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Impact of landmark parametrization on monocular

EKF-SLAM with points and lines
Joan Solà, Teresa Vidal-Calleja and Javier Civera

Abstract— This paper aims at providing answers to a variety
of questions regarding undelayed initialization of point- and line-
landmarks in monocular EKF-SLAM. It does so by stating the
problem and the necessary conditions for a successful solution,
and by offering a compendium of landmark parametrizations,
including three different methods for points and five other
methods for straight lines. Some of these methods are already
well-known, other are presented here for the first time. The
discourse of the text is chosen to highlight the similarities and
the differences between them, and how all these parametrizations
can be seen as incremental variations of ones with respect to
others. We show unified approaches for points and lines and
explain how they could be extended to conics, and why they
cannot be easily generalized to planes. We present a new linearity
measure to predict how well a parametrization will perform in
an EKF framework. To confirm these predictions, we benchmark
all the methods by running Monte-Carlo tests on all algorithms,
using the same data and comparing their performances on filter
consistency. Finally, some results with real imagery are presented
as a means to further analyze their possibilities in view of real
implementations.

I. INTRODUCTION

Monocular simultaneous localization and mapping (SLAM)

gained popularity back in 2003 thanks to a real-time im-

plementation due to Davison [1], based on Smith et al.’s

original extended Kalman filter (EKF) solution to SLAM [2].

Davison’s technique elegantly solved a great number of prob-

lems, but there still remained one that occupied researchers on

visual SLAM for some years [3]–[5]: the problem of landmark

initialization. Monocular EKF-SLAM reached maturity with

the advent of undelayed landmark initialization techniques

(ULI), a need of partial initialization firstly stated in 2005 by

Solà et al. [6], with a preliminary solution based on multi-

hipothesized depth parametrization inspired on a previous

work in 2004 by Kwok et al. [7], and finally solved in 2006

with the inverse-depth landmark parametrization (IDP) due to

Montiel et al. [8].

This work aims at contributing several concepts regarding

landmark parametrization in view of improving the system’s

linearity, and thus filter consistency, in monocular, EKF-based

SLAM implementing ULI. We present eight different methods,

three for points and five for lines, highlight their similarities

and differences, and compare their performances using both

analytical and statistical tools.
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A. Undelayed landmark initialization (ULI)

ULI (also known as partial initialization) is the proccess by

which landmarks that have been partially measured (e.g. with

bearings-only —see Fig. 1— or range-only sensors) are in-

corporated into the SLAM map at the time of the first obser-

vation, that is, before their full 3D state can be determined.

In bearings-only systems such as a monocular camera, ULI

allows landmarks showing low parallax, i.e., those that are at

remote distances or close to the motion axis of the camera, to

contribute to SLAM from the first observation. This allows the

exploitation of the full field of view of the camera up to the

infinity range, regardless of the sensor trajectory, which results

in accurate localizations with very low angular drifts. We

encourage the reader to consult [6], [9], [10] for discussions

on delayed/undelayed initializations and their importance in

monocular SLAM.

In brief, ULI must be conceived with two key properties,

namely

1) The full uncertainty range of the non-measured degrees

of freedom (DOF) is properly represented by a Gaussian

pdf.

2) The subsequent updating procedures can be performed

normally.

In order to simultaneously fulfill these requirements, some

degree of landmark over-parametrization is required. On one

hand, a non-linear mapping is needed to transform a bounded

Gaussian in parametrization space into an unbounded density

in map space. In bearings-only systems this leads to parametri-

zations incorporating inverse-distance elements. On the other

hand, we need to make the observation functions as much

linear as possible. The inverse-distance helps here too, but

additional over-parametrization may also show beneficial, as

long as this does not involve any internal constraint between

the parameters – constraints lead to singular covariances matri-

ces and this seriously compromises EKF operation, especially

when having to deal with non-linearity.

When using point landmarks, the problem knows today two

main solutions, both of them relying on astute parametriza-

tions: inverse-depth points (IDP, [8], [9]), and homogeneous

points (HP, [11]).

The problems of lines and points are somewhat similar,

and one of the aims of this paper is to make this similar-

ity evident. For points, ULI means that landmarks must be

initialized so that the uncertainty in distance – the only non-

measurable DOF – covers all the visual ray up to infinity. Lines

present additional difficulties. For lines, ULI requires the initial

uncertainty to cover 2 non-measurable DOF: distance up to
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(a) The retro-projection of a point u gives
place to a semi-infinite line λ where the
point landmark p must lie. There is 1
unmeasured DOF: the point’s depth.
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(b) The retro-projection of a segment l

gives place to a semi-infinite plane π where
the line landmark L must lie. There are 2
unmeasured DOF: the line’s depth and its
orientation in π.
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(c) The retro-projection of an ellipse e

gives place to a semi-infinite cone Q where
the ellipse landmark E must lie. There
are 3 unmeasured DOF: the ellipse’s plane
depth and its two attitude angles.

Figure 1. The problem of undelayed initialization. Retro-projection of detected features in a monocular image I at their first observation. The unmeasured
DOF’s have infinite uncertainty and need to be properly modeled and handled by Gaussian shapes and reasonably linear functions. This paper explores the
possibilities of undelayed initialization of points and straight lines, but not of ellipses.

infinity, and all possible orientations. Unlike points, lines can

be partially occluded, and most edge detectors produce very

unstable endpoints. Therefore, the 3D segment’s endpoints

cannot be established from single observations. Also, line

observations suffer from the aperture problem, which means

that only the measured components that are orthogonal to

the line are practicable. And still, in the Euclidean space a

well defined measure of distance between two lines is not

straightforward, making the definition of the innovation in

EKF a delicate matter.

B. Points, straight lines, possibly conics, and not planes

Points and straight lines are not the only geometrical

primitives that one might use. In general terms, a primitive

is interesting if it keeps being informative after projection to

the measurement space. In perspective cameras (Fig. 1) points

project into points (Fig. 1(a)), straight lines into straight lines

(Fig. 1(b)), and conics such as ellipses project into conics

(Fig. 1(c)). In panoramic cameras governed by the Barreto

model [12], points project into points and straight lines into

ellipses. But a fundamental difference appears when trying to

use planes as primitives. In perspective cameras a plane does

project into a plane, but this is absolutely coincident with the

image plane: the observation is non-informative. This seems a

counter-intuitive paradox saying “we cannot observe 3D planes

with a projective device”. It is not: planes are observable,

but they must be observed indirectly, i.e., by observing either

primitives of the previous kinds (points, lines, curves) that

lie on their surface or that delimit them, or some dense

information such as planar textured patches. We have two main

options for observing such planes. One option is to track such

primitives and determine, at a later time and once they have

converged, their co-planarity via additional procedures [13].

Alternatively, we can exploit some prior information about

the planar organization of these primitives (e.g. a set of co-

planar parallel lines, or a set of points organized as a chess-

board) to estimate a 3D plane-to-image homography, which

ultimately relates to the plane’s equation [14]. Importantly,

neither method is actually based on the observation of plane

primitives, i.e. with 2DOF, but on primitives with at most

1DOF (points, lines, curves) that lie on it.

C. Other related works

Other authors investigated the possibilities of using differ-

ent estimation techniques. We have seen IDP used in Fast-

SLAM2.0 [15] and UKF [16], [17] frameworks; and methods

based on bundle adjustment [18], [19], which is at this moment

the technique that shows the clearest future perspectives [20].

These works are often motivated by inconsistency and compu-

tational burden issues associated with EKF-SLAM. However,

EKF-based SLAM (or other similar approaches based on

filtering and Gaussians such as UKF- or EIF-SLAM) is still

widely used by major robotics and vision laboratories and is

at the core of other localization, mapping or modeling systems

[13], [21]–[23]. Two reasons in our opinion keep it alive: its

(relative) simplicity of implementation and the fact that large

maps are usually being built by means of small sub-maps, thus

circumventing most of the EKF’s drawbacks.

Regarding computational burden, EKF-SLAM with small

sub-maps is practicable because this burden is bounded by

the sub-maps size. Moreover, linearization errors are limited

by the reduced camera motions within each map. The work

in [24], for example, takes this multi-map possibility to the

limit and proposes coalesced observations that may be seen as

micro-maps of just a few motion steps.

D. Contributions

The present paper digs deep into the issue of enhancing the

system’s linearity to improve EKF consistency in monocular

SLAM using points or straight lines. We focus on a particular

algorithm, the classical and well-known EKF-SLAM, and

study the impact of the landmark parametrization choice.

We claim several contributions. First, a compendium of eight

landmark parametrizations especially conceived for ULI, three

for points and five for lines, where five of them are innovative

to our best knowledge. Second, these parametrizations are

presented in a unified discourse that emphasizes the two keys

to satisfactory ULI, namely landmark anchoring and inverse-

distance behavior. These two keys have already been proved
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positive, e.g. in [9], [11], but they have not been explored

to the limit. Third, an analytical analysis of linearity that

takes into account the time-varying support of probability. The

derived linearity indices can be used for improving SLAM

performance at several points of the algorithm. Fourth, a statis-

tical analysis of consistency based on Monte-Carlo simulation

runs. The analytical and statistical approaches presented here

should allow the reader to correlate the discourse of the paper

with the linearity indices and with the performance of each

parametrization. We illustrate the two most performing meth-

ods with a couple of experiments using real imagery. A final

discussion serves to relocate the EKF-SLAM algorithm among

other close-by solutions, namely robo-centric monocular EKF-

SLAM [11], [22], and boards some secondary but important

aspects regarding one or other solution.

E. Analytical linearity analysis

The EKF requirements for high degrees of linearity in the

measurement and dynamic model equations makes the use of

an analytic linearity measurement interesting. In the already

referenced [9], an analytic linearity index was proposed to

emphasize the improvement in linearity when the unmeasured

range is parametrized as inverse-distance instead of distance.

This linearity is based on showing the variation in the first

derivative of the function inside the 95% probability interval.

The measure is restricted, thanks to the particular symmetries

of the problem, to just 1DOF. Also very related to this paper,

in [24] the trace of the Hessian of the measurement model is

proposed as a measurement of its degree of linearity in several

nodes of a multi-map SLAM. This measure has the drawback

of not incorporating the dimensions of the uncertainty region.

Inspired in [9], we introduce an analytical linearity index

for multiple-input/multiple-output (MIMO) functions which

accounts for the probability region of the input variable. As

a desirable quality, the proposed measurement allows us to

compare parametrizations having different sizes, and even

compare the degree of linearity of points against lines. As

in [24], the index involves the computation of the Hessian;

this is composed with the covariances matrix, incorporating

this way all the information on the uncertainty region.

F. Statistical consistency analysis

Until very recently most SLAM works have limited the

illustration of their performance to providing some figures

showing the final map. It is true that providing more conse-

quent and informative evaluations is costly in robotics because

of the difficulties of accessing reliable ground-truth informa-

tion. This is where simulation is useful. But even with simula-

tion, many works have failed to provide accurate evaluations,

mainly because their conclusions about filter consistency were

based on one single run. Because of the stochastic nature of

the processes we are dealing with, it is usually easy to obtain a

consistent realization of an inconsistent filter, and also to find

an inconsistent realization of a consistent one. This is particu-

larly critical in non-linear systems because of the potential that

inconsistency has in such cases to lead to fatal divergence. As

it was already indicated by Bar-Shalom [25, pp. 394] for the

general filtering case and reminded to the SLAM community

by Bailey [26], consistency evaluation should be performed

statistically via Monte-Carlo analysis. This is what we provide

here: a benchmarking of all the proposed parametrizations

via a chi-square consistency test that evaluates the averaged

normalized estimation error squared (NEES) over a number of

Monte-Carlo runs.

Although consistency is not the ultimate measure of per-

formance [27], it is a necessary condition that all filters

should meet, and it is intimately related to the degree of

linearity-Gaussianity of the system. An interesting outcome

of our evaluation is therefore the possibility of correlating

our proposed linearity measure with the conclusions on filter

consistency.

G. Outline

In Section II we describe three parametrizations for points

and give details on the necessary algebra to support them.

In section Section III we repeat the process with five types of

infinite lines. Section IV describes the initialization and updat-

ing procedures in standard EKF-SLAM with ULI using points

or lines. Section V introduces the analytical and statistical

methods we use for linearity and consistency evaluation, with

results presented in Section VI. The paper continues with a

discussion in Section VII and the conclusions in Section VIII.

II. POINTS

This section presents some parametrizations for 3D points,

with their projection and back-projection operations needed

for EKF-SLAM initialization and updating. We start with

Euclidean points (EP) just as a matter of completeness, and

to introduce some notation. The discourse evolves through ho-

mogeneous points (HP), anchored homogeneous points (AHP),

and inverse-distance points (IDP), which we will refer to here

as anchored modified-polar points (AMPP) for reasons that

will be explained soon.

A. Euclidean points (EP)

A Euclidean point p (EP) is trivially coded with three

Cartesian coordinates

PE = p =
[

x y z
]⊤
∈ R

3

Transformation to camera frame and perspective (pin-hole)

projection are performed with the well-known expression

u = KR⊤(p− T) ∈ P
2, (1)

which we use to introduce some notation. K is the intrinsic

matrix,

K ,

[

αu 0 u0

0 αv v0
0 0 1

]

,

underlined fonts • indicate homogeneous coordinates, R =
R(Q) and T are the rotation matrix and the translation vector

defining the camera frame C, which is coded by the vector C =
(T,Q), Q being an orientation representation of our choice

suitable for EKF filtering (we use quaternions).
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Euclidean points lead to severely non-linear observation

functions in bearings-only systems and are not suited for un-

delayed initialization, as it has been extensively demonstrated,

[3], [7], [10], [11], [15] and most particularly [6], [9]. In

brief, the problem can be described as follows. In EKF, the

requirements of function linearity are defined with respect to

the uncertainty region. As in Euclidean parametrizations the

uncertainty region of partially observed landmarks is of infinite

size, the observation functions’ linearity should hold for an

infinite variation of the non-measured DOF, which is not the

case.

B. Homogeneous points (HP)

A homogeneous point (HP, Fig. 2(a)) is coded by a 4-vector

in projective space P
3. It is composed of a 3D vector m and

a scalar ρ, usually referred to as the homogeneous part,

PH = p =

[

m

ρ

]

=
[

u v w ρ
]⊤
∈ R

4. (2)

A HP refers to the following EP:

p = m/ρ. (3)

Remark 1 (Inverse-distance): The scalar ρ depends linearly

with the inverse of the distance d from the origin to the 3D

point,

ρ = ‖m‖/d. (4)

A distance uncertainty from a minimal distance dmin to

infinity is coded by a bounded interval in ρ ∈ (0, ‖m‖/dmin].
This is of central importance as this is precisely the factor

that will allow us to use such parametrization for undelayed

initialization in EKF-SLAM (see Section IV-B for further

justification and details). The same concept of inverse-distance

is found in absolutely all the parametrizations we present

(except of course EP), even the ones for lines.

Homogeneous points have the additional interesting prop-

erty of presenting a bi-linear transformation equation:

p = HpC ,

[

R T

0 1

]

pC , (5)

where the super-index •C indicates the frame C where the point

is referred to, and H is the homogeneous motion matrix. Bi-

linearity becomes linearity when the localization information

(T,R) is known perfectly. A strict linearity would allow us to

transform covariances from and to different reference frames

with absolutely no degradation, contributing to good EKF

performances. If we dispose of a non-perfect but accurate

estimate, e.g. in cases of small localization uncertainty, the

resulting quasi-linearity makes the EKF solution to SLAM

practicable.

Homogeneous points project to perspective cameras accord-

ing to the linear expression

u = Pp = KP0H
−1p, (6)

with P , KP0H
−1, and P0 the canonical projection matrix

P0 ,

[

1 0 0 0
0 1 0 0
0 0 1 0

]

.

This can be expressed in terms of T, R, m and ρ,

u = KR⊤(m− Tρ) ∈ P
2. (7)

Notice that when the point is expressed in camera frame, pC =
(mC , ρC), only the non-homogeneous part mC appears in the

projection expression,

u = K·mC , (8)

meaning that 1 DOF, the point’s range intrinsically contained

in ρC , is not measurable.

The back-projection and transformation composition neces-

sary for landmark initialization is done with

PH = p =

[

m

ρ

]

= H

[

K−1u

ρC

]

, (9)

where ρC depends inversely with the distance dC to the camera,

via ρC = ‖K−1u‖/dC . Being ρC not measured, it must be

provided as prior (see Section IV-B). Once transformed to the

global frame with H, this meaning of ρC is lost and ρ becomes

the inverse-distance to the global origin O.

C. Anchored homogeneous points (AHP)

We add an anchor to the HP parametrization to improve

linearity, as it is done in the well-known inverse-depth par-

ametrization [9], which we will see later. Anchoring the HP

means referring it to a point p0 in 3D space different from

the origin (Fig. 2(b)). The anchor point p0 is chosen to be the

optical center at initialization time.

Remark 2 (Landmark anchor): The effect of anchoring is

that, on subsequent EKF updates, only the accumulated errors

from the anchor p0 to the current camera position T will

be considered, in contrast with regular HP where the error

accounts for the absolute motion of the sensor from the

origin of coordinates. This results in lower linearization errors

and therefore to more consistent filters, which is one of the

conclusions of this work.

This leads to the anchored homogeneous point (AHP,

Fig. 2(b)), parametrized with the 7-vector

PAH =





p0

m

ρ



 =
[

x0 y0 z0 u v w ρ
]⊤
∈ R

7 (10)

An AHP refers to the following EP:

p = p0 + m/ρ. (11)

Remark 3 (Direction vector): The homogeneous point of the

AHP, (m, ρ) ∈ P
3, does not require m to be a unit vector. If it

is not, the parametrization is absolutely valid but ρ is then not

the inverse distance 1/d but proportional to it, ρ = ‖m‖/d.
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(c) Anchored modified-polar point (AMPP)

Figure 2. Point parametrizations. Homogeneous and anchored homogeneous do not require m to be a unit vector. In modified-polar point, the observed ray
is coded by two angles: the derived direction vector is unitary and hence ρ is exactly inverse-distance. The anchor point p0 in AHP and AMPP corresponds
to the optical center at initialization time.

Transformation to camera frame and projection resume to

u = KR⊤
(

m− (T− p0)ρ
)

∈ P
2. (12)

The back-projection and transformation composition is done

with

PAH =





p0

m

ρ



 =





T

RK−1u

ρC



 , (13)

where ρC must be provided as prior; its relation to distance d
is given by ρC = ‖K−1u‖/d.

D. Anchored modified-polar points (AMPP)

We lighten the previous AHP parametrization by encoding

the direction vector m with just elevation and azimuth angles

(ε, α) of the observed optical ray joining p0 to p. When these

angles are appended with the inverse of the distance ρ, the

result is a 3D point in modified-polar coordinates, (ε, α, 1/d).
Adding the anchor p0 leads to the anchored modified-polar

point (AMPP, Fig. 2(c)), coded by the 6-vector

PAMP =





p0

(ε, α)
ρ



 =
[

x0 y0 z0 ε α ρ
]⊤
∈ R

6 (14)

Remark 4 (Inverse-depth points): In this article we will refer

to the originally named “inverse depth” points (IDP) in [9] as

anchored modified-polar points (AMPP). There is absolutely

no difference between IDP and AMPP, and the name change

is justified by two facts: on one hand, our name better

explains the nature of the parametrization as it recalls the

previously existing “modified polar coordinates” term1. On

the other hand, all our parametrizations share the concept of

inverse-depth (or inverse-distance), rendering the term “IDP”

ambiguous and non-informative.

An AMPP refers to the following EP:

p = p0 + m∗(ε, α)/ρ (15)

where m∗(ε, α) is a unit vector in the direction of (ε, α),

m∗(ε, α) =
[

cos(ε) cos(α) cos(ε) sin(α) sin(ε)
]⊤

. (16)

1We do not study here the modified-polar point (MPP) as we judge it un-
interesting for EKF-SLAM. Refer to the discussion in Section VII for further
justification.

Transformation to camera frame and pin-hole projection op-

erations resume to

u = KR⊤
(

m∗(ε, α)− (T− p0)ρ
)

. (17)

The back-projection and transformation composition is per-

formed with

PAMP =





p0

(ε, α)
ρ



 =





T

µ∗(RK−1u)
ρC



 , (18)

where µ∗(m) gives elevation and azimuth angles (ε, α) of a

director vector m = (mx,my,mz),
[

ε
α

]

= µ∗(mx,my,mz) =

[

arctan(mz/
√

m2
x + m2

y)

arctan(my/mx)

]

.

(19)

The parameter ρC is now exactly the inverse-distance 1/d
because in AMPP the vector m∗ is always unitary. It is defined

in the camera frame at initialization time and, being non-

measurable, must be provided as prior.

III. LINES

This section mimics the structure of Section II for the case

of infinite lines. We remark the numerous parallelisms that can

be established among them, and also between points and lines.

We start with a quite exhaustive introduction to the Plücker

line (PL), that behaves surprisingly similar to HP, and where

the concept of inverse-distance is associated to a 3D vector

instead of a scalar. The discourse evolves through the anchored

Plücker line (APL), the homogeneous-points line (HPL), the

anchored homogeneous-points line (AHPL), and the anchored

modified-polar-points line (AMPPL).

A. Plucker lines (PL)

This sub-section devoted to the Plücker line is long. We

decided to include all this material because it is important

here to highlight several interesting connections between ho-

mogeneous points (HP) and Plücker lines (PL), notably the

existence of linear transformation and projection equations

reproducing the structure of those for HP, and the inverse-

distance behavior of the homogeneous part of the Plücker

vector. These connections will clearly arise with the adoption

of a discourse that retraces the one we used for HP. They

allow us to propose the Plücker line as an interesting starting

candidate for undelayed initialization in monocular EKF-

SLAM. Most of the material here can be found in [28].
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(a) Plücker line (PL). The line L and the
origin O define the support plane π. The
line’s sub-vector n ∈ R

3 is orthogonal to π.
The sub-vector v ∈ R

3 is a director vector
of the line, and lies on π.

n
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(b) Back-projection of a Plücker line. The
orthogonal base {e1, e2} of πC permits the
isolation of the 2DOF of the line’s director
vector vC . The base vector e1 is parallel to
the image plane.

L

n

v

q

p
0

O

π

d =

‖n‖

‖v‖

(c) Anchored Plücker line (APL). The closest point
to the anchor is q = p0 + (v×n)/(v⊤v).

Figure 3. Geometrical interpretations of Plücker-based lines with their back-projection details. The 3-vector v is not observable at initialization time. Its
initial covariance, however, must be defined in the plane πC by means of a 2D Gaussian prior β. See Figs. 8 and 9 for further details.

1) The Plücker coordinates: A line in P
3 can be defined

from two points of the line by the Plücker matrix,

L = b·a⊤ − a·b⊤ ∈ R
4×4, (20)

with a = (a, a) ∈ P
3 and the same for b. This is a 4×4

skew-symmetric matrix (with 12 non-null off-diagonal entries

lij = −lji) subject to the Plücker constraint,

det(L) = 0. (21)

The Plücker matrix is independent of the two selected points

of the line (more exactly, any two points of the same line give

place to a matrix L′ ∼ L, i.e., equivalent up to scale).

This line is coded as a homogeneous 6-vector LP ∈ P
5 with

the so called Plücker coordinates. These coordinates are any

linearly-independent selection of the entries ±lij , and have

been defined in the literature in a number of different ways,

some of them more fortunate (intuitive, easy to understand or

manipulate) than others. It is handy to choose the represen-

tation suggested in [29], that we will name here the Plücker

line (PL, Fig. 3(a)),

LP =

[

n

v

]

=
[

nx ny nz vx vy vz

]⊤
∈ P

5 ⊂ R
6,

(22)

which corresponds to writing L as

L =

[

[n]
×

v

−v⊤ 0

]

, n,v ∈ R
3. (23)

with [n]
×

the skew-symmetric matrix associated with the

cross-product (i.e., [n]
×

m ≡ n×m),

[n]
×

,

[

0 −nz ny
nz 0 −nx
−ny nx 0

]

. (24)

This choice and the definition (20) allow us to write

n = a×b (25)

v = ab− ba, (26)

with which the Plücker constraint becomes

n⊤v = 0. (27)

The Plücker coordinates, when defined as in (25–26), admit

a comprehensible geometrical interpretation (in the Euclidean

sense, Fig. 3(a)):

• The vector n is a vector normal to the plane π containing

the line LP (hence the points a and b) and the origin O.

• The vector v is a director vector of the line, oriented from

a to b.

• The ratio ‖n‖/‖v‖ is the Euclidean orthogonal distance

d from the line L to the origin O.

• The Plücker constraint trivially says that n ⊥ v.

• The point of the line closest to the origin is given by

q = (v×n)/‖v‖2 ∈ E
3 or q = (v×n,v⊤v) ∈ P

3.

Remark 5 (Plücker and inverse-distance): The third property

above, saying d = ‖n‖/‖v‖, is crucial for undelayed ini-

tialization in SLAM, notably because of the inverse distance

behavior of the sub-vector v. This is not possible with the

Euclidean Plücker coordinates LE = (n,u) in [30] because the

director vector u is normalized, ‖u‖ = 1. See also Remark 6.

2) Frame transformations: It is easy to see, via (5) and

(20), that the Plücker matrix is transformed according to

L = H·LC ·H⊤.

This expression is linear in the components of LC and

therefore a linear expression exists for its vector counterpart

LP. Having defined LP = (n,v), the expression of the

transformation is amazingly simple [29]:

LP = H·LC

P
,

[

R [T]
×

R

0 R

]

·LC

P
. (28)

The inverse transformation is performed with

LC

P
= H−1 ·LP ∼

[

R⊤ −R⊤ [T]
×

0 R⊤

]

·LP. (29)

3) Pin-hole projection: Similarly, the Plücker matrix is

projected into a pin-hole camera according to

[l]
×

= P·L·P⊤,



7

which is again linear in L. The corresponding linear expression

for the projected line in homogeneous coordinates, l ∈ P
2, is

also very simple:

l = P·LP = K·P0 ·H
−1 ·LP, (30)

with intrinsic and canonical projection Plücker matrices

K =

[

αv 0 0
0 αu 0

−αvu0 −αuv0 αuαv

]

, P0 =

[

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

]

.

The whole transformation and projection process (30) can be

expressed in terms of T, R, n and v,

l = K·R⊤ ·(n− T×v). (31)

Notice that when the line is expressed in camera frame, LC
P

=
(nC ,vC), only the plane’s normal nC appears in the projection

expression,

l = K·nC , (32)

meaning that 2 DOF, the line’s range and orientation contained

in vC , are not measurable.

In order to highlight revealing parallelisms between PL and

HP, it is worth comparing (28) with (5), (30) with (6), (31)

with (7) and (32) with (8).

4) Pin-hole retro-projection: A segment l detected in an

image I uniquely determines the plane πC containing the 3D

line and the optical center C (Fig. 3(b)). This is named the

representation plane. The plane’s normal in camera frame nC

is obtained by simply inverting (32),

nC = K−1 ·l. (33)

The vector vC is meant to lie on the plane πC and has

therefore only 2DOF, which are not measured. We need to

isolate them to be able to provide the necessary Gaussian prior

for initialization. For this, we consider vC to be generated

by a linear combination of the vectors of an orthogonal base

E = {e1, e2} of the plane πC , i.e.,

vC = β1 ·e1 + β2 ·e2, β1, β2 ∈ R,

with {e1, e2} ⊥ nC . Doing E , [e1 e2] ∈ R
3×2 and β =

(β1, β2) ∈ R
2 we get the matrix form

vC = E·β, (34)

and vC ∈ πC for any value of β. The base E spans the

null space of nC , thus the Plücker constraint is satisfied by

construction.

For convenience, we arbitrarily build the base E so that

‖β‖ is exactly inverse-distance and e1 is parallel to the image

plane. This yields

e1 =

[

nC
2 −nC

1 0
]⊤

√

(nC
1 )2 + (nC

2 )2
·‖nC‖ and e2 =

nC×e1

‖nC‖
. (35)

With this base choice the vector β admits the following

geometrical interpretation (Fig. 4):

• β = (β1, 0) is a line parallel to l, thus to the image plane,

passing over the point D = (1/β1, 0).

β1

β2

β = (1, 0)

C

β = (0.4, 0.2)

β = (0,−2)

β

β/||β||2

Figure 4. Different lines in the representation plane π (see Fig. 3(b)) in
camera frame C, as a function of β. The circle is of unit radius. Given β, the
line is such that its closest point to C is β/‖β‖2. The line is orthogonal to
the vector β. See also Fig. 9.

• β = (0, β2) is a line perpendicular to l (but generally

not to the image plane), passing over the point D =
(0, 1/β2).

• β = (β1, β2) is a line in he direction of (β2,−β1) passing

over the point D = β/‖β‖2 which is the point of the line

closest to the optical center.

• The orthogonal Euclidean distance from the line to the

optical center C is given by 1/‖β‖.

Remark 6 (Role of β): The planar β-space is well-suited for

defining our Gaussian prior. When β → (0, 0), the line tends

to infinity. Its orientation is given by the relative strength of β1

with respect to β2, and it easily covers the full circumference

[−π, π]. The value ‖β‖ is the inverse of the Euclidean distance

from the line to the origin. When assigning a prior pdf to β at

initialization time (see Fig. 8 in Section IV on initializing the

pdf of β), this will be properly mapped to the 3D space as a

planar pdf on the plane πC . The support of high probability of

this pdf covers from a specified minimal distance to infinity.

Summarizing, retro-projection and transformation are per-

formed with

LP = H

[

K−1l

Eβ

]

=

[

RK−1l + [T]
×

REβ
REβ

]

, (36)

where β must be provided as prior.

B. Anchored Plucker lines (APL)

As we did with points, we add an anchor to the Plücker

parametrization to improve linearity. The anchored Plücker

line (APL, Fig. 3(c)) is then the 9-vector:

LAP =





p0

n

v



 =
[

x0 y0 z0, nx ny nz, vx vy vz

]⊤
∈ R

9

(37)

Transformation and projection are accomplished by trans-

forming the line to the camera frame, un-anchoring it, and

projecting it into the pin-hole camera. This can be done in

one single expression with:

l = K·R⊤ ·(n + (p0 − T)×v) ∈ P
2, (38)

in which we will notice:
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L

O

π

p
1

p
2

m1

m2
||m2||/ρ2

||m1||/ρ1

(a) Homogeneous-points line (HPL)

Lp
0

O

π

p
1

p
2

m1

m2
||m2||/ρ2

||m1||/ρ1

(b) Anchored homogeneous-points line (AHPL)

Lp
0

O

π

1/ρ1

1/ρ2

ε1

ε2

α1
α2

p
1

p
2

(c) Anchored modified-polar-points line (AMPPL)

Figure 5. Point-supported lines. The lines are defined by two support points like the ones in Section II. The anchor, if it exists, is common to both points.

• The linear character with respect to n.

• For accurate estimates of (T − p0), which is true for

observations shortly after initialization, the linear char-

acter also with respect to the non-observed v, which

additionally exhibits inverse-distance behavior.

Retro-projection and transformation resume to

LAP =





T

RK−1l

REβ



 , (39)

where β must be provided as prior.

C. Homogeneous-points lines (HPL)

This and the following parametrizations are based on the

fact that a line in 3D space can be represented by two points

supporting it. We will use the point parametrizations explored

in Section II to build lines.

A homogeneous-points line (HPL, Fig. 5(a)) is coded by

two HP that support it:

LH =









m1

ρ1

m2

ρ2









=
[

u1 v1 w1 ρ1 u2 v2 w2 ρ2

]⊤
∈ R

8 (40)

Transformation and pin-hole projection require the projec-

tion of the two support points, i.e. for i ∈ {1, 2},

ui = KR⊤
(

m(εi, αi)− Tρi)
)

.

This expression (which is obviously equal to (7)) may be

practical to design appropriate updating algorithms as it con-

tains information about the segment’s support points in the

image. However, for the sake of comparing HPL against

other parametrizations, we join the projected points into a

homogeneous 2D line,

l = u1×u2. (41)

This yields2

l = KR⊤

(

(m1×m2)− T×(ρ1m2 − ρ2m1)
)

. (42)

2To prove (42) we use the distributive property of the cross-product, the
identity (Ma)×(Mb) = det(M)M−⊤(a×b), the fact that regular and
Plücker intrinsic matrices are related by K ∝ K−⊤, and remind that l ∈ P

2

and is therefore invariant to proportionality transforms.

This last expression is important in the sense that it allows

us to observe the parallelisms between parametrizations. Com-

paring HPL (42) against PL (31), and remembering equations

(25–26) defining the Plücker sub-vectors, we observe that:

• The product m1×m2 is a vector orthogonal to both

m1 and m2. As these vectors lie on the plane π, this

product is orthogonal to this plane, and therefore it can

be identified with the PL sub-vector n.

• The term (ρ1m2 − ρ2m1) is a vector joining the two

support points of the line. It is therefore its director vector

and can be identified with the PL sub-vector v.

• With these two identifications, equations (31) and (42)

coincide (using (25–26) this coincidence can be easily

proved to hold exactly).

Retro-projection and transformation resume to

LH =









H

(

K−1u1

ρC

)

H

(

K−1u2

ρC

)









, (43)

where ρC must be provided as prior.

D. Anchored homogeneous-points lines (AHPL)

The anchored homogeneous-points line (AHPL, Fig. 5(b))

can be built either by adding an anchor to HPL or by joining

two AHP with a shared anchor to support it:

LAHP =













p0

m1

ρ1

m2

ρ2













= [x0, y0, z0, u1, v1, w1, ρ1, u2, v2, w2, ρ2]
⊤ ∈ R

11

(44)

Transformation and pin-hole projection require the projec-

tion of the two support points u1 and u2, which are joined

into a homogeneous-points line, l = u1×u2. As before, this

can be rearranged as

l = KR⊤

(

(m1×m2)− (T− p0)×(ρ1m2 − ρ2m1)
)

(45)

where the same parallelisms that we highlighted between PL

and HPL can now be observed between APL and AHPL:

• The product (m1×m2) is identified with n.

• The term (ρ1m2 − ρ2m1) is identified with v.
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• Equations (38) and (45) are equivalent under these iden-

tifications.

Retro-projection and transformation resume to

LAHP =













T

RK−1u1

ρC

RK−1u2

ρC













, (46)

where ρC must be provided as prior.

E. Anchored modified-polar-points lines (AMPPL)

The anchored modified-polar-points line (AMPPL,

Fig. 5(c)) is coded by two AMPP that support it, which share

a common anchor:

LID =













p0

(ε1, α1)
ρ1

(ε2, α2)
ρ2













=
[

x0 y0 z0 ε1 α1 ρ1 ε2 α2 ρ2

]⊤
(47)

Transformation and projection resume to

l = KR⊤

(

(m∗

1×m∗

2)− (T− p0)×(ρ1m
∗

2 − ρ2m
∗

1)
)

(48)

where we used the shortcut m∗
i , m(εi, αi) which corre-

sponds to the trigonometric transform (16).

Retro-projection and transformation resume to

LAMP =













T

µ∗(RK−1u1)
ρC

µ∗(RK−1u2)
ρC













, (49)

where µ∗() is the trigonometric transform given in (19), and

ρC must be provided as prior.

F. Final comment - points and lines

We summarize in Table I all points and lines parametriza-

tions with their main manipulation expressions. On completion

of their descriptions we have seen a number of parallelisms

that should help building a coherent picture of the para-

metrizations suited for undelayed initialization in monocular

EKF-SLAM. We have summarized these relations in Fig. 6.

We have seen anchored and un-anchored representations. We

have seen the surprising similarities between homogeneous

points and Plücker lines. We have highlighted the parallelisms

between point-supported and Plücker-based lines. We have fi-

nally situated the modified-polar parametrizations as lightened

versions of homogeneous entities. The figure shows further

parametrizations that fall out of our interest – refer to the

discussion in Section VII for further justification.

HP

PL

HPL

AHP

APL

AHPL

AMPP

AMPPL

EP*

MPP*PP*

MPPLPPL

EPL

AMPLMPL*PL*

EL?

Figure 6. Links between all proposed parametrizations and more. Round
boxes are points; square boxes are lines. Single-stroke square boxes are
directly-coded lines. Double-stroke square boxes are point-supported lines.
Gray boxes are anchored parametrizations. Arrows indicate the links that we
established within the discourse. The dashed area encloses all parametrizations
benchmarked in this paper. Some other possible parametrizations, in thin
line, have not been studied here (there are some repeated acronyms): polar
point (PP, i.e., [ε, α, d]), modified-polar point (MPP, [ε, α, ρ]); the point-
supported Euclidean-points line (EPL, [x1, y1, z1, x2, y2, z2]), polar-points
line (PPL, [ε1, α1, d1, ε2, α2, d2]), and modified-polar-points line (MPPL);
and the directly-coded polar line (PL, [φ, ε, α, d]), modified-polar line (MPL,
[φ, ε, α, ρ]), and anchored modified-polar line (AMPL). There is no such
thing as a directly-coded Euclidean line (EL). Dashed-stroke elements do not
benefit from the inverse-distance property and are not suited for undelayed
initialization. Minimal parametrizations are marked with an asterisk.

IV. LANDMARK INITIALIZATION AND UPDATES

Undelayed landmark initialization in EKF-SLAM with par-

tial measurements (such as monocular measurements) mimics

the algorithm for full measurements and incorporates the

non-measured magnitudes as Gaussian priors. We first detail

the way we express physical measurements on the image

plane, and the way to define the non-measured priors. We

finally proceed with details on the initialization and updating

procedures related to the EKF-machinery. For the initialization

and updates of parameters not in the Kalman filter, such as

lines endpoints, please refer to Section IV-E.

A. 2D measurements in the image plane

The previous discourse assumed homogeneous parametri-

zations of points and lines in the image plane P
2. We detail

here how to obtain them from real point and line measurements

defined in the Euclidean pixels image.

• A point is measured as two Cartesian coordinates, and

modeled as a Gaussian variable. Please note that the

measurement corresponds to the mean value ū of the

distribution:

u =

[

u
v

]

∼ N{ū,U}. (50)

Its homogeneous counterpart is built with

u =

[

u

1

]

∼ N

{[

ū

1

]

,

[

U 0

0 0

]}

. (51)

• A bounded segment is measured as a 4-vector stacking

its two endpoints:

s =

[

u1

u2

]

∼ N{s̄,S} = N

{[

ū1

ū2

]

,

[

U 0

0 U

]}

(52)
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Table I
SUMMARY OF LANDMARK PARAMETRIZATIONS AND THEIR MAIN MANIPULATIONS

Lmk parameters size transformation + projection h() back-projection + transform g()

EP P = p 3 u = KR
⊤(p − T) p = tRK−1u + T

HP P = (m, ρ) 4 u = KR
⊤(m − Tρ) PH = p = H

„

K−1u

ρC

«

AHP P = (p0,m, ρ) 7 u = KR
⊤

`

m − (T − p0)ρ
´

PAH =

0

@

T

RK−1u

ρC

1

A

AMPP P = (p0, ε, α, ρ) 6 u = KR
⊤

`

m∗ − (T − p0)ρ
´

PAMP =

0

@

T

µ∗(RK−1u)
ρC

1

A

PL L = (n,v) 6 l = KR
⊤(n − T×v) LP = H

„

K−1l

Eβ

«

APL L = (p0,n,v) 9 l = KR
⊤

`

n − (T − p0)×v
´

LAP =

0

@

T

RK−1l

REβ

1

A

HPL L = (m1, ρ1,m2, ρ2) 8 l = KR
⊤

`

(m1×m2) − T×(m2ρ1 − m1ρ2)
´

LHP =

0

B

B

@

H

„

K−1u1
ρC

«

H

„

K−1u2
ρC

«

1

C

C

A

AHPL L = (p0,m1, ρ1,m2, ρ2) 11 l = KR
⊤

`

(m1×m2) − (T − p0)×(m2ρ1 − m1ρ2)
´

LAHP =

0

B

B

B

@

T

RK−1u1
ρC

RK−1u2
ρC

1

C

C

C

A

AMPPL L = (p0, ε1, α1, ρ1, ε2, α2, ρ2) 9 l = KR
⊤

`

(m∗
1×m∗

2) − (T − p0)×(m∗
2ρ1 − m∗

1ρ2)
´

LAMPP =

0

B

B

B

@

T

µ∗(RK−1u1)
ρC

µ∗(RK−1u2)
ρC

1

C

C

C

A

The segments homogeneous endpoints ui, used for in-

itialization of point-supported lines, are built like the

regular points (Eq. (51)). The homogeneous line, used

for initialization of Plücker lines, is built with

l = u1×u2 ∼ N{̄l,L} (53)

with

l̄ = ū1×ū2 (54)

L = [ū1]× U [ū1]
⊤

×
+ [ū2]× U [ū2]

⊤

×
. (55)

B. Defining the non-measured priors

The key advantage of the inverse-distance parameters is that

they allow the infinity range to be included in a Gaussian pdf

while at the same time allowing the observation functions to

be linear with respect to them.

Two basic rules apply to the definition of the prior, be it

ρC for points or βC for Plücker lines: the origin must be

well inside the 2σ support of the pdf, and the minimum

considered distance dmin must (approximately) match the

upper 2σ bound. For points and point-supported lines, this

resumes to (see Fig. 7)

ρ̄C − nσρ = 0, 0 ≤ n < 2 (56)

ρ̄C + 2σρ = 1/dmin. (57)

A good practice is to choose n = 1, although this choice is

not critical as it will be revealed by the benchmarking.

ρ

ρ̄
ρ =

K

d

ρ̄ = 0

ρ̄ + 2σρ

ρ̄− 2σρ

p(d)

ρ

p(ρ)

10dmin 20dmindmin

d

d

ρ

Figure 7. Inverse-distance pdf. A Gaussian p(ρ) = N (ρ− ρ̄, σ2
ρ) is defined

in inverse-distance (vertical axes). We have ample choice: in one extreme
(dashed) we may define it so that ρ̄ − 2σρ = 0; the other extreme (solid)
takes ρ̄ = 0. In all cases, we have (ρ̄+2σρ) = K/dmin. They result in pdfs

in distance (bottom) that cover from a minimal distance dmin to infinity. K
is just a proportionality constant, e.g. K = 1 for AMPP, and K = ‖K−1u‖
for AHP and HP. We can also normalize K−1u at initialization time and take
K = 1, in which case ρ is exactly equal to inverse-distance.

For Plücker lines is it a bit more tricky and unclear to be

written as straightforward equations like the ones above. We

prefer to refer the reader directly to Figs. 8 and 9. We use the

solution β ∼ N{β̄;B} in Fig. 8(b),

β̄ =

[

1/3dmin

0

]

, B =

[

(1/3dmin)2 0
0 (1/2dmin)2

]

(58)

C. Landmark initialization

Initialization with partial measurements mimics the regular

EKF-SLAM initialization algorithm with the addition of the
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β1

β2 2σβ

3σβ

1/dmin

β̄

(a) Isotropic Gaussian pdf with
line’s mean at infinity.

β1

β2

1/dmin

β̄

(b) Non-isotropic pdf penalizing
lines at negative depths.

Figure 8. Defining a pdf for β ∼ N{β̄;B}. (a) The isotropic Gaussian with
β̄ = (0, 0) and B = diag(σ2

β
, σ2
β
) contains all possible lines at a minimum

distance of dmin: it has central symmetry, it includes the origin which
represents the line at infinity, and dmin is at 2σ. For reference, a Gaussian
shape is superimposed on the horizontal axis to evaluate the probability values
at 2σ and 3σ. (b) An interesting alternative that penalizes lines at the back of
the camera is to approximate just the right-hand half of the pdf in (a) (here
dashed) by a new Gaussian. A good fit is obtained with β̄ = (1/3dmin, 0)
and an anisotropic covariance B = diag(σ2

β1
, σ2
β2

) with σβ1
= 1/3dmin

and σβ2
= 1/2dmin. See Fig. 9 for the result in inverse-β space.

-4 -3 -2 -1 0 1 2
-2

-1

0

1

2

FRONT

3

β∗

β∗

||β∗||2
β(2σ)

||β(2σ)||2

β(2σ) L∗

π
C

Figure 9. β and inverse-β planes. The inverse-distance application β →
D = β/‖β‖2 maps the interior of the 2σ ellipse of β defined in Fig. 8(b)

for dmin = 1 (black ellipse, noted here β(2σ)) to the exterior of the gray
shape (dashed area, extending to infinity). It is a funny curiosity that the figure
resembles the section of an eye looking in the correct direction. The minimal
distance in FRONT of the camera is well around 1, and lines on the back are
penalized with feebler probability. As an example, a value β∗ = (0.4, 0.2)
results in D∗ = β∗/‖β∗‖2 = (2, 1), which represents the line L∗.

non-measured DOF as the Gaussian priors just defined. Fig. 10

serves as a reference for all initialization algorithm variants.

1) Identify the mapped magnitudes x ∼ N{x̄,P}, where

x =

[

C
M

]

, x̄ =

[

C̄
M̄

]

, P =

[

PCC PCM

PMC PMM

]

,

with C = (T,Q) the camera frame and M =
(L1, . . . ,LN ) the set of mapped landmarks.

2) Identify the measurement,

• u ∼ N{ū,U} for points,

• s ∼ N{s̄,S} for line segments.

and convert it to the homogeneous space (Section IV-A).

3) Define a Gaussian prior for the non-measured DOFs

(Section IV-B),

• inverse-distance for points and for point-supported

lines, ρC ∼ N{ρ̄C , σ2
ρC}, see Fig. 7,

• Plücker parameters for Plücker-based lines, β ∼
N{β̄;B}, see Fig. 8.

Homogeneous 

line,

N(l,Λ)

2D segment

N(s,S)

Homogeneous 

endpoints, 

2 x ui

retro-project

Establish 

endpoints 

parameters

Define prior

N(β,B)

Homogeneous 

endpoints,

2 x N(ui,U)

Homogeneous 

point,

N(u,U)

Define prior

N(ρ,Ρ)

2D point

N(u,U)

retro-project, get 

Jacobians

Compute co- and 

cross-variances

Augment the map

Define priors

2 x N(ρ,Ρ)

Plücker?
YESNO

Figure 10. General initialization algorithm, valid for points (leftmost thread),
point-supported lines (center left), and Plücker-based lines (center right). The
right dashed thread is for segments endpoints.

4) Back-project the Gaussian measurement; get landmark

mean and Jacobians

P̄ = g(C̄, ū, ρ̄C)

GC =
dg

dC

∣

∣

∣

∣

C̄,ū,ρ̄C

,Gu =
dg

du

∣

∣

∣

∣

C̄,ū,ρ̄C

,Gρ =
dg

dρ

∣

∣

∣

∣

C̄,ū,ρ̄C

with P = g(C,u, ρC) (conversely L = g(C, s, β) or

L = g(C, s, ρC)) one of the back-projection functions

in Table I, with C = (T,Q), R = R(Q), u = [u⊤ 1]⊤,

s = [u⊤
1 u⊤

2 ]⊤, and l = u1 × u2.

5) Compute landmark co- and cross-variances

PPP = GCPCCG
⊤

C + GuSG⊤

u
+ Gρσ

2
ρCG

⊤

ρ

PPx = GCPCx

with PCx = [PCC PCM].
6) Augment the SLAM map

x̄←

[

x̄

P̄

]

, P←

[

P P⊤
Px

PPx PPP

]

.

D. Landmark updates

1) Point updates: Point updates follow the standard EKF-

SLAM formulation. The observation functions u = h(C,P)
are the composition of the homogeneous implementations h()
in Table I with the homogeneous-to-Euclidean transform u =
[u, v, w]⊤ → u = h2e(u) = [u/w, v/w]⊤, with covariance

U. In other words, we have h(•) , h2e(h(•)). We apply
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predicted line

l z1

z2

u2

u1

Figure 11. Plücker line observation update. Direct measurement of the
innovation z = (z1, z2) as the two signed orthogonal distances from the
detected endpoints to the expected (or predicted) line.

regular EKF:

z = u− h(x̄)
(

= u− h(C̄, P̄)
)

(59)

Z = H·P·H⊤ + U (60)

K = P·H⊤ ·Z−1 (61)

x̄ ← x̄ + K·z (62)

P ← P−K·H·P (= P−K·Z·K⊤), (63)

with H = ∂h
∂x

∣

∣

x̄
.

2) Line updates: It is convenient to represent the matched

segment by its two endpoints, s = (u1,u2) ∈ R
4, with

covariance S = diag(U,U). Due to the aperture problem,

only the measurement components that are orthogonal to the

expected line projection can be used for correction. Therefore,

we define the innovation as a 2-vector containing the signed

orthogonal distances from the endpoints ui to the expected

line l̄ = h(C̄, x̄) (Fig. 11). The signed distance z from a point

u = (u, v, 1) to a line l = (l1, l2, l3) is given by

z = l⊤ ·u/
√

l 2
1 + l 2

2 ,

so the innovation vector is

z =

[

z1

z2

]

=

[

l̄⊤ ·u1/
√

l̄ 2
1 + l̄ 2

2

l̄⊤ ·u2/
√

l̄ 2
1 + l̄ 2

2

]

∈ R
2. (64)

The above expression reveals the fact that the innovation

can no longer be obtained from the subtraction z = s− h(x̄)
we are familiar with in EKF, like in (59), but from a non-

linear function z = j(x̄, s). This function is obtained by

composing line transformation and projection (in Table I) and

the innovation measurements (64). The result is a somewhat

complicated expression with a generic form

z = j(x̄, s) = j(C̄, L̄, s),

where C̄ and L̄ are the camera and line estimates from the map

x̄, and s is the measurement vector. One detail that is worth

noticing is the sign change in the Jacobians with respect to the

habitual, explicit EKF innovation definition j(x̄, s) = s−h(x̄).
It is clear that ∂j

∂x
= −∂h

∂x
. With this sign change and the non-

trivial contribution of s in the innovation, the EKF correction

equations have to be modified accordingly,

Z = Jx ·P·J
⊤

x
+ Js ·S·J

⊤

s
(65)

K = −P·J⊤

x
·Z−1 (66)

x̄ ← x̄ + K·z (67)

P ← P + K·Jx ·P (= P−K·Z·K⊤), (68)

t1

t2

L

p
2

p
1

q

p
0

p
i
= q + ti

v

||v||

0

Figure 12. Segment endpoints in the local ordinate frame of Plücker-based
lines PL and APL. The closest point q to the anchor is the local origin, and
the unit length and positive orientation are defined by a normalized director
vector u = v/‖v‖. The endpoint pi is coded by the scalar abscissa ti,
satisfying pi = q + tiv/‖v‖. Only the abscissas ti are stored.

t1
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1
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2
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1
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1

p
i
= (1 − ti)q1 + tiq2

Figure 13. Segment endpoints in the local ordinate frame of point-defined
lines HL, AHL and AMPL. The line is supported by two points qi = p0 +
mi/ρi. The local frame has its origin at q1 and the unit length and positive
orientation are defined by q2 − q1. The endpoint pi is coded by the scalar
abscissa ti, satisfying pi = (1 − ti)q1 + tiq2. Only the abscissas ti are
stored.

with Jx = ∂z

∂x
and Js = ∂z

∂s
. An equivalent solution that

permits reusing existing EKF code is to define H = −Jx and

R = JsSJ⊤
s

, and apply the regular EKF equations (59–63)

with the Jacobian H and the new measurement noise R.3

We do not apply any kind of correction to enforce the

Plücker constraint. We applied it at initialization time and

its validity is only approximately guaranteed through cross-

correlations. Refer to Section VII for further discussion.

E. Segment endpoints

The line’s endpoints in 3D space are maintained out of the

filter via two abscissas defined in the local 1D reference frame

of the line. In Plücker-based lines (Fig. 12) the local frame

is defined by a single axis with the origin at the point q =
p0 + (v×n)/‖v‖2, the closest to the anchor, and the director

vector u = v/‖v‖ providing the unit length. The endpoint pi

is specified by an abscissa ti such that

pi = q + tiv/‖v‖. (69)

In point-supported lines (Fig. 13) the endpoints are defined

with respect to the support points qi,

qi = p0 + mi/ρi. (70)

The origin is at q1 and the unit length defined by q2 − q1,

leading to the endpoints expression

3It is handy to realize that Js is such that, if the pixel noise is isotropic,
U = σ2I2, we have S = diag(U,U) = σ2I4, and then R = JsSJ⊤

s
=

σ2I2 = U.
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Figure 14. The three general strategies for updating 3D segment endpoints.
(a) Endpoints are defined at initialization time and never updated. (b)
Endpoints are systematically updated according to the current observation.
(c) Endpoints are updated only if this lengthens the 3D segment.

pi = (1− ti)q1 + tiq2, (71)

so that the initial abscissas are

(t1, t2) = (0, 1). (72)

The endpoints are updated according to a different rule

depending on the line having already converged or not. This

is because, in an undelayed approach, the line estimates

vary enormously (as much as from infinity to some close

distance), and the abscissas are not stable upon large line

modifications. This is especially dramatic in Plücker-based

lines because of the high dependence of the local origin q

on the line’s orientation (refer to Section VII for further dis-

cussion). For convenience, we considered the line converged

at the moment when it is ready for re-parametrization (see

Section IV-F). Before this happens the abscissas are either not

updated (Fig. 14(a)), thus reflecting the initial observation, or

systematically updated (Fig. 14(b)), simply reflecting the last

observation. Once the line has converged an extending-only

policy is applied (Fig. 14(c)): the abscissa is updated only

if this lengthens the 3D segment. The algebra expressing the

current endpoints projection onto the line is of no relevant

interest for the purposes of this work, and is not included

here for space reasons. As a reference, an example valid for

PL can be found in [30].

F. Landmark re-parametrization

The necessary over-parametrization need only be main-

tained during the period of convergence, while the landmark

keeps some of its DOF at high uncertainty levels. After this

period it is convenient for computational reasons to switch

to cheaper representations. One can choose any minimal or

quasi-minimal representation, in a trade-off between econ-

omy of resources and representational power. For points, the

natural choice is the minimal Euclidean parametrization EP

[9]. For lines, and because of the need of endpoints, we feel

convenient to choose a non-minimal two-points representation

L = (p1,p2) with 6 parameters (the Euclidean-points line

EPL, see Fig. 6 – the minimal representations for 3D lines

are of size 4). The reparametrization is performed when the

linearity test of the destination representation is passed [9]. See

Section V-A for details on the linearity measures and tests.

Landmark re-parametrization requires a passage function

L′ = k(L) and its Jacobian ∂L′/∂L|L̄. It is performed

in the standard Gaussian propagation fashion just taking

care of deleting or de-activating the unused states after re-

parametrization. Some of these k() functions can be found

in this paper, e.g. (3) or (11) for points. For lines, and we

refer now to Section IV-E and Figs. 12–13, we have two

options. One option is to take the current endpoints pi (i.e.,

LEPL = (p1,p2) using (69) or (71)) and reset the abscissas

pair to the value (0, 1). The other option is to recover the

previously existing support points qi (i.e., LEPL = (q1,q2)
using (70)) and keep the abscissas at their current value

(t1, t2).

V. ANALYSIS

A. Analytical measure of linearity

Consider the transformation plus pinhole projection func-

tions in Table I: u = h(C,P) for points and l = h(C,L)
for lines. Compose them with the appropriate innovation

functions: z = y − h(C,P) for points and (64) for lines, to

obtain the generic innovation functions z = j(C,L,y). For

concision, let us indistinctly denote landmark parameters by

L, and define the state x = (C,L). Let us further consider the

measurement y as a given magnitude acting as a parameter and

drop it from the notation. In what is to follow, we write simply

z = j(x) to mean z = j(C,L,y), with z the innovation and

x the state. Let us finally note m = dim(z) and n = dim(x)
—in our case we have m = 2, and 10 ≤ n ≤ 18 depending

on the selected parametrization.

We are interested in analyzing the linearity of j(x) inside

the region of high probability of x described by the Gaussian

N{x̄;P}. For linear functions, the Jacobian matrix J = ∂j
∂x

is constant for all x. For non-linear functions, the Jacobian

matrix depends on the particular evaluation point x∗, i.e.,

J(x∗) =
∂j

∂x

∣

∣

∣

∣

x∗

∈ R
m×n. (73)

Assuming our function j() is reasonably linear inside the

probability region, which is after all a requisite for the Ex-

tended Kalman Filter to operate properly, the Jacobian can be

well approximated in the vicinity of the mean x̄ by the Taylor

series truncated at the linear terms,

J(x̄ + ∆x) ≈ J(x̄) + H(x̄)·∆x , (74)

with ∆x , x− x̄ and where

H(x̄) ,
∂J

∂x

∣

∣

∣

∣

x̄

=
∂2j

∂x2

∣

∣

∣

∣

x̄

∈ R
m×n×n (75)

is the Hessian tensor of j() evaluated at the mean x̄.

Let us refer to the second term in (74) with the matrix

∆J , H(x̄)·∆x ∈ R
m×n , (76)

defined as (the linear approximation of) the error in the Jaco-

bian due to the state error ∆x. It is computed as the product

of the tensor H, with components Hijk, times the vector ∆x

with components ∆xk, giving the matrix ∆J with components

∆Jij =
∑n

k=1 Hijk·∆xk. The Einstein Summation Convention

(ESC) [31] allows us to not write the summation signs each

time a given index (i, j or k) appears twice, yielding a practical

scalar expression for each component,

∆Jij = Hijk∆xk. (77)



14

The error ∆x is obviously unknown but we dispose in the

SLAM map of its covariances matrix P , E[∆x · ∆x⊤],
with E[•] the expectation operator. We may incorporate this

knowledge to our measure by constructing the matrix

Q , E[∆J·∆J⊤] ∈ R
m×m , (78)

which we can develop in terms of H and P using the ESC,

Qij = E[∆Jik∆Jjk]

= E[Hikl∆xlHjkm∆xm]

= HiklE[∆xl∆xm]Hjkm

= HiklPlmHjkm , (79)

leading to4

Q =
n

∑

k=1

Hk ·P·H
⊤

k , (80)

where the n×m matrices Hk , ∂J

∂xk

= ∂
∂xk

∂j
∂x

are the n slices

of the tensor H. We note this with Hk = [Hij ]k.

The matrix Q may be viewed as the error in linearity

relative to (or normalized by) the shape and dimensions of

the uncertainty region. It has the following properties:

1) It is symmetric and nonnegative.

2) It has a fixed and compact size m×m independent of

the state dimension n.

3) It is exactly zero for linear functions (H = 0) or for

particle distributions (P = 0, immune to non-linearity).

4) It grows when either H or P grow.

For all these reasons, Q is very pertinent for evaluating the

fitness of j() in EKF. In order to obtain a scalar index, we

define the ultimate linearity index L as a convenient norm of

Q, i.e.,

L = ‖Q‖ ∈ R
+. (81)

We use the Frobenius norm ‖Q‖F ,
√

∑

ij |qij |2, which

being Q symmetric with m = 2 yields the scalar linearity

index

L =
√

|q11|2 + 2|q12|2 + |q22|2. (82)

The index L is zero for functions showing a linear behavior

inside the probability region, and positively increasing as

the validity of this hypothesis vanishes. As an example, we

illustrate in Fig. 15 the fitness of this index for a 2-input, 1-

output function. Observe that the function is the same but the

evaluation region changes position (the evaluation point x̄) and

dimensions (the covariance P), greatly affecting the linearity

index.

B. Statistical consistency analysis

Here we follow [26], which is in turn based on [25, pp. 234–

235]. We analyze filter consistency using the normalized

estimation error squared (NEES). When ground truth about

4To obtain (80) we can also use Kronecker expansions of the tensors into
planar matrices, write ∆J = H·∆x = [H1, · · · ,Hk, · · · ,Hn]·(In ⊗ x),
and inject it in (78), using the Kronecker product ⊗ properties to conclude
on the same result.
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(d) L = 1.5263

Figure 15. Linearity index L of the MISO function z = f(x, y) = x·sin(y)
for different probability regions. We illustrate the projection (thick black) of
the 2-sigma elliptical bound of the probability region (thin black) onto the
surface S = {(x, y, z) s.t. z = f(x, y)} (mesh). The more elliptic the
projected shape, the more linear is the function and smaller the index L.
(a) A tiny probability region gives good linearity and a very small index.
(b) A large probability region usually obliges the ellipse to bend over the
surface, meaning high non-linearity and resulting in a large index. (c) If such
a large ellipse falls on a planar region of the surface, the index drops to show
good linearity. (d) An extreme case of very high non-linearity.

a variable xk is known, the NEES of its estimate N{x̂k,Pk}
at each time k can be defined by

ǫk = (xk − x̂k)⊤P−1
k (xk − x̂k). (83)

Under the hypothesis of consistent filtering of a linear-

Gaussian system, ǫk obeys a χ2 (chi-square) distribution with

dim(xk) DOF, noted χ2
dim(x), whose expectation over an

increasing number of runs converges to the state dimension,

E[ǫk] = dim(xk). Then, the linear-Gaussian hypothesis can be

statistically evaluated by means of a χ2 acceptance test over

a set of N <∞ Monte-Carlo runs.

Given N Monte-Carlo runs,
∑N

i=1 ǫik obeys a χ2
N dim(x)

distribution. The bounds of the double-sided 95% probability

concentration region are given by the χ2
N dim(x) values corre-

sponding to tail probabilities of 2.5% and 97.5%.

For practical reasons and because the full SLAM state

vector is of varying size, we restrict our analysis to the state

variables representing the robot (or sensor) pose, hoping that

consistent localization leads to consistent mapping. For 6-DOF

SLAM and 25 runs, we have dim(x) = 6 and N = 25, with

which the lower and upper bounds are computed,

ν = χ2
(25×6)(1− 0.025) = 117.985

ν = χ2
(25×6)(1− 0.975) = 185.800.

The 6-vector pose xk and covariance Pk are computed from

our 7-vector pose Ck ∼ N{Ck,PCCk} via a classical uncer-

tainty propagation using the Jacobians of the passage function
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(the 3-DOF orientation can be chosen to be expressed with

the Euler angles or with the rotation vector). The NEES value

(83) is computed in this 6-space.

The average NEES is defined as

ǭk ,
1

N

N
∑

i=1

ǫik. (84)

We compare the average NEES against ǫ = ν/N = 4.719 and

ǫ = ν/N = 7.432. If the average NEES is below the lower

bound for some significant amount of time (more than 2.5%

of the time), the filter is conservative. If it is above the upper

bound (also by more that 2.5%), the filter is optimistic and

therefore inconsistent.

VI. RESULTS

A. Software and SLAM algorithm

We have made available the software used for simulations

[32]. It consists in a 6-DOF EKF-SLAM system written in

MATLAB R©, with simulation and 3D graphics capabilities.

The algorithm is organized as an active-search-based SLAM

[33], which allows us to optimize information gain with a

limited number of updates per frame. At each frame, we

perform updates to the 10 most informative landmarks. We

also attempt to initialize one landmark per frame. Unstable

and inconsistent landmarks are deleted from the map to avoid

map overpopulation and corruption.

B. Points

We benchmark HP, AHP and AMPP using the same simu-

lated scenario, the same software and the same seeds for the

random generator. We start with a description of the simulation

conditions, then proceed with the results of the (analytical)

linearity and (statistical) consistency analyses.

1) Simulated scenario: We simulate a robot performing

a circular trajectory in an area of 12m× 12m, populated

with 72 landmarks forming a cloister (Fig. 16). The robot

receives noisy control inputs which are used for the prediction

stage of the EKF, fixing the scale factor. One noisy image

per control step is gathered with a single camera heading

forward. Two sets of parameters have been used for the tests

(the nominal and perturbation levels of all these magnitudes,

together with the inverse-distance priors used, are all sum-

marized in Table II). In the first set, the robot makes two

turns to the cloister (800 frames are processed). The second

set uses smaller odometry increments and perturbations, and

the trajectory is limited to one quarter of a turn (200 frames).

2) Linearity measures: The analysis of the linearity in-

dex proposed in section V-A, displayed in figures 17(a) to

17(c), confirms the results from the consistency analysis. The

linearity index has been computed for each measured point

in the above experiments and for the three parametrizations

of interest: HP, AMPP and AHP. Fig. 17(a) shows that, in

every frame, there are always more features showing lower

linearity index –and hence higher degree of linearity– when

coded as AMPP instead of HP and vice versa. The reason, as

previously mentioned, is that setting an anchor only propagates
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Figure 16. Simulated 3D environment for benchmarking 3 point parametri-
zations.

Table II
SIMULATION PARAMETERS FOR THE POINTS SIMULATIONS

Concept Param. Set 1 Set 2

Pose step (∆X,∆ψ) (8cm, 0.9◦) (4cm, 0.45◦)

Lin. noise (σX , σY , σZ) 1cm 0.5cm

Ang. noise (σφ, σθ, σψ) 0.1◦ 0.05◦

Img. size 640×480 pix

Focal (αu, αv) 320 pix, FOV = 90◦

Pix. noise σu 1 pix

ρC prior (ρ̄C , σρC ) (0.01, 0.5) m−1 id. + (1, 1) m−1

the camera uncertainty from the anchor to the current location,

while HP propagates a wider uncertainty with respect to a

world reference frame.

Fig. 17(b) analyses the linearity index for AMPP and

AHP parametrizations. The extra non-linearities introduced

by the computation of trigonometric functions from azimuth-

elevation angles to direction ray translates in a large number

of features showing higher degree of linearity when coded in

AHP instead of AMPP.

Fig. 17(c) confirms the superiority of AHP and the non-

suitability of HP by showing an even wider advantage of AHP

with respect to HP than those showed in the previous plots.

3) Consistency analysis: We provide an accompanying

video showing the three methods running in parallel. The

differences in behavior are not easily visible in the 3D movies,

and we need to zoom in to appreciate incorrect operation

(Fig. 18: AMPP and HP estimate too small covariances).

However, their NEES behavior is radically different (Fig. 19,

please note the logarithmic vertical scales):

• HP behaves poorly. Of the 25 runs, one diverged, and

35 landmarks had to be deleted due to inconsistent

observations (22 of which during the divergent run).

• AHP behaves consistently, certainly with a slight ten-

dency to inconsistency, until shortly after the first loop

closure. During the second turn the filter is inconsistent

but it does not seem to degrade too quickly. No landmarks

were declared inconsistent.

• AMPP shows better performance than HP but also es-

capes consistency very quickly. No run diverged but

inconsistent observations triggered landmark deletion in

two occasions.

We tuned the algorithms with the second set of parameters

in order to improve linearity: odometry steps and noise are
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(c) AHP outperforms HP

Figure 17. Bi-lateral comparisons of the linearity index for HP, AHP and
AMPP. Each plot shows, at each frame, the number of landmarks of one type
showing lower linearity index (better linearity) than the other type, and vice
versa.
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Figure 18. 3D view of some landmark 3σ estimates at the end of the first
loop. Inconsistency comes from covariance overestimation rather than mean
errors. See the accompanying video.

cut in half, and the filter is bootstrapped with 10 landmarks

being initialized at the first frame. Here, we focus on the first

quarter of the first loop (1/8 of the first run’s length) to see

the moment when the filters loose consistency. The results in

Fig. 20 show no significant improvement with respect to those

of Set 1 (these 200 frames correspond to the first 100 frames

of Set 1, which have been boxed in Fig. 19): HP is just not

good, AMPP starts fine but only keeps track until frame 50,

and AHP is again the only one to behave consistently.

A third test consisted in selecting a different prior for the

unmeasurable inverse-distance. The gray superimposed plots

in Fig. 20 show that AMPP and AHP are not very sensitive to
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Figure 19. Consistency of HP, AMPP and AHP. Average NEES of the 6-
DOF vehicle pose [x, y, z, φ, θ, ψ]⊤ over 25 runs for 800 frames (2 turns) and
parameters of Set 1. The dotted horizontal band between abscissas ǫ = 4.719
and ǫ = 7.432 mark the 95% consistency region: the filter is consistent if the
average NEES is inside this band. The vertical line marks the loop closure at
frame 308. The framed area corresponds to the area covered by Fig. 20.
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Figure 20. Consistency of HP, AMPP and AHP. Average NEES over 25 runs
for 200 frames (1/4 turn) with parameters of Set 2 and 10 initializations in the
first frame. Thick gray: initialization with an alternative prior (ρ̄, σρ) = (1, 1).

large variations of these parameters, while the contrary must

be said for HP. It seems, even if for AHP and AMPP the

difference is small, that the filter behaves better with landmarks

initialized at (or close to) infinity (ρ̄C = 0.01m−1) than at

some close distance (ρ̄C = 1m−1).

C. Lines

We benchmark PL, APL, HPL, AHPL and AMPPL for

NEES consistency. The first scenario (shown in Fig. 21)

consists of a robot making a turn around a wireframe model

of a house. 400 frames are processed. The camera is looking

sideways to the house and there is no loop closure. The simu-

lation parameters in terms of sensor calibration and odometry

noise levels are equivalent to the ones we used for points.

The results are shown in Fig. 22. Notice that we have used

logarithmic axes to be able to fit all curves in one single plot.

The second scenario corresponds to a frontal trajectory, a

situation that is more challenging for monocular SLAM as

the scene observability becomes weaker. The camera looks

forward and the robot performs an arc of a circle towards

the house. The sequence is stopped after 100 frames when

the robot is actually inside the house and no more segments

are in the field of view. In this case we just show results
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Figure 21. Simulated 3D environment for benchmarking 5 line parametri-
zations.
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Figure 22. Consistency of PL, APL, HPL, AHPL and AMPPL. Average
NEES over 25 runs for 400 frames (one turn around the house). Plücker-
based lines (PL and APL) do not behave consistently, even when anchored.
Lines based on homogeneous points (HPL) neither, as expected from the
HP behavior. Anchored point-supported lines (AHPL and AMPPL) behave
similarly and close to consistency.

for the two winning parametrizations (Fig. 23), namely AHPL

and AMPPL. The rest are clearly inconsistent, and in fact

the results are pretty much the same as in the first scenario

(compare to the two lower plots in Fig. 22).

VII. DISCUSSION

A. Anchors and non re-measurable states

We have shown in this paper the benefits of anchoring

landmarks as a way to improve linearity and therefore EKF

performance. Here we give some more insight to the subject.
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Figure 23. Average NEES over 25 runs for 100 frames (frontal trajectory).
Again, only anchored point-supported lines behave close to consistency.

The anchor constitutes a part of the SLAM state that is not

directly re-measurable. In this regard, it stays in the map like

any other landmark that is not being measured. Importantly, as

long as the filter is run under conditions of sufficient linearity,

the anchor benefits from the ability of fully-correlated SLAM

to keep non-measured states up-to-date and consistent with

their neighbors. This is particularly interesting during loop

closures where estimates may vary abruptly after one single

EKF update.

The anchor also allows the observation function to operate

at a reduced uncertainty level, allowing higher linearity as we

have seen in Section V-A. We illustrate this in very general

terms. Consider that, due to motion, an uncertainty ∆P is

added to the sensor position T over a period of time ∆t. If

the position covariance at initialization time t0 is P0, at a

later observation time t1 = t0 + ∆t we have P1 = P0 +
∆P. For observations shortly after initialization, we have ∆t
small and ∆P << P0. Now consider the general forms of

the observation functions (see Table I) of one un-anchored

landmark Lu = (Au, bu) and one anchored landmark La =
(p0, Aa, ba),

yu = KR⊤(Au − Tbu) (85)

ya = KR⊤(Aa − (T− p0)ba) . (86)

The first function (un-anchored) works with the uncertainty

level of T, which is P1. The terms Au and bu had been

composed with P0 at initialization time t0, via some Jaco-

bian matrices computed at inaccurate estimates and therefore

containing linearization errors. Due to cross-correlations, the

two contributions come actually close to cancellation and the

uncertainty in the innovation space is theoretically close to

that produced by just ∆P, but the linearization errors are

unrecoverable. The second function (anchored) works with

the uncertainty of (T − p0) which is ∆P << P1. This

is directly mapped to the innovation space. The terms Aa

and ba are correlated to the rest of the map only through

the anchor p0, which appears explicitly in the formula. This

anchor was established at initialization time via p0 = T(t0),
i.e., without linearization errors. The EKF update is free from

the linearization errors of the translational composition above.

A possible way to get rid also of the errors due to the rotational

composition is suggested next.

B. Anchored landmarks versus robocentric SLAM

An interesting alternative to the algorithm here bench-

marked is robocentric SLAM [11], [22], [34]. Robocentric

SLAM adds a step to the estimation loop, as follows:

1) Motion prediction with f() (not described in this work).

2) Landmark observations with h(), innovation with j(),
EKF correction, and re-parametrization with k().

3) Map transformation to robot frame with m() (not de-

scribed in this work).

4) Landmark initialization with g().

Item 3 above has the consequence of making the robot

pose to be the origin at every step. This has interesting

implications. For what matters here, we notice that the robot

position becomes T ≡ 0, with null covariance. Therefore, at
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initialization time (Step 4), we have that the anchor to generate

is p0 = T = 0. We can then drop it from the parametrization,

obtaining, in e.g. the AHP case, simple homogeneous points

HP – this is exactly the work presented in [11]. In any case

(HP, HPL or PL), robocentric SLAM will achieve the linearity

levels of anchored parametrizations (and probably improve on

them because also the rotational part and its covariance are

set to zero) at lower parametrization costs. The price to pay

is the cost of Step 3 which is quadratic with the map size.

C. The Plücker constraint

We have seen that for a pair (n,v) to be a Plücker line the

Plücker constraint n ⊥ v is mandatory. We have ensured its

satisfaction at initialization time, but we have not enforced

it further during landmark updates. The reason is that we

did not find a clean and convincing method for doing so in

the EKF framework. Enforcing equality constraints (i.e., with

infinite information) in EKF has the consequence of producing

singular covariances matrices. The directions of the state space

being affected by this singularity become blocked and no more

evolution on them can be expected. If the constraint could

be applied exactly, and if our system were linear, this would

create a lifelong guarantee of the constraint satisfaction. But

due to linearization errors, the produced singularity is not

exactly at the right point (i.e., the eigenvector corresponding

to the null singular value does not have the correct direction).

This problem has been treated in [30] for the Plücker lines

using the smoothly constrained Kalman Filter [35]. The idea

is to apply a number of relaxed constraints (with gradually

increasing information) to make the filter converge to the true

constraint. This method requires several tuning parameters

and, as mentioned, we do not feel the solution to be very

elegant.

This neglected step might very well be at the base of the

poor consistency results of APL. We have not investigated the

validity of this hypothesis.

D. Endpoints in Plücker-based and point-supported lines

The methods described here for endpoint management re-

quire some information to be stored out of the map. We

limited this to two abscissas. Plücker lines condensate all the

information of the initial observation to the plane normal, via

n = m1×m2, and any information on the endpoints’ initial

view is lost. The two abscissas representation is very limited

for Plücker lines: the origin moves with the line orientation and

the segment length does not change upon distance variations.

During the initial convergence phase, the only reasonable

strategy for managing endpoints is to reset them at each frame

using the current observation (Fig. 14(b)), potentially losing

information about the segment extension observed in previous

frames.

Anchored, point-supported line parametrizations, instead,

have the ability to respect the initial view of the two segment

endpoints via the anchor p0 and the two director vectors

(m1,m2). Because of this higher representativeness of point-

supported lines, and because of the absence of constraints,

we consider point-supported lines preferable to Plücker-based

lines for undelayed monocular SLAM. The additional cost is

marginal (size 11 instead of 9) and needs to be paid only

during the convergence phase.

E. Modified Polar Coordinates

We notice here that the AMPP’s un-anchored counterpart,

Modified Polar Point (MPP – refer to Fig. 6), not studied in this

paper, had already been treated in the 80’s in the bearing-only

tracking literature with similar problematic and justification

[36], where it was referred to as Modified Polar Coordinates

(MPC). Its use in monocular EKF-SLAM is not recommended:

it presents a singularity at the origin, and if we draw the

correct conclusions from the present paper, it should behave

even worse than HP, as it happens to AMPP with respect to

AHP. The same thing happens if we try to use MPC for lines.

VIII. CONCLUSION
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[28] J. Solà, T. Vidal-Calleja, and M. Devy, “Undelayed initialization of line

segments in monocular SLAM,” in IEEE/RSJ Int. Conf. on Intelligent

Robots and Systems, Saint Louis, USA, Oct. 2009, pp. 1553–1558.
[29] A. Bartoli and P. Sturm, “The 3D line motion matrix and alignment

of line reconstructions,” in IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, vol. 1, 2001, pp. 287–292.
[30] T. Lemaire and S. Lacroix, “Monocular-vision based SLAM using line

segments,” in IEEE Int. Conf. on Robotics and Automation, Rome, Italy,
2007, pp. 2791–2796.

[31] A. Einstein, The Foundation of the General Theory of Relativity.
Annalen der Physik, 1916, English translation. [Online]. Available:
http://www.alberteinstein.info/gallery/gtext3.html
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