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Chromatic Derivatives, Chromatic Expansions and Associated Function Spaces

We present the basic properties of the chromatic derivatives and the chromatic expansions as well as a motivation for introducing these notions. The chromatic derivatives are special, numerically robust linear differential operators; the chromatic expansions are the associated local expansions, which possess the best features of both the Taylor and the Nyquist expansions. This makes them potentially useful in fields involving sampled data, such as signal and image processing.

Motivation

The Nyquist-(Whittaker-Kotelnikov-Shannon) expansion f (t) = ∞ n=-∞ f (n) sin π(t -n)/π(t -n) of a π-band limited signal of finite energy f (t) ∈ BL(π) is of global nature, because it requires samples of the signal at integers of arbitrarily large absolute value. On the other hand, since signals from BL(π) are analytic functions, they can also be represented by the Taylor expansion, f (t) = ∞ n=0 f (n) (0) t n /n!. Such expansion is of local nature, because the values of the derivatives f (n) (0) are determined by the values of the signal in an arbitrarily small neighborhood of zero. While the Nyquist expansion has a central role in digital signal processing, the Taylor expansion is of very limited use there, for several reasons.

(1) Numerical evaluation of higher order derivatives of a signal from its samples is very noise sensitive; in general, one is cautioned against numerical differentiation of signals given by empirical samples. [START_REF] Ignjatovic | Chromatic derivatives and associated function spaces[END_REF] The Taylor expansion of a signal f ∈ BL(π) converges non-uniformly; its truncations are unbounded and have rapid error accumulation.

(3) The Nyquist expansion of a signal f ∈ BL(π) converges to f in BL(π) and thus the action of a filter A on any f ∈ BL(π) can be expressed using the samples of f and the impulse response A[sinc ] of A, i.e.,

A[f ](t) = ∞ n=-∞ f (n) A [sinc ] (t -n).
(

) 1 
In contrast, the polynomials obtained by truncating the Taylor series do not belong to BL(π) and nothing similar to (1) holds for the Taylor expansion.

The chromatic derivatives and the chromatic expansions and approximations were introduced to obtain local signal representations which do not suffer from these problems.

Chromatic Derivatives

To explain our notions, we first consider normalized and rescaled Legendre polynomials P L n (ω) which satisfy

1 2π π -π P L n (ω) P L m (ω)dω = δ(m -n),
and then define operator polynomials

K n t = 1 i n P L n i d dt . ( 2 
)
It is easy to verify that for f ∈ BL(π) and its Fourier transform f (ω) we have

K n [f ](t) = 1 2π π -π i n P L n (ω) f (ω) e i ωt dω.
Figure 1 compares the plots of P L n (ω) and ω n /π n for n = 15 to n = 18, which are the transfer functions (save a factor of i n ) of the operators K n and of the (normalized) derivatives 1/π n d n /dt n , respectively. While the transfer functions of the normalized "standard derivatives" 1/π n d n /dt n obliterate the spectrum of the signal, leaving only its edges which in practice contain mostly noise, the transfer functions of operators K n form a family of well separated, interleaved and increasingly refined comb filters. Due to their spectrum preserving property, we call the operators K n the chromatic derivatives associated with the Legendre polynomials. Both analytic estimates and empirical tests have shown that the chromatic derivatives can be accurately and robustly evaluated from samples of the signal taken at a small multiple (2 to 4) of the usual Nyquist rate, thus solving problem (1) associated with numerical evaluation of the standard derivatives, mentioned above. Chromatic expansions, on the other hand, were introduced to solve problems (2) and (3).

Chromatic Approximations

Proposition 1 Let K n be the chromatic derivatives associated with the Legendre polynomials, and let f (t) be any analytic function; then for all t, 

f (t) = ∞ n=0 (-1) n K n [f ](u) K n [sinc ](t -u). (3) If f ∈ BL(π)
k ≤ n, f (k) (u) = d k /dt k CA[f, n, u](t) t=u .
Figure 2 compares the behavior of the chromatic approximation (black) of a signal f ∈ BL(π) (gray) with the behavior of the Taylor approximation of f (t) (dashed). Both approximations are of order sixteen. The plot reveals that, when approximating a signal f ∈ BL(π), a chromatic approximation has a much gentler error accumulation when moving away from the point of expansion than the Taylor approximation of the same order. Functions K n [sinc ](t) appearing in the chromatic expansion associated with the Legendre polynomials are given by K n [sinc ](t) = (-1) n √ 2n + 1 j n (πt), where j n is the spherical Bessel function of the first kind of order Thus, unlike the monomials that appear in the Taylor formula, functions K n [sinc ](t) belong to BL(π) and satisfy |K n [sinc ](t)| ≤ 1 for all t ∈ R. Consequently, the chromatic approximations are bounded on R and belong to BL(π). Also, as Proposition 1 asserts, the chromatic approximation of a signal f ∈ BL(π) converges in BL(π). Thus, if A is a filter, then A commutes with the differential operators K n and for every f ∈ BL(π), we have the following analogue of (1):

A[f ](t) = ∞ n=0 (-1) n K n [f ](0) K n [A[ sinc ]](t).
Thus, while local, the chromatic expansion possesses the features that make the Nyquist expansion useful in signal processing. This, together with numerical robustness of the chromatic derivatives, makes chromatic approximations applicable in fields involving empirically sampled data, such as digital signal and image processing. The next proposition demonstrates another remarkable feature of the chromatic derivatives which is relevant to signal processing.

Proposition 2 Let K n be the chromatic derivatives associated with the (re-scaled and normalized) Legendre polynomials, and f, g ∈ BL(π). Then

∞ n=0 K n [f ](t) 2 = ∞ -∞ f (x) 2 dx; ∞ n=0 K n [f ](t)K n [g](t) = ∞ -∞ f (x)g(x)dx; ∞ n=0 K n [f ](t)K n t [g(u -t)] = ∞ -∞ f (x)g(u -x)dx.
Thus, the sums on the left hand side of the above equations do not depend on the choice of the instant t.

Note that the above equations provide local representations of the usual norm, the scalar product and the convolution, respectively, which are defined in L 2 globally, as improper integrals.

Given the above properties of the Legendre polynomials, it is natural to ask if other families of orthonormal polynomials have similar properties. This question was answered in [START_REF] Ignjatovic | Local approximations based on orthogonal differential operators[END_REF].

General Chromatic Derivatives

Let M : P ω → R be a linear functional on the vector space P ω of real polynomials in the variable ω. Such M is called a moment functional and

µ n = M(ω n ) is the moment of M of order n. Definition 1 A moment functionals M is chromatic if it satisfies the following conditions (condition (iii) is not es- sential, but simplifies the technicalities): (i) M is positive definite; (ii) lim sup n→∞ µ 1/n n /n < ∞; (iii) M is symmetric, i.e., µ 2n+1 = 0 for all n.
For functionals M which satisfy conditions (i) and (iii) there exists a family of real polynomials {P M n (ω)} n∈N , such that P M n (ω) contains only powers of ω of the same parity as n and which are orthonormal with respect to M; i.e., for all m, n,

M(P M m (ω) P M n (ω)) = δ(m -n).
The family {P M n (ω)} n∈N is a family of orthonormal polynomials which corresponds to a symmetric positive definite moment functional M just in case there exists a sequence of positive reals {γ n } n∈N such that

P M n+1 (ω) = 1 γn ω P M n (ω) -γn-1 γn P M n-1 (ω). (4) 
For every positive definite moment functional there exists a non-decreasing bounded function a(ω), called an mdistribution function, such that for the associated Stieltjes integral we have

∞ -∞ ω n da(ω) = µ n , (5) ∞ -∞ P M n (ω) P M m (ω) da(ω) = δ(m -n). ( 6 
) If M is chromatic, then condition (3) implies that {P M n (ω)} n∈N is a complete system in L 2 a(ω) . Let ϕ ∈ L 2 a(ω)
; we can define a corresponding function

f ϕ : R → C by f ϕ (t) = ∞ -∞ ϕ(ω)e iωt da(ω), (7) 
and one can show that (7) can be differentiated under the integral sign any number of times. Setting

K n = 1 i n P M n (ω) i d dt
we get that for all t

K n [f ϕ ](t) = ∞ -∞ i n P M n (ω) ϕ(ω) e iωt da(ω), (8) i.e., ϕ(ω)e iωt , P M n (ω) a(ω) = (-i) n K n [f ϕ ](t). Thus, ϕ(ω)e iωt = (-i) n K n [f ϕ ](t)P M n (ω)
, and by Parseval's Theorem, for every t ∈ R,

∞ n=0 |K n [f ϕ ](t)| 2 = ϕ(ω)e iωt 2 a(ω) = ϕ(ω) 2 a(ω) . Thus, if ϕ ∈ L 2 a(ω) , then the sum ∞ n=0 |K n [f ϕ ](t)| 2 con- verges to a constant function on R. If we let m(t) = ∞ -∞ e iωt da(ω), (9) 
then (5) implies m (k) (0) = i k µ k . It can be shown that condition (iii) of Definition 1 implies that m(t) is analytic at every t ∈ R (moreover, it is analytic on a strip in C; see [START_REF] Ignjatovic | Chromatic derivatives and associated function spaces[END_REF]). For the chromatic approximation associated with M,

CA M [f, n, u](t) = n k=0 (-1) k K k [f ](u)K k [m](t -u), one can show that |f ϕ (t) -CA M [f ϕ , n, u](t)| < ∞ k=n+1 K k [f ϕ ](u) 2 .
Thus,

f ϕ (t) = ∞ k=0 (-1) k K k [f ϕ ](u) K k [m](t -u)
, and the convergence is uniform on R.

Definition 2 L M

2 denotes the space of functions analytic on R which satisfy

∞ k=0 K k [f ](0) 2 < ∞. Let f (t) ∈ L M 2 ; then ϕ f (ω) = ∞ k=0 (-i) k K k [f ](0)P M k (ω) belongs to L 2 a(ω)
and for all t, f (t) = ∞ -∞ ϕ f (ω) e iωt da(ω). On the space L M 2 one can now introduce locally defined norm, inner product and convolution using equations from Proposition 2, and for every fixed u, the chromatic expansion of an f ∈ L M 2 is just the Fourier series of f in the orthonormal and complete base {K n u [m(t -u)]} n∈N .

Examples

Example 1. (Legendre polynomials/Spherical Bessel functions) Let L n (ω) be the Legendre polynomials; if we set

P L n (ω) = √ 2n + 1 L n (ω/π), then π -π P L n (ω)P L m (ω) dω 2π = δ(m -n).
The corresponding recursion coefficients in equation ( 4) are given by the formula γ n = π(n+1)/ 4(n + 1) 2 -1.

In this case m(t) = sinc t, and 

K n [m](t) = ( - 
T n (ω) = √ 2 T n (ω/π)
for n > 0. In this case

π -π P T n (ω)P T m (ω) dω π 2 1-( ω π ) 2 = δ(n -m).
The corresponding function ( 9) is m(t) = J 0 (πt) and

K n [m](t) = (-1) n √ 2 J n (πt) for n > 0, where J n (t)
is the Bessel function of the first kind of order n. In the recurrence relation (4) the coefficients are given by γ 0 = π/ √ 2 and γ n = π/2 for n > 0. The corresponding space L M 2 consists of analytic functions whose Fourier transform f (ω) is supported in (-π, π) and satisfies

π -π 1 -(ω/π) 2 | f (ω)| 2 dω < ∞. The chromatic expansion of a function f (t) is the Neumann series f (t) = f (0)J 0 (πt) + √ 2 ∞ n=1 K n [f ](0)J n (πt).
Thus, the chromatic expansions corresponding to various families of orthogonal polynomials can be seen as generalizations of the Neumann series, while the families of corresponding functions {K n [m](t)} n∈N can be seen as generalizations (and a uniform representation) of some familiar families of special functions.

Example 3. (Hermite polynomials/Gaussian monomial functions) Let H n (ω) be the Hermite polynomials; then the polynomials given by

P H n (ω) = (2 n n!) -1/2 H n (ω) satisfy ∞ -∞ P H n (ω)P H m (ω) e -ω 2 √ π dω = δ(n -m).
The corresponding function defined by (9) is m(t) = e -t 2 /4 and K n [m](t) = (-1) n t n e -t 2 /4 / √ 2 n n!. The corresponding recursion coefficients are given by γ n = (n + 1)/2. The corresponding space L M 2 consists of analytic functions whose Fourier transform f (ω) satisfies

∞ -∞ | f (ω)| 2 e ω 2 dω < ∞.
The chromatic expansion of f (t) is just the Taylor expansion of f (t) e t 2 /4 , multiplied by e -t 2 /4 .

Weakly Bounded Moment Functionals

To study local (i.e., non-uniform) convergence of chromatic expansions, we somewhat restrict the class of moment functionals we consider.

Definition 3 Let M be a symmetric positive definite moment functional and let γ n > 0 be such that (4) holds.

(i) M is weakly bounded if there exist some M ≥ 1, some 0 ≤ p < 1 and some integer r, such that for all n ≥ 0,

1/M ≤ γ n ≤ M (n + r) p and γ n /γ n+1 ≤ M 2 .
(ii) M is bounded if there exists some M ≥ 1 such that 1/M ≤ γ n ≤ M for all n ≥ 0.

Thus, every bounded moment functional is also weakly bounded with p = 0. Functionals in our Example 1 and Example 2 are bounded. For bounded moment functionals the corresponding m-distribution a(ω) has a finite support and consequently m(t) is a band-limited signal. However, m(t) can be of infinite energy (i.e., not in L 2 ) as is the case in our Example 2. Moment functional in Example 3 is weakly bounded but not bounded (p = 1/2). We note that all important examples of classical orthogonal polynomials which correspond to weakly bounded moment functionals in fact satisfy a stronger condition 0 < lim n→∞ γ n /n p < ∞ for some 0 ≤ p < 1.

Lemma 3 If M is a weakly bounded moment functional, then lim k→∞ (µ k /k!) 1/k = 0. Thus, M is chromatic; moreover, m(z) = ∞ n=0 i n µ n z n /n! is an entire function on C.
Lemma 4 Let M be weakly bounded and p < 1 as in Definition 3(i); then for every integer k ≥ 1/(1 -p) there exists K > 0 and a polynomial P (x) such that for every n ∈ N and every z ∈ C,

|K n [m](z)| < |Kz| n P (|z|)e |Kz| k /n! 1-p .
This Lemma is used to prove the following Proposition.

Proposition 5 Let M be as in Lemma 4, f (z) an entire function and u ∈ C. If lim n→∞ |f (n) (u)/n! 1-p | 1/n = 0, then the chromatic expansion of f (z) centered at u converges everywhere to f (z), and the convergence is uniform on every disc of finite radius.

Thus, if M is bounded (p = 0) and f is an entire function, then the chromatic expansion CE[f, u](t) converges to f (t) for all t. Many well known equalities for the Bessel functions J n (t) are just the special cases of chromatic expansions. For example, the chromatic expansions of f

(t) = e iωt , f (t) = 1 and f (t) = m(t + u) yield e iωt = ∞ n=0 i n P M n (ω) K n [m](t); m(t) + ∞ n=1 n k=1 γ 2k-2 γ 2k-1 K 2n [m](t) = 1, m(t + u) = ∞ n=0 (-1) n K n [m](u)K n [m](t),
which generalize the following well known equalities:

e i ωt = J 0 (t) + 2 ∞ n=1 i n T n (ω)J n (t); J 0 (t) + 2 ∞ n=1 J 2n (t) = 1; J 0 (t + u) = J 0 (u)J 0 (t) + 2 ∞ n=1 (-1) n J n (u)J n (t).

Non-Separable Inner Product Spaces

If M is weakly bounded, the periodic functions do not belong to L M 2 ; for example, ∞ n=0 K n [sin ωt] 2 diverges. We now consider some inner product spaces in which pure harmonic oscillations have finite positive norms ( [START_REF] Ignjatovic | Chromatic derivatives and local approximations[END_REF][START_REF] Ignjatovic | Chromatic derivatives and associated function spaces[END_REF]).

Definition 4 Assume again that M is weakly bounded and let p be as in Definition 3. We denote by C M the vector space of analytic functions such that the sequence

ν f n (t) = 1/(n + 1) 1-p n k=0 K k [f ](t) 2 converges uniformly on every finite interval. Proposition 6 Let f, g ∈ C M and σ f g n (t) = 1/(n + 1) 1-p n k=0 K k [f ](t)K k [g](t)
; then the sequence {σ f g n (t)} n∈N converges to a constant function. In particular, ν f n (t) is constant. Corollary 7 Let C M 0 be the vector space consisting of analytic functions f (t) such that lim n→∞ ν f n (t) = 0; then in the quotient space C M 2 = C M /C M 0 the limit lim n→∞ σ f g n (t) is independent of t and defines a scalar product on C M 2 . Proposition 8 Let M correspond to Chebyshev polynomials as in our Example 2; then functions f ω (t) = √ 2 sin ωt and g ω (t) = √ 2 cos ωt for all 0 < ω < π form an uncountable orthonormal system of vectors in C M 2 . Proposition 9 Let M correspond to Hermite polynomials as in our Example 3; then for all ω > 0 functions f ω (t) = sin ωt and g ω (t) = cos ωt form an uncountable orthogonal system of vectors in C M 2 , and f ω M = g ω M = e ω 2 /2 / 4 √ 2π.

Conjecture 1 Assume that for some 0 ≤ p < 1 the recursion coefficients γ n in (4) are such that γ n /n p converges to a finite positive limit. Then, for the corresponding family of orthogonal polynomials we have 0 < lim n→∞ 1/(n + 1) 1-p n k=0 P M k (ω) 2 < ∞ for all ω in the support sp(a) of the corresponding mdistribution function a(ω). Thus, in the corresponding space C M 2 all pure harmonic oscillations with positive frequencies ω ∈ sp(a) have finite positive norm and are mutually orthogonal.

Detailed presentation of the theory of chromatic derivatives can be found in our references; preprints of some unpublished manuscripts are available at http://www.cse.unsw.edu.au/˜ignjat/diff.
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 1 Figure 1: Graphs of P L n (ω) (left) and ω n /π n (right), for n = 15 -18.
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 2 Figure 2: Chromatic approximation (black) and Taylor's approximation (dashed) of a signal from BL(π) (gray).
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