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Abstract:

In many signal processing applications it is bemafito
use polynomial-based interpolation filters for sdimgp
rate conversion. Actual implementations of the#terf

goeckl er @t . rub. de

and polynomial order M for various types of
requirements. The formulae presented subsequeatly c
save time for the filter designers, because thely ge
suitable starting values fod andM that can be used for
the given set of requirements. The formulae cao bés
used to estimate implementation costs of Farraerfas

can be performed effectively by using the Farrow subsystem of general sampling rate converters, for

structure or its modifications. In the literatuseveral
design methods have been proposed.
estimation formulae for the number of polynomial-
segments defining the finite length of the undedyi
continuous-time filter impulse response and theepuf

example, in optimal factorization of multistage

Howeverdecimation (interpolation).

2. Polynomial-based filters

polynomials have not been known. This contribution As it has been originally suggested in [1], [2] whe
presents estimation formulae for the length and thederiving the modified Farrow structure for intergtdn,

polynomial order of polynomial-based filters forrivas

types of requirements. The formulae presented baine
save time in designing, since they provide goodista
values of length and order for
requirements.

1. Introduction

In many signal processing applications it is reggito
determine signal samples at arbitrary positionsveen
existing samples of a discrete-time signal. In ¢hesses,

it is beneficial to use polynomial-based interpiolat
filters. For these filters, an efficient overall
implementation can be achieved by using a contisuou
time impulse responseh,(t) having the following
properties [1], [2]; Firsthy(t) is nonzero only in a finite
interval O<t<NT with N being an integer. Second, in each
subinterval nT<t<(n+1)T, for n=0, ..., N=1, hyt) is
expressible as a polynomial bfof a given (low) order
M. Third, hy(t) is symmetric with respect o= NT/2 to
guarantee phase linearity of the resulting ovexgdtem.
The length of polynomial segmens,can be selected to
be equal to the inpuf, or outputT,,; sampling interval,

a fraction of the input or output sampling intervad an
integer multiple of the input or output samplingeirval.
The advantage of the above system lies in thetFatt
the actual implementation can be efficiently perfed
by using the Farrow structure [3] or its modificas [4],

[5].

a given set of

it is beneficial to construdt,(t) as follows:

N-1 M
(®= 2 SeminnT.t) (1)

where the number of polynomial segmemsis an
integer. The basis functiorig(n, T, t), as defined in [1],
are given by

m
fm(n,T,t):[ T —1] for nT <t <(n+)T @)

0 otherwise
where the common polynomial order of all segmests i
M. The coefficientsc,(n) are the adjustable parameters
being related to each other by
Cm(N)
-cy(n) for m odd

¢ (N-1-1) :{ for m even 3)

for n=0,1,...,N-1, as consequence of the symmetry
properties required above. The resulting(t) is
characterized by the following properties: G)(t) is
nonzero for &t<NT and zero elsewhere; (ii) in each
subintervalnT <t<(n+1)T for n=0, ..., N=1, hy(t) is
expressed as a polynomial of degide (iii) hy(t) is
symmetric about=NT/2, that ishy(NT-t) = hy(t) .

Based on Property (iii), it is guaranteed thatréwulting
overall system has a linear phase, a very attectiv
property for many applications. Furthermore, the
generation of the abovh,(t) guarantees that, in the
frequency domain, the zero-phase frequency response

In the literature, several design methods have beervvhen omitting the linear-phase term, is expressdde

proposed [1], [2], [4]. However, estimation formeilfor
the numbem of polynomial-segments and the ordér
of polynomial have not been known. This contribatio
presents the missing estimation formulae for thgtleN

(see [1] for details)
N/2-1 M
H.(j27f) = Y Yc,(nG,(n T, f),

n=0 m=0

whereG(n, T, f) is the Fourier transform of

(4)



9,(nT.t)=(-1)"f (n,T,t-NT/2)
+f (N-1-nT,t=NT/2).

Since the above approximating function is lineathwi
respect to the unknown coefficierdg(n), it enables one
to optimize the overall filter to meet the givertetia in

a manner similar to that used for synthesizing ousgi
types of linear-phase FIR filters [6]. In the abpVethe
length of the polynomial segments, can be usecfinel
different implementation structures as discussef]n
[5]. As seen in [4], [5]T can be chosen ds= 8T, or T=
BT Wheref is unity, an integer, or one divided by an
integer. The selection depends on whether decimatio
interpolation is under consideration, and on thecstral
needs for efficient implementation. The actual
implementation can be efficiently performed by gsihe
Farrow structure [3] or its modifications [4], [5].

For all these structure the number of fixed coédfits
depends on the numbét of polynomial segments and
the ordemM of the polynomial in each segment. The total
number of multipliers, exploiting the symmetry
properties of (3), is given by

NOM +1)/2 for N even
(N=1)(M +1)/2+[(M +1)/2]for N odd.’

For the purpose of illustration, the modified Favro
structure [1] is used with=T;,. It should be pointed out
that, in a practical realization, the coefficieragmmetry
of the FIR branches will be exploited, and a sirdgéay
line can be shared with all branches.

()

(6)

3. Review of minimax design method

This section reviews minimax design method of
polynomial-based filters of arbitrary length ander, as
presented in [1], [2], for which we estimateandM.

To this end, we assume a lowpass sigiia) — X(€").

Its sampling rateF;,=1/T;, shall be converted by an
arbitrary ration according toF.~RF, yielding
y() o Y(E®M). In case oR>1 (R<1) the system realizes
interpolation (decimation). The ultimate aim is to
determine a continuous-time, finite-length impulse
responseh,(t) of the sampling rate conversion system
such that the Fourier transform laf{t) meets following
requirements [4], [7]:

(1-0,)<H,(f)s@+7,) for|f|<f =aF /2

|H.(f)<9, for|f| 0o, ")
where
[F /2,oo] for CaseA
b = O[kF - f,kF+ fp] for CaseB (8)
k=1

[F -1,

In all three cases, the signal is preserved acegridi the
given tolerance in the passband region [f].
Furthermore, the aliasing components are attenuated
the defined manner. In Case A, all componentsiatias
into the baseband [®;/2] are attenuated. In Case B, all

for CaseC.

components aliasing into the passband fg, are
attenuated, but aliasing is allowed in the traositband
[fo, F/2]. In Case C, aliasing into the transition bafydl |
F/2] is allowed only from the band~[2, F+f,]. In the
above discussion and in (7) and B¥tands fofyin a
decimation case, arf€}, in an interpolation case.

The minimax optimization method introduced in [[]]

is probably the most convenient and the most flexib
solution for designing polynomial-based interpaati
filters:

Minimax Optimization ProblemGiven N, M, and a
compact subse®1[0,0) as well as a desired function
D(f) being continuous fof 0 @ and a weight function
W(f) being positive forfd @, find the M+1)N/2
unknown coefficientg,(n) to minimize

3, = max|W(F)[H,(f)-D(f)]| ©)
f O

subject to the given time-domain conditions tgft).
Here,H,(f ) is the real-valued frequency response and
D(f) is the desired function according to specificasio
(For details refer to [2]). The design procedurs haen
generalized, and modified for optimization of prujed

and transposed prolonged polynomial-based filifs [

The minimax design method has several design
parameters. First of all, the design parameterBidiec
passband and stopband regiohsand @.. The desired
filer may have several passbands and stopbands as
stated in [2]. Next, the minimum stopband atteroray,

and maximum allowable passband ripple are also
included. Other design parameters are the number of
polynomial segmentsN and the orderM of the
polynomial, which determine the number of multigdie

in the overall structure, see (6). Finally, someghtng
function can be used to give different weights to
passband and stopband [2]. Hence we give estimation
formulae for the numbeX of polynomial segments and
the ordeiM of polynomial for a minimax design.

4. Estimation of N and M

In the previous section, we have seen that the rumb
polynomial segmentsN and the orderM of the
polynomial, are the design parameters that highly
influence the performance of the filter in the fneqcy
domain. Furthermore, the cost of realization, tlke
number of multipliers, of a filter can be estimatey
introducing the required values fof andM into (6). It
would be very beneficial to estimalé and M by only
using the given specifications of the filter in the
frequency domain. Similar order estimation formulae
exist for FIR filters, for example Kaiser orderiggttion

[6], [8]. In the actual implementation, polynomizdsed
filters can be modeled as FIR filters [4]. Thus, ean
start from the Kaiser formula and adapt it to polynal-
based filters. To this end, a lot of filters wersidned,

by using different system specifications, in ortbeadapt
the Kaiser formula to polynomial-based case. The
obtained estimation formula for the number of
polynomial segmentsN, is rather similar to Kaiser
formula for the order estimation of FIR filters. &h
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where A=-20log&) is the required attenuation in
stopband, andW=g/4 represents weighting between
required tolerances in passband and stopband.

The next problem is to find the minimum value oé th
polynomial orderM to meet the specifications. It has
been observed that the required valuéviotlepends on
the type of requirements from (7) and (8). Neverldss,

it is possible to consider the following estimategmnod
starting point for all three types of requirements:
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It has been observed that if transition band iatinedly
large to the sampling frequency, that is whésfJ/F
>0.5, the required value of polynomial ord&f is
lowered by one. The estimation formula cannot edus
when the transition band is very small, i.e., ie ttase
when (sf,)/F<0.1. However, even in this border
situation required value ¥l is always smaller thahl,
given by (12). Thus, the estimation formula (12) tioe
polynomial orderM can be used to estimate the upper
border forM for all types of requirements.
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- : ‘ . 5. Design Examples

1 2 3 4
Polynomial orderM

(b) This part gives several examples to illustrate the
Fig. 1. Case A specificationsThe passband and Performance of the presented formulae. To illustthis,

stopband edges are Bt0.4F;, and atf=0.5, the following specifications are considered:
and stopband weightingv=100. (a) The curves CaseA specificationsThe passhand and stopband edges
are shown foM equals 0 to 7. Dashed line is plot are atfp=0.4Fi, and atfs=0.5Fjn.
obtained from the estimation formula fdk (b)  CaseB specifications The passband and stopband edges
The curves are shown_fdkl equals 2 to 20.  ge atfy=0.35F, and atfs=0.6%.
Dashed line is plot obtained from the estimation

formula forM. CaseC specificationsThe passband and stopband edges

o _ _ ~ are afp=0.3%, and atfs=0.6F,.
estimation formula foN, which can be found in [9], is |n each case, several filters have been designed in
not accurate enough. Hence, we propose the morgninimax sense with the passband weighting equal to

accurate formula: unity and stopband weightings W&=100. The degree of
the polynomial in each subintervisl varies from 0 to 7.
—-20log,,(,/0.0,) -84
.= 90y 9%2.) (10)  The number of interval®l varies from 2 to 20. Recall
304(f, - f))/F that N is an even integer. Figures 1 give the results for

. - Case A, the similar results for Case B are giveRin 2,
where g, and 4 are the maximum deviations of the ,nq for Case C in Fig. 3. It can be observed that t
amplitude response from unity fdtl[0,f] and the  egimation formulae are relatively good, as thejmese

maximum deviation from zero fofJ®s, respectively.  the porder performance for the given set of requoénets
Here,[ x| stands for the smallest integer which is larger (dashed lines in Figs 1-3).

or equal to x. It has been observed that in mostcthe
above estimation formula is rather accurate witly @n
2% error. The formula above is valid for all thitgpes
of requirements, i.e., A, B, and C, as given by &yl
(8). However, if the transition band is narrow,,iia the
case whenf{f,)/F<0.1, the required value df should
be increased by 2. Further, in the case of veryomar
transition band {(f,)/F <0.05) the formula can not be
used.

The kernel of the estimation formula for the numiNenf
polynomial segments can be expressed in a differen
form:

6. Conclusions

In this paper, the estimation formulae for the nantd

of polynomial segments and the polynomial orileare
presented. It has been shown that these estimatethg
border performance of the filter for the given sdt
specifications. Formulae fol and M can be used to
estimate the starting value of these two parameters
{ninimax optimization. Furthermore, the formulae féor
andM can be used to estimate implementation costs of



s
s

Stopband attenuatio”_ in dB
Stopband attenuatio”_in dB

. . . . . . . .
8 10 1. 14 16 18 20 2 4 6 8 10 1_2 14 16 18 20
Number of polynomial segments Number of polynomial segments

(@) @)

110+ 110+

S
]
3

S
5
3

T

Stopband attenuatios_ in dB
Stopband attenuatiod_ in dB

1 2 6 7 1 2 3 4
Polynomial orderM

(b) (b)
Fig. 2. Case B specifications The passband and Fig. 3. Case C specifications The passband and

3 4
Polynomial orderM

stopband edges arefgt0.35, and atf=0.65,, stopband edges arefg0.35, and atf=0.65,,
and stopband weighting\=100. (a)The curves and stopband weighting/=100. (a) The curves
are shown foM equals 0 to 7. Dashed line is plot are shown foM equals 0 to 7. Dashed line is plot
obtained from the estimation formula fdk (b) obtained from the estimation formula fdk (b)
The curves are shown fdl equals 2 to 20. The curves are shown fdl equals 2 to 20.
Dashed line is plot obtained from the estimation Dashed line is plot obtained from the estimation
formula forM. formula forM.
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