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Abstract:  

In many signal processing applications it is beneficial to 
use polynomial-based interpolation filters for sampling 
rate conversion. Actual implementations of these filters 
can be performed effectively by using the Farrow 
structure or its modifications. In the literature, several 
design methods have been proposed. However, 
estimation formulae for the number of polynomial-
segments defining the finite length of the underlying 
continuous-time filter impulse response and the order of 
polynomials have not been known. This contribution 
presents estimation formulae for the length and the 
polynomial order of polynomial-based filters for various 
types of requirements. The formulae presented here can 
save time in designing, since they provide good starting 
values of length and order for a given set of 
requirements. 

1. Introduction 

In many signal processing applications it is required to 
determine signal samples at arbitrary positions between 
existing samples of a discrete-time signal. In these cases, 
it is beneficial to use polynomial-based interpolation 
filters. For these filters, an efficient overall 
implementation can be achieved by using a continuous-
time impulse response ha(t) having the following 
properties [1], [2]; First, ha(t) is nonzero only in a finite 
interval 0≤t<NT with N being an integer. Second, in each 
subinterval nT≤t<(n+1)T, for n=0, …, N−1, ha(t) is 
expressible as a polynomial of t of a given (low) order 
M. Third, ha(t) is symmetric with respect to t = NT/2 to 
guarantee phase linearity of the resulting overall system. 
The length of polynomial segments, T, can be selected to 
be equal to the input Tin or output Tout sampling interval, 
a fraction of the input or output sampling interval, or an 
integer multiple of the input or output sampling interval. 
The advantage of the above system lies in the fact that 
the actual implementation can be efficiently performed 
by using the Farrow structure [3] or its modifications [4], 
[5].  
In the literature, several design methods have been 
proposed [1], [2], [4]. However, estimation formulae for 
the number N of polynomial-segments and the order M 
of polynomial have not been known. This contribution 
presents the missing estimation formulae for the length N 

and polynomial order M for various types of 
requirements. The formulae presented subsequently can 
save time for the filter designers, because they get 
suitable starting values for N and M that can be used for 
the given set of requirements. The formulae can also be 
used to estimate implementation costs of Farrow filter as 
subsystem of general sampling rate converters, for 
example, in optimal factorization of multistage 
decimation (interpolation). 

2. Polynomial-based filters  

As it has been originally suggested in [1], [2] when 
deriving the modified Farrow structure for interpolation, 
it is beneficial to construct ha(t) as follows: 
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where the number of polynomial segments N is an 
integer. The basis functions fm(n, T, t), as defined in [1], 
are given by 
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where the common polynomial order of all segments is 
M. The coefficients cm(n) are the adjustable parameters 
being related to each other by 
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for n = 0, 1,…, N−1, as consequence of the symmetry 
properties required above. The resulting ha(t) is 
characterized by the following properties: (i) ha(t) is 
nonzero for 0≤ t < NT and zero elsewhere; (ii) in each 
subinterval nT ≤ t < (n +1)T for n = 0 , …, N−1, ha(t) is 
expressed as a polynomial of degree M; (iii) ha(t) is 
symmetric about t = NT/2, that is, ha(NT−t) = ha(t) .  
Based on Property (iii), it is guaranteed that the resulting 
overall system has a linear phase, a very attractive 
property for many applications. Furthermore, the 
generation of the above ha(t) guarantees that, in the 
frequency domain, the zero-phase frequency response, 
when omitting the linear-phase term, is expressible as 
(see [1] for details) 
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where Gm(n, T, f ) is the Fourier transform of  
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Since the above approximating function is linear with 
respect to the unknown coefficients cm(n), it enables one 
to optimize the overall filter to meet the given criteria in 
a manner similar to that used for synthesizing various 
types of linear-phase FIR filters [6]. In the above, T, the 
length of the polynomial segments, can be used to define 
different implementation structures as discussed in [4], 
[5]. As seen in [4], [5], T can be chosen as T = βTin or T = 

βTout, where β  is unity, an integer, or one divided by an 
integer. The selection depends on whether decimation or 
interpolation is under consideration, and on the structural 
needs for efficient implementation. The actual 
implementation can be efficiently performed by using the 
Farrow structure [3] or its modifications [4], [5].  
For all these structure the number of fixed coefficients 
depends on the number N of polynomial segments and 
the order M of the polynomial in each segment. The total 
number of multipliers, exploiting the symmetry 
properties of (3), is given by  
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For the purpose of illustration, the modified Farrow 
structure [1] is used with T=Tin. It should be pointed out 
that, in a practical realization, the coefficients’ symmetry 
of the FIR branches will be exploited, and a single delay 
line can be shared with all branches.  

3. Review of minimax design method 

This section reviews minimax design method of 
polynomial-based filters of arbitrary length and order, as 
presented in [1], [2], for which we estimate N and M. 
To this end, we assume a lowpass signal x(n)↔X(ejΩin). 
Its sampling rate Fin=1/Tin shall be converted by an 
arbitrary ration according to Fout=RFin yielding 
y(l)↔Y(ejΩout). In case of R>1 (R<1) the system realizes 
interpolation (decimation). The ultimate aim is to 
determine a continuous-time, finite-length impulse 
response ha(t) of the sampling rate conversion system 
such that the Fourier transform of ha(t) meets following 
requirements [4] , [7]: 
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where  
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In all three cases, the signal is preserved according to the 
given tolerance in the passband region [0, fp]. 
Furthermore, the aliasing components are attenuated in 
the defined manner. In Case A, all components aliasing 
into the baseband [0, F/2] are attenuated. In Case B, all 

components aliasing into the passband [0, fp] are 
attenuated, but aliasing is allowed in the transition band 
[fp, F/2]. In Case C, aliasing into the transition band [fp, 
F/2] is allowed only from the band [F/2, F+fp]. In the 
above discussion and in (7) and (8) F stands for Fout in a 
decimation case, and Fin in an interpolation case. 
The minimax optimization method introduced in [1], [2] 
is probably the most convenient and the most flexible 
solution for designing polynomial-based interpolation 
filters:  
Minimax Optimization Problem: Given N, M, and a 
compact subset Φ ⊂ [0,∞)  as well as a desired function 
D( f ) being continuous for f ∈ Φ  and a weight function 
W( f ) being positive for f ∈ Φ , find the (M +1)N/2 
unknown coefficients cm(n) to minimize 
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subject to the given time-domain conditions of ha(t). 
Here, Ha( f  ) is the real-valued frequency response and 
D(f ) is the desired function according to specifications. 
(For details refer to [2]). The design procedure has been 
generalized, and modified for optimization of prolonged 
and transposed prolonged polynomial-based filters [4].  
The minimax design method has several design 
parameters. First of all, the design parameters include 
passband and stopband regions Φp and Φs. The desired 
filter may have several passbands and stopbands as 
stated in [2]. Next, the minimum stopband attenuation δs, 
and maximum allowable passband ripple δp are also 
included. Other design parameters are the number of 
polynomial segments N and the order M of the 
polynomial, which determine the number of multipliers 
in the overall structure, see (6). Finally, some weighting 
function can be used to give different weights to 
passband and stopband [2]. Hence we give estimation 
formulae for the number N of polynomial segments and 
the order M of polynomial for a minimax design. 

4. Estimation of N and M 

In the previous section, we have seen that the number of 
polynomial segments N and the order M of the 
polynomial, are the design parameters that highly 
influence the performance of the filter in the frequency 
domain. Furthermore, the cost of realization, i.e. the 
number of multipliers, of a filter can be estimated by 
introducing the required values for N and M into (6). It 
would be very beneficial to estimate N and M by only 
using the given specifications of the filter in the 
frequency domain. Similar order estimation formulae 
exist for FIR filters, for example Kaiser order estimation 
[6], [8]. In the actual implementation, polynomial-based 
filters can be modeled as FIR filters [4]. Thus, we can 
start from the Kaiser formula and adapt it to polynomial-
based filters. To this end, a lot of filters were designed, 
by using different system specifications, in order to adapt 
the Kaiser formula to polynomial-based case. The 
obtained estimation formula for the number of 
polynomial segments N, is rather similar to Kaiser 
formula for the order estimation of FIR filters. The 



estimation formula for N, which can be found in [9], is 
not accurate enough. Hence, we propose the more 
accurate formula: 

 














−
−−

=
Fff

N
ps

sp

e /)(4.30

4.8)(log20
2

10 δδ
 (10) 

where δp and δs are the maximum deviations of the 
amplitude response from unity for f∈[0,fp] and the 
maximum deviation from zero for f∈Φs, respectively. 
Here, x stands for the smallest integer which is larger 
or equal to x. It has been observed that in most cases the 
above estimation formula is rather accurate with only a 
2% error. The formula above is valid for all three types 
of requirements, i.e., A, B, and C, as given by (7) and 
(8). However, if the transition band is narrow, i.e., in the 
case when (fs-fp)/F≤0.1, the required value of N should 
be increased by 2. Further, in the case of very narrow 
transition band ((fs-fp)/F ≤0.05) the formula can not be 
used.  
The kernel of the estimation formula for the number N of 
polynomial segments can be expressed in a different 
form: 
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where As=-20log10(δs) is the required attenuation in 
stopband, and W=δp/δs represents weighting between 
required tolerances in passband and stopband.  
The next problem is to find the minimum value of the 
polynomial order M to meet the specifications. It has 
been observed that the required value of M depends on 
the type of requirements from (7) and (8). Never the less, 
it is possible to consider the following estimate as good 
starting point for all three types of requirements: 
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It has been observed that if transition band is relatively 
large to the sampling frequency, that is when (fs-fp)/F 
≥0.5, the required value of polynomial order M is 
lowered by one. The estimation formula cannot be used 
when the transition band is very small, i.e., in the case 
when (fs-fp)/F<0.1. However, even in this border 
situation required value of M is always smaller than Me 
given by (12). Thus, the estimation formula (12) for the 
polynomial order M can be used to estimate the upper 
border for M for all types of requirements. 

5. Design Examples 

This part gives several examples to illustrate the 
performance of the presented formulae. To illustrate this, 
the following specifications are considered:  
Case A specifications: The passband and stopband edges 

are at fp=0.4Fin and at fs=0.5Fin. 
Case B specifications: The passband and stopband edges 

are at fp=0.35Fin and at fs=0.65Fin. 
Case C specifications: The passband and stopband edges 

are at fp=0.35Fin and at fs=0.65Fin. 
In each case, several filters have been designed in 
minimax sense with the passband weighting equal to 
unity and stopband weightings of W=100. The degree of 
the polynomial in each subinterval M varies from 0 to 7. 
The number of intervals N varies from 2 to 20. Recall 
that N is an even integer. Figures 1 give the results for 
Case A, the similar results for Case B are given in Fig. 2, 
and for Case C in Fig. 3. It can be observed that the 
estimation formulae are relatively good, as they estimate 
the border performance for the given set of requirements 
(dashed lines in Figs 1-3).  

6. Conclusions 

In this paper, the estimation formulae for the number N 
of polynomial segments and the polynomial order M are 
presented. It has been shown that these estimates give the 
border performance of the filter for the given set of 
specifications. Formulae for N and M can be used to 
estimate the starting value of these two parameters in 
minimax optimization. Furthermore, the formulae for N 
and M can be used to estimate implementation costs of 
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 (b) 
Fig. 1.  Case A specifications: The passband and 

stopband edges are at fp=0.4Fin and at fs=0.5Fin, 
and stopband weighting W=100. (a) The curves 
are shown for M equals 0 to 7. Dashed line is plot 
obtained from the estimation formula for N. (b) 
The curves are shown for N equals 2 to 20. 
Dashed line is plot obtained from the estimation 
formula for M. 

(a) 



the Farrow based filters for the given set of requirements. 
Formulae can also be used to estimate implementation 
costs of composed sampling rate converters containing 
Farrow, for example, in optimal factorization for 
multistage decimation (interpolation).  
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 (b) 
Fig. 2.  Case B specifications: The passband and 

stopband edges are at fp=0.35Fin and at fs=0.65Fin, 
and stopband weighting W=100. (a)The curves 
are shown for M equals 0 to 7. Dashed line is plot 
obtained from the estimation formula for N. (b) 
The curves are shown for N equals 2 to 20. 
Dashed line is plot obtained from the estimation 
formula for M. 
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 (b) 
Fig. 3.  Case C specifications: The passband and 

stopband edges are at fp=0.35Fin and at fs=0.65Fin, 
and stopband weighting W=100. (a) The curves 
are shown for M equals 0 to 7. Dashed line is plot 
obtained from the estimation formula for N. (b) 
The curves are shown for N equals 2 to 20. 
Dashed line is plot obtained from the estimation 
formula for M. 

(a) (a) 


