line at infinity, and dmin is at 2σ. For reference, a Gaussian shape is
superimposed on the horizontal axis to evaluate the probability values at 2σ
and 3σ. (b) An interesting alternative that penalizes lines at the back of the
camera is to approximate just the right-hand half of the pdf in (a) (here
dashed) by a new Gaussian. A good fit is obtained with β̄ = (1/3dmin, 0)
and an anisotropic covariance B = diag(σ2

β1
, σ2
β2

) with σβ1 = 1/3dmin
and σβ2 = 1/2dmin. See Fig. 9 for the result in inverse-β space.

-4 -3 -2 -1 0 1 2
-2

-1

0

1

2

FRONT

3

β∗

β∗

||β∗||2
β(2σ)

||β(2σ)||2

β(2σ) L
∗

π
C

Figure 9. β and inverse-β planes. The inverse-distance application β →
D = β/‖β‖2 maps the interior of the 2σ ellipse of β defined in Fig. 8(b)
for dmin = 1 (black ellipse, noted here β(2σ)) to the exterior of the gray
shape (dashed area, extending to infinity). It is a funny curiosity that the figure
resembles the section of an eye looking in the correct direction. The minimal
distance in FRONT of the camera is well around 1, and lines on the back are
penalized with feebler probability. As an example, a value β∗ = (0.4, 0.2)
results in D∗ = β∗/‖β∗‖2 = (2, 1), which represents the line L∗.

Figs. 8 and 9. We use the solution β ∼ N{β̄;B} in Fig. 8(b),

β̄ =

[
1/3dmin

0

]
, B =

[
(1/3dmin)2 0

0 (1/2dmin)2

]
(58)

C. Landmark initialization

Initialization with partial measurements mimics the regular
EKF-SLAM initialization algorithm with the addition of the
non-measured DOF as the Gaussian priors just defined. Fig. 10
serves as a reference for all initialization algorithm variants.

1) Identify the mapped magnitudes x ∼ N{x̄,P}, where

x =

[
C
M

]
, x̄ =

[
C̄
M̄

]
, P =

[
PCC PCM
PMC PMM

]
,

with C = (T,Q) the camera frame and M =
(L1, . . . ,LN ) the set of mapped landmarks.

2) Identify the measurement,
• u ∼ N{ū,U} for points,
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Homogeneous 
line,
N(l,Λ)

2D segment
N(s,S)

Homogeneous 
endpoints, 

2 x ui

retro-project

Establish 
endpoints 
parameters

Define prior
N(β,B)

Homogeneous 
endpoints,

2 x N(ui,U)

Homogeneous 
point,
N(u,U)

Define prior
N(ρ,Ρ)

2D point
N(u,U)

retro-project, get 
Jacobians

Compute co- and 
cross-variances

Augment the map

Define priors
2 x N(ρ,Ρ)

Plücker?
YESNO

Figure 10. General initialization algorithm, valid for points (leftmost thread),
point-supported lines (center left), and Plücker-based lines (center right). The
right dashed thread is for segments endpoints.

• s ∼ N{s̄,S} for line segments.
and convert it to the homogeneous space (Section IV-A).

3) Define a Gaussian prior for the non-measured DOFs
(Section IV-B),
• inverse-distance for points and for point-supported

lines, ρC ∼ N{ρ̄C , σ2
ρC}, see Fig. 7,

• Plücker parameters for Plücker-based lines, β ∼
N{β̄;B}, see Fig. 8.

4) Back-project the Gaussian measurement; get landmark
mean and Jacobians

P̄ = g(C̄, ū, ρ̄C)

GC =
dg

dC

∣∣∣∣
C̄,ū,ρ̄C

,Gu =
dg

du

∣∣∣∣
C̄,ū,ρ̄C

,Gρ =
dg

dρ

∣∣∣∣
C̄,ū,ρ̄C

with P = g(C,u, ρC) (conversely L = g(C, s, β) or
L = g(C, s, ρC)) one of the back-projection functions
in Table I, with C = (T,Q), R = R(Q), u = [u> 1]>,
s = [u>1 u>2 ]>, and l = u1 × u2.

5) Compute landmark co- and cross-variances

PPP = GCPCCG
>
C + GuSG

>
u + Gρσ

2
ρCG

>
ρ

PPx = GCPCx

with PCx = [PCC PCM].
6) Augment the SLAM map

x̄←
[
x̄
P̄

]
, P←

[
P P>Px

PPx PPP

]
.

D. Landmark updates
1) Point updates: Point updates follow the standard EKF-

SLAM formulation. The observation functions u = h(C,P)

matched 
segment

predicted line

l z1

z2

u2

u1

Figure 11. Plücker line observation update. Direct measurement of the
innovation z = (z1, z2) as the two signed orthogonal distances from the
detected endpoints to the expected (or predicted) line.

are the composition of the homogeneous implementations h()
in Table I with the homogeneous-to-Euclidean transform u =
[u, v, w]> → u = h2e(u) = [u/w, v/w]>, with covariance
U. In other words, we have h(•) , h2e(h(•)). We apply
regular EKF:

z = u− h(x̄)
(

= u− h(C̄, P̄)
)

(59)

Z = H·P·H> + U (60)
K = P·H> ·Z−1 (61)
x̄ ← x̄ + K·z (62)
P ← P−K·H·P (= P−K·Z·K>), (63)

with H = ∂h
∂x

∣∣
x̄

.
2) Line updates: It is convenient to represent the matched

segment by its two endpoints, s = (u1,u2) ∈ R4, with
covariance S = diag(U,U). Due to the aperture problem,
only the measurement components that are orthogonal to the
expected line projection can be used for correction. Therefore,
we define the innovation as a 2-vector containing the signed
orthogonal distances from the endpoints ui to the expected
line l̄ = h(C̄, x̄) (Fig. 11). The signed distance z from a point
u = (u, v, 1) to a line l = (l1, l2, l3) is given by

z = l> ·u/
√
l 2
1 + l 2

2 ,

so the innovation vector is

z =

[
z1

z2

]
=

[̄
l> ·u1/

√
l̄ 2
1 + l̄ 2

2

l̄> ·u2/
√
l̄ 2
1 + l̄ 2

2

]
∈ R2. (64)

The above expression reveals the fact that the innovation
can no longer be obtained from the subtraction z = s− h(x̄)
we are familiar with in EKF, like in (59), but from a non-
linear function z = j(x̄, s). This function is obtained by
composing line transformation and projection (in Table I) and
the innovation measurements (64). The result is a somewhat
complicated expression with a generic form

z = j(x̄, s) = j(C̄, L̄, s),

where C̄ and L̄ are the camera and line estimates from the map
x̄, and s is the measurement vector. One detail that is worth
noticing is the sign change in the Jacobians with respect to the
habitual, explicit EKF innovation definition j(x̄, s) = s−h(x̄).
It is clear that ∂j

∂x = −∂h∂x . With this sign change and the non-
trivial contribution of s in the innovation, the EKF correction
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Figure 12. Segment endpoints in the local ordinate frame of Plücker-based
lines PL and APL. The closest point q to the anchor is the local origin, and
the unit length and positive orientation are defined by a normalized director
vector u = v/‖v‖. The endpoint pi is coded by the scalar abscissa ti,
satisfying pi = q + tiv/‖v‖. Only the abscissas ti are stored.

equations have to be modified accordingly,

Z = Jx ·P·J>x + Js ·S·J>s (65)
K = −P·J>x ·Z−1 (66)
x̄ ← x̄ + K·z (67)
P ← P + K·Jx ·P (= P−K·Z·K>), (68)

with Jx = ∂z
∂x and Js = ∂z

∂s . An equivalent solution that
permits reusing existing EKF code is to define H = −Jx and
R = JsSJ

>
s , and apply the regular EKF equations (59–63)

with the Jacobian H and the new measurement noise R.3

We do not apply any kind of correction to enforce the
Plücker constraint. We ensured it during initialization and its
validity at any later time is only approximately guaranteed
through cross-correlations. Refer to Section VII for further
discussion.

E. Segment endpoints

The line’s endpoints in 3D space are maintained out of the
filter via two abscissas defined in the local 1D reference frame
of the line. In Plücker-based lines (Fig. 12) the local frame
is defined by a single axis with the origin at the point q =
p0 + (v×n)/‖v‖2, the closest to the anchor, and the director
vector u = v/‖v‖ providing the unit length. Each endpoint
pi is specified by an abscissa ti such that

pi = q + tiv/‖v‖. (69)

In point-supported lines (Fig. 13) the endpoints are defined
with respect to the support points qi,

qi = p0 + mi/ρi. (70)

The origin is at q1 and the unit length defined by q2 − q1,
leading to the endpoints expression

pi = (1− ti)q1 + tiq2, (71)

so that the initial abscissas are

(t1, t2) = (0, 1). (72)

The endpoints are updated according to a different rule
depending on the line having already converged or not. This

3It is handy to realize that Js is such that, if the pixel noise is isotropic,
U = σ2I2, we have S = diag(U,U) = σ2I4, and then R = JsSJ>s =
σ2I2 = U.
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q1
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1

pi = (1 − ti)q1 + tiq2

Figure 13. Segment endpoints in the local ordinate frame of point-defined
lines HL, AHL and AMPL. The line is supported by two points qi = p0 +
mi/ρi. The local frame has its origin at q1 and the unit length and positive
orientation are defined by q2 − q1. The endpoint pi is coded by the scalar
abscissa ti, satisfying pi = (1 − ti)q1 + tiq2. Only the abscissas ti are
stored.
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(a) Keep initial
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(b) Keep current

L

C s

(c) Lengthen segment

Figure 14. The three general strategies for updating 3D segment endpoints.
(a) Endpoints are defined at initialization time and never updated. (b)
Endpoints are systematically updated according to the current observation.
(c) Endpoints are updated only if this lengthens the 3D segment.

is because, in an undelayed approach, the line estimates vary
enormously (as much as from infinity to some close distance),
and the abscissas are not stable upon large line modifications.
This is especially dramatic in Plücker-based lines because the
local origin q depends non linearly on the line’s orientation
(refer to Section VII for further discussion). For convenience,
we considered the line converged at the moment when it is
ready for re-parametrization (see Section IV-F). Before this
happens the abscissas are either not updated (Fig. 14(a)), thus
reflecting the initial observation, or systematically updated
(Fig. 14(b)), simply reflecting the last observation. Once
the line has converged an extending-only policy is applied
(Fig. 14(c)): the abscissa is updated only if this lengthens
the 3D segment. The algebra expressing the current endpoints
projection onto the line is of no relevant interest for the
purposes of this work, and is not included here for space
reasons. As a reference, an example valid for PL can be found
in [13].

F. Landmark re-parametrization

The necessary over-parametrization need only be main-
tained during the period of convergence, while the landmark
keeps some of its DOF at high uncertainty levels. After this
period it is convenient for computational reasons to switch
to cheaper representations. One can choose any minimal or
quasi-minimal representation, in a trade-off between econ-
omy of resources and representational power. For points, the
natural choice is the minimal Euclidean parametrization EP
[9]. For lines, and because of the need of endpoints, we feel
convenient to choose a non-minimal two-points representation
L = (p1,p2) with 6 parameters (the Euclidean-points line
EPL, see Fig. 6 – the minimal representations for 3D lines
are of size 4). The reparametrization is performed when the
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linearity test of the destination representation is passed [9]. See
Section V-A for details on the linearity measures and tests.

Landmark re-parametrization requires a passage function
L′ = k(L) and its Jacobian ∂L′/∂L|L̄. It is performed
in the standard Gaussian propagation fashion just taking
care of deleting or de-activating the unused states after re-
parametrization. Some of these k() functions can be found
in this paper, e.g. (3) or (11) for points. For lines, and we
refer now to Section IV-E and Figs. 12–13, we have two
options. One option is to take the current endpoints pi (i.e.,
LEPL = (p1,p2) using (69) or (71)) and reset the abscissas
pair to the value (0, 1). The other option is to recover the
previously existing support points qi (i.e., LEPL = (q1,q2)
using (70)) and keep the abscissas at their value (t1, t2).

V. LINEARITY AND PERFORMANCE ANALYSIS

A. Analytical measure of linearity

The EKF requirements for high degrees of linearity in the
measurement and dynamic model equations makes the use of
an analytic linearity measurement interesting. In the already
referenced [9], an analytic linearity index was proposed to
emphasize the improvement in linearity when the unmeasured
range is parametrized as inverse-distance instead of distance.
This linearity measure is based on the variation in the first
derivative of the function inside the 95% probability interval.
The measure is restricted, thanks to the particular symmetries
of the problem, to just 1DOF. Very related to this work, the
trace of the Hessian of the measurement model is proposed
in [29] as a measurement of the degree of linearity in several
nodes of a multi-map SLAM. This second measure has the
drawback of not incorporating the dimensions of the uncer-
tainty region.

We introduce an analytical linearity index for multiple-
input/multiple-output (MIMO) functions which accounts for
the probability region of the input variable. As a desirable
quality, the proposed measurement allows us to compare
parametrizations having different sizes, and even compare the
degree of linearity of points against lines. As in [29], the index
involves the computation of the Hessian; this is composed
with the covariances matrix, incorporating this way all the
information on the uncertainty region.

Consider the transformation plus pinhole projection func-
tions in Table I: u = h(C,P) for points and l = h(C,L)
for lines. Compose them with the appropriate innovation
functions: z = y − h(C,P) for points and (64) for lines, to
obtain the generic innovation functions z = j(C,L,y). For
concision, let us indistinctly denote landmark parameters by
L, and define the state x = (C,L). Let us further consider the
measurement y as a given magnitude acting as a parameter and
drop it from the notation. In what is to follow, we write simply
z = j(x) to mean z = j(C,L,y), with z the innovation and
x the state. Let us finally note m = dim(z) and n = dim(x)
—in our case we have m = 2, and 10 ≤ n ≤ 18 depending
on the selected parametrization.

We are interested in analyzing the linearity of j(x) inside
the region of high probability of x described by the Gaussian
N{x̄;P}. For linear functions, the Jacobian matrix J = ∂j

∂x

is constant for all x. For non-linear functions, the Jacobian
matrix depends on the particular evaluation point x∗, i.e.,

J(x∗) =
∂j

∂x

∣∣∣∣
x∗
∈ Rm×n. (73)

Assuming our function j() is reasonably linear inside the
probability region, which is after all a requisite for the Ex-
tended Kalman Filter to operate properly, the Jacobian can be
well approximated in the vicinity of the mean x̄ by its Taylor
series truncated at the linear terms,

J(x̄ + ∆x) ≈ J(x̄) + H(x̄)·∆x , (74)

with ∆x , x− x̄ and where

H(x̄) ,
∂J

∂x

∣∣∣∣
x̄

=
∂2j

∂x2

∣∣∣∣
x̄

∈ Rm×n×n (75)

is the Hessian tensor of j() evaluated at the mean x̄.
Let us refer to the rightmost term in (74) with the matrix

∆J,
∆J , H(x̄)·∆x ∈ Rm×n , (76)

defined as (the linear approximation of) the error in the Jaco-
bian due to the state error ∆x. It is computed as the product
of the tensor H, with components Hijk, times the vector ∆x
with components ∆xk, giving the matrix ∆J with components
∆Jij =

∑n
k=1Hijk·∆xk. The Einstein Summation Convention

(ESC) [30] allows us to not write the summation signs each
time a given index (i, j or k) appears twice, yielding a practical
scalar expression for each component,

∆Jij = Hijk∆xk. (77)

The error ∆x is obviously unknown but we dispose in the
SLAM map of its covariances matrix P , E[∆x · ∆x>],
with E[•] the expectation operator. We may incorporate this
knowledge to our measure by constructing the matrix

Q , E[∆J·∆J>] ∈ Rm×m , (78)

which we can develop in terms of H and P using the ESC,

Qij = E[∆Jik∆Jjk]

= E[Hikl∆xlHjkm∆xm]

= HiklE[∆xl∆xm]Hjkm

= HiklPlmHjkm , (79)

leading to4

Q =

n∑
k=1

Hk ·P·H>k , (80)

where the n×m matrices Hk , ∂J
∂xk

= ∂
∂xk

∂j
∂x are the n slices

of the tensor H. We may note this with Hk = [Hij ]k.
The matrix Q may be viewed as the error in linearity

relative to (or normalized by) the shape and dimensions of
the uncertainty region. It has the following properties:

1) It is symmetric and nonnegative.

4To obtain (80) we can also use Kronecker expansions of the tensors into
planar matrices, write ∆J = H·∆x = [H1, · · · ,Hk, · · · ,Hn]·(In ⊗ x),
and inject it in (78), using the Kronecker product ⊗ properties to conclude
on the same result.
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Figure 15. Linearity index L of the MISO function z = f(x, y) = x·sin(y)
for different probability regions. We illustrate the projection (thick black) of
the 2-sigma elliptical bound of the probability region (thin black) onto the
surface S = {(x, y, z) s.t. z = f(x, y)} (mesh). The more elliptic the
projected shape, the more linear is the function and smaller the index L.
(a) A tiny probability region gives good linearity and a very small index.
(b) A large probability region usually obliges the ellipse to bend over the
surface, meaning high non-linearity and resulting in a large index. (c) If such
a large ellipse falls on a planar region of the surface, the index drops to show
good linearity. (d) An extreme case of very high non-linearity.

2) It has a fixed and compact size m×m independent of
the state dimension n.

3) It is exactly zero for linear functions (H = 0) or for
particle distributions (P = 0, immune to non-linearity).

4) It grows when either H or P grow.

For all these reasons, Q is very pertinent for evaluating the
fitness of j() in EKF. In order to obtain a scalar index, we
define the ultimate linearity index L as a convenient norm of
Q, i.e.,

L = ‖Q‖ ∈ R+. (81)

We use the Frobenius norm ‖Q‖F ,
√∑

ij |qij |2, which
being Q symmetric with m = 2 yields the scalar linearity
index

L =
√
|q11|2 + 2|q12|2 + |q22|2. (82)

The index L is zero for functions showing a linear behavior
inside the probability region, and positively increasing as
the validity of this hypothesis vanishes. As an example, we
illustrate in Fig. 15 the fitness of this index for a 2-input, 1-
output function. Observe that the function is the same but the
evaluation region changes position (the evaluation point x̄) and
dimensions (the covariance P), greatly affecting the linearity
index.

B. Statistical consistency analysis
TODO: Review literature on EKF-SLAM consistency and

maybe some other.
Until very recently many SLAM works have limited the
illustration of their performance to providing some figures
showing some snapshots of the final map. It is true that
providing more consequent and informative evaluations is
costly in robotics because of the difficulties of accessing
reliable ground-truth information. This is where simulation is
useful. But even with simulation, many works have failed to
provide accurate evaluations, mainly because their conclusions
about filter consistency were based on one single run. Because
of the stochastic nature of the processes we are dealing with,
it is usually easy to obtain a consistent realization of an
inconsistent filter, and also to find an inconsistent realization
of a consistent one. This is particularly critical in non-linear
systems because of the potential that inconsistency has in such
cases to lead to fatal divergence. As it was already indicated
by Bar-Shalom [31, pp. 394] for the general filtering case and
reminded to the SLAM community by Bailey [32], consistency
evaluation should be performed statistically via Monte-Carlo
analysis. This is what we provide here: a benchmarking of
all the proposed parametrizations via a chi-square consistency
test that evaluates the averaged normalized estimation error
squared (NEES) over a number of Monte-Carlo runs. Here we
follow strictly [32], which is in turn based on [31, pp. 234–
235].

Although consistency is not the ultimate measure of per-
formance [33], it is a necessary condition that all filters
should meet, and it is intimately related to the degree of
linearity-Gaussianity of the system. An interesting outcome
of our evaluation is therefore the possibility of correlating
our proposed linearity measure with the conclusions on filter
consistency.

When ground truth about a variable xk is known, the NEES
of its estimate N{x̂k,Pk} at each time k can be defined by

εk = (xk − x̂k)>P−1
k (xk − x̂k). (83)

Under the hypothesis of consistent filtering of a linear-
Gaussian system, εk obeys a χ2 (chi-square) distribution with
dim(xk) DOF, noted χ2

dim(x), whose expectation over an
increasing number of runs converges to the state dimension,
E[εk] = dim(xk). Then, the linear-Gaussian hypothesis can be
statistically evaluated by means of a χ2 acceptance test over
a set of N <∞ Monte-Carlo runs.

Given N Monte-Carlo runs,
∑N
i=1 εik obeys a χ2

N dim(x)

distribution. The bounds of the double-sided 95% probability
concentration region are given by the χ2

N dim(x) values corre-
sponding to tail probabilities of 2.5% and 97.5%.

For practical reasons and because the full SLAM state
vector is of varying size, we restrict our analysis to the state
variables representing the robot (or sensor) pose, hoping that
consistent localization leads to consistent mapping. For 6-DOF
SLAM and 25 runs, we have dim(x) = 6 and N = 25, with
which the lower and upper bounds are computed,

ν = χ2
(25×6)(1− 0.025) = 117.985

ν = χ2
(25×6)(1− 0.975) = 185.800.
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Figure 16. Simulated 3D environment for benchmarking 3 point parametri-
zations.

The 6-vector pose xk and covariance Pk are computed from
our 7-vector pose Ck ∼ N{Ck,PCCk} via a classical uncer-
tainty propagation using the Jacobians of the passage function
(the 3-DOF orientation can be chosen to be expressed with
the Euler angles or with the rotation vector). The NEES value
(83) is computed in this 6-space.

The average NEES is defined as

ε̄k ,
1

N

N∑
i=1

εik. (84)

We compare the average NEES against ε = ν/N = 4.719 and
ε = ν/N = 7.432. If the average NEES is below the lower
bound for some significant amount of time (more than 2.5%
of the time), the filter is conservative. If it is above the upper
bound (also by more that 2.5%), the filter is optimistic and
therefore inconsistent.

VI. RESULTS

A. Software and SLAM algorithm

We have made available the software used for simulations
[34]. It consists in a 6-DOF EKF-SLAM system written in
MATLAB R©, with simulation and 3D graphics capabilities.

The algorithm is organized as an active-search-based SLAM
[35], which allows us to optimize information gain with a
limited number of updates per frame. At each frame, we
perform updates to the 10 most informative landmarks. We
also attempt to initialize one landmark per frame. Unstable
and inconsistent landmarks are deleted from the map to avoid
map overpopulation and corruption.

B. Points

We benchmark HP, AHP and AMPP using the same simu-
lated scenario, the same software and the same seeds for the
random generator. We start with a description of the simulation
conditions, then proceed with the results of the (analytical)
linearity and (statistical) error and consistency analyses.

1) Simulated scenario: We simulate a robot performing
a circular trajectory in an area of 12m× 12m, populated
with 72 landmarks forming a cloister (Fig. 16). The robot
receives noisy control inputs which are used for the prediction
stage of the EKF, fixing the scale factor. One noisy image
per control step is gathered with a single camera heading
forward. Two sets of parameters have been used for the tests

Table II
SIMULATION PARAMETERS FOR THE POINTS SIMULATIONS

Concept Param. Set 1 Set 2

Pose step (∆X,∆ψ) (8cm, 0.9◦) (4cm, 0.45◦)
Lin. noise (σX , σY , σZ) 1cm 0.5cm
Ang. noise (σφ, σθ, σψ) 0.1◦ 0.05◦

Img. size 640×480 pix
Focal (αu, αv) 320 pix, FOV = 90◦

Pix. noise σu 1 pix

ρC prior (ρ̄C , σρC ) (0.01, 0.5) m−1 id. + (1, 1) m−1
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Figure 17. Bi-lateral comparisons of the linearity index for HP, AHP and
AMPP. Each plot shows, at each frame, the number of landmarks of one type
showing lower linearity index (better linearity) than the other type, and vice
versa.

(the nominal and perturbation levels of all these magnitudes,
together with the inverse-distance priors used, are all sum-
marized in Table II). In the first set, the robot makes two
turns to the cloister (800 frames are processed). The second
set uses smaller odometry increments and perturbations, and
the trajectory is limited to one quarter of a turn (200 frames).

2) Linearity measures: The analysis of the linearity in-
dex proposed in section V-A, displayed in figures 17(a) to
17(c), confirms the results from the consistency analysis. The
linearity index has been computed for each measured point
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Figure 18. RMS errors of the three point parametrizations HP (red), AMPP
(blue) and AHP (green), averaged over 25 runs. The 2-sigma estimated bounds
are plotted in thicker line. AHP has the largest estimated bound and the lowest
error, leading to the best results. See Fig. 20 for the corresponding consistency
plots.
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Figure 19. 3D view of some landmark 3σ estimates at the end of the first
loop. Inconsistency comes from covariance overestimation rather than mean
errors. See the accompanying video.

in the above experiments and for the three parametrizations
of interest: HP, AMPP and AHP. Fig. 17(a) shows that, in
every frame, there are always more features showing lower
linearity index –and hence higher degree of linearity– when
coded as AMPP instead of HP and vice versa. The reason, as
previously mentioned, is that setting an anchor only propagates
the camera uncertainty from the anchor to the current location,
while HP propagates a wider uncertainty with respect to a
world reference frame.

Fig. 17(b) analyses the linearity index for AMPP and
AHP parametrizations. The extra non-linearities introduced
by the computation of trigonometric functions from azimuth-
elevation angles to direction ray translates in a large number
of features showing higher degree of linearity when coded in
AHP instead of AMPP.

Fig. 17(c) confirms the superiority of AHP and the non-
suitability of HP by showing an even wider advantage of AHP
with respect to HP than those showed in the previous plots.

3) Error and consistency analysis: We provide an accom-
panying video showing the three methods running in parallel.
The differences in behavior are not easily visible in the 3D
movies, and we need to zoom in to appreciate incorrect opera-
tion (Fig. 19: AMPP and HP estimate too small covariances).
However, their NEES behavior is radically different (Fig. 20,
please note the logarithmic vertical scales):
• HP behaves poorly. Of the 25 runs, one diverged, and

35 landmarks had to be deleted due to inconsistent
observations (22 of which during the divergent run).
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Figure 20. Consistency of HP, AMPP and AHP. Average NEES of the 6-
DOF vehicle pose [x, y, z, φ, θ, ψ]> over 25 runs for 800 frames (2 turns) and
parameters of Set 1. The dotted horizontal band between abscissas ε = 4.719
and ε = 7.432 mark the 95% consistency region: the filter is consistent if the
average NEES is inside this band. The vertical line marks the loop closure at
frame 308. The framed area corresponds to the area covered by Fig. 21.
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Figure 21. Consistency of HP, AMPP and AHP. Average NEES over 25 runs
for 200 frames (1/4 turn) with parameters of Set 2 and 10 initializations in the
first frame. Thick gray: initialization with an alternative prior (ρ̄, σρ) = (1, 1).

• AHP behaves consistently, certainly with a slight ten-
dency to inconsistency, until shortly after the first loop
closure. During the second turn the filter is inconsistent
but it does not seem to degrade too quickly. No landmarks
were declared inconsistent.

• AMPP shows better performance than HP but also es-
capes consistency very quickly. No run diverged but
inconsistent observations triggered landmark deletion in
two occasions.

We tuned the algorithms with the second set of parameters
in order to improve linearity: odometry steps and noise are
cut in half, and the filter is bootstrapped with 10 landmarks
being initialized at the first frame. Here, we focus on the first
quarter of the first loop (1/8 of the first run’s length) to see
the moment when the filters loose consistency. The results in
Fig. 21 show no significant improvement with respect to those
of Set 1 (these 200 frames correspond to the first 100 frames
of Set 1, which have been boxed in Fig. 20): HP is just not
good, AMPP starts fine but only keeps track until frame 50,
and AHP is again the only one to behave consistently.

A third test consisted in selecting a different prior for the
unmeasurable inverse-distance. The gray superimposed plots
in Fig. 21 show that AMPP and AHP are not very sensitive to
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Figure 22. Simulated 3D environment for benchmarking 5 line parametri-
zations.
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Figure 23. RMS errors of the two Plücker-based line parametrizations PL
(red) and APL (blue), averaged over 25 runs. The 2-sigma estimated bounds
are plotted in thicker line. Anchoring the Plücker line helps in improving the
estimates, but none of these Plücker parametrizations seem to work correctly.
See discussion in Section VII.

large variations of these parameters, while the contrary must
be said for HP. It seems, even if for AHP and AMPP the
difference is small, that the filter behaves better with landmarks
initialized at (or close to) infinity (ρ̄C = 0.01m−1) than at
some close distance (ρ̄C = 1m−1).

C. Lines

We benchmark PL, APL, HPL, AHPL and AMPPL for
NEES consistency. The first scenario (shown in Fig. 22)
consists of a robot making a turn around a wireframe model
of a house. 400 frames are processed. The camera is looking
sideways to the house and there is no loop closure. The simu-
lation parameters in terms of sensor calibration and odometry
noise levels are equivalent to the ones we used for points. The
results are shown in Fig. 25 – please notice the logarithmic
vertical scales.

The second scenario corresponds to a frontal trajectory, a
situation that is more challenging for monocular SLAM as
the scene observability becomes weaker. The camera looks
forward and the robot performs an arc of a circle towards
the house. The sequence is stopped after 100 frames when
the robot is actually inside the house and no more segments
are in the field of view. In this case we just show results
for the two winning parametrizations (Fig. 26), namely AHPL
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Figure 24. RMS errors of the three point-based line parametrizations HPL
(red), AMPPL (blue) and AHPL (green), averaged over 25 runs. The 2-sigma
estimated bounds are plotted in thicker line. Anchoring has produced both
a larger 2-sigma bound error estimate, and a smaller error. AMPPL and
AHPL behave almost exactly. See the corresponding NEES consistency plots
in Fig. 25.
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Figure 25. Consistency of PL, APL, HPL, AHPL and AMPPL. Average
NEES over 25 runs for 400 frames (one turn around the house). Plücker-
based lines (PL and APL) do not behave consistently, even when anchored.
Lines based on homogeneous points (HPL) neither, as expected from the
HP behavior. Anchored point-supported lines (AHPL and AMPPL) behave
similarly and close to consistency.

and AMPPL. The rest are clearly inconsistent, and in fact
the results are pretty much the same as in the first scenario
(compare to the two lower plots in Fig. 25).

VII. DISCUSSION

A. Anchors and non re-measurable states

We have shown in this paper the benefits of anchoring
landmarks as a way to improve linearity and therefore EKF
performance. Here we give some more insight to the subject.

The anchor constitutes a part of the SLAM state that is not
directly re-measurable. In this regard, it stays in the map like
any other landmark that is not being measured. Importantly, as
long as the filter is run under conditions of sufficient linearity,
the anchor benefits from the ability of fully-correlated SLAM
to keep non-measured states up-to-date and consistent with
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Figure 26. Average NEES over 25 runs for 100 frames (frontal trajectory).
Again, only anchored point-supported lines behave close to consistency.

their neighbors. This is particularly interesting during loop
closures where estimates may vary abruptly after one single
EKF update.

The anchor also allows the observation function to operate
at a reduced uncertainty level, allowing higher linearity as we
have seen in Section V-A. We illustrate this in very general
terms. Consider that, due to motion, an uncertainty ∆P is
added to the sensor position T over a period of time ∆t. If
the position covariance at initialization time t0 is P0, at a
later observation time t1 = t0 + ∆t we have P1 = P0 +
∆P. For observations shortly after initialization, we have ∆t
small and ∆P << P0. Now consider the general forms of
the observation functions (see Table I) of one un-anchored
landmark Lu = (Au, bu) and one anchored landmark La =
(p0, Aa, ba),

yu = KR>(Au − Tbu) (85)
ya = KR>(Aa − (T− p0)ba) . (86)

The first function (un-anchored) works with the uncertainty
level of T, which is P1. The terms Au and bu had been
composed with P0 at initialization time t0, via some Jaco-
bian matrices computed at inaccurate estimates and therefore
containing linearization errors. Due to cross-correlations, the
two contributions come actually close to cancellation and the
uncertainty in the innovation space is theoretically close to
that produced by just ∆P, but the linearization errors are
unrecoverable. The second function (anchored) works with
the uncertainty of (T − p0) which is ∆P << P1. This
is directly mapped to the innovation space. The terms Aa
and ba are correlated to the rest of the map only through
the anchor p0, which appears explicitly in the formula. This
anchor was established at initialization time via p0 = T(t0),
i.e., without linearization errors. The EKF update is free from
the linearization errors of the translational composition above.

B. Anchored landmarks versus robocentric SLAM

An interesting alternative to the algorithm here bench-
marked is robocentric SLAM [11], [26], [36]. Robocentric
SLAM adds a step to the estimation loop, as follows:

1) Motion prediction with f() (not described in this work).
2) Landmark observations with h(), innovation with j(),

EKF correction, and re-parametrization with k().
3) Map transformation to robot frame with m() (not de-

scribed in this work).
4) Landmark initialization with g().

Item 3 above has the consequence of making the robot
pose to be the origin at every step. This has interesting
implications. For what matters here, we notice that the robot
position becomes T ≡ 0, with null covariance. Therefore, at
initialization time (Step 4), we have that the anchor to generate
is p0 = T = 0. We can then drop it from the parametrization,
obtaining, in e.g. the AHP case, simple homogeneous points
HP – this is exactly the work presented in [11]. In any case
(HP, HPL or PL), we are curious to see if robocentric SLAM
can achieve the linearity levels of anchored parametrizations
(or even improve on them because also the rotational part and
its covariance are set to zero) at lower parametrization costs.
The price to pay is the cost of Step 3 which is quadratic with
the map size [36].

TODO: Add robocentric results from J. Civera.

C. The Plücker constraint

We have seen that for a pair (n,v) to be a Plücker line the
Plücker constraint n ⊥ v is mandatory. We have ensured its
satisfaction at initialization time, but we have not enforced
it further during landmark updates. The reason is that we
did not find a clean and convincing method for doing so in
the EKF framework. Enforcing equality constraints (i.e., with
infinite information) in EKF has the consequence of producing
singular covariances matrices. The directions of the state space
being affected by this singularity become blocked and no more
evolution on them can be expected. If the constraint could
be applied exactly, and if our system were linear, this would
create a lifelong guarantee of the constraint satisfaction. But
due to linearization errors, the produced singularity is not
exactly at the right point (i.e., the eigenvector corresponding
to the null singular value does not have the correct direction).
This problem has been treated in [13] for the Plücker lines
using the smoothly constrained Kalman Filter [37]. The idea
is to apply a number of relaxed constraints (with gradually
increasing information) to make the filter converge to the true
constraint. This method requires several tuning parameters
and, as mentioned, we do not feel the solution to be very
elegant.

This neglected step might very well be at the base of the
poor consistency results of APL. We have not investigated
the validity of this hypothesis, mainly because there are other
reasons to prefer point-supported lines over Plücker lines, as
we see next.

D. Endpoints in Plücker-based and point-supported lines

The methods described here for endpoint management re-
quire some information to be stored out of the map. We
limited this to two abscissas. Plücker lines condensate all the
information of the initial observation to the plane normal, via
n = m1×m2, and any information on the endpoints’ initial
view is lost. The two abscissas representation reveals very
limited for Plücker lines: the local line origin moves with
the line’s orientation, and the segment length does not change
upon distance variations. During the initial convergence phase,
the only reasonable strategy for managing endpoints is to reset
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them at each frame using the current observation (Fig. 14(b)),
potentially losing information about the segment extension
observed in previous frames.

On the contrary, Anchored, point-supported line parametri-
zations have the ability to respect the initial view of the two
segment endpoints via the anchor p0 and the two director
vectors (m1,m2). Because of this higher representativeness
of point-supported lines, and because of the absence of
constraints, we consider point-supported lines preferable to
Plücker-based lines for undelayed monocular SLAM. The
additional cost is marginal (size 11 instead of 9) and needs to
be paid only during the convergence phase. Reparametrization
is triggered with the same criterion described in [9], which
must hold for each endpoint.

E. Modified Polar Coordinates

We notice here that the AMPP’s un-anchored counterpart,
Modified Polar Point (MPP – refer to Fig. 6), not studied in this
paper, had already been treated in the 80’s in the bearing-only
tracking literature with similar problematic and justification
[39], where it was referred to as Modified Polar Coordinates
(MPC). Its use in monocular EKF-SLAM is not recommended:
it presents a singularity at the origin, and if we draw the
correct conclusions from the present paper, it should behave
even worse than HP, as it happens to AMPP with respect to
AHP. The same thing happens if we try to use MPC for lines.

VIII. CONCLUSION
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