
HAL Id: hal-00451727
https://hal.science/hal-00451727v1

Preprint submitted on 29 Jan 2010 (v1), last revised 24 Sep 2010 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bulking II: Classifications of Cellular Automata
Marianne Delorme, Jacques Mazoyer, Nicolas Ollinger, Guillaume Theyssier

To cite this version:
Marianne Delorme, Jacques Mazoyer, Nicolas Ollinger, Guillaume Theyssier. Bulking II: Classifica-
tions of Cellular Automata. 2010. �hal-00451727v1�

https://hal.science/hal-00451727v1
https://hal.archives-ouvertes.fr


Bulking II: Classifications of Cellular Automata✩

M. Delormea, J. Mazoyera, N. Ollingerb, G. Theyssierc,∗

aLIP, ENS Lyon, CNRS, 46 allée d’Italie, 69 007 Lyon, France
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Abstract

This paper is the second part of a serie of two papers dealing with bulking: a
quasi-order on cellular automata comparing space-time diagrams up to some
rescaling. Bulking is a generalization of grouping taking into account universal-
ity phenomena, giving rise to a maximal equivalence class. In the present paper,
we introduce 3 notions of simulation between cellular automata and study the
quasi-order structures induced by these simulation relations on the whole set
of cellular automata. Various aspects of these quasi-orders are considered (in-
duced equivalence relations, maximum elements, induced orders, etc) providing
several formal tools to classify cellular automata.
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1. Introduction

In the first paper [8], we have developped a general theory of bulking aimed
at defining quasi-orders on cellular automata based on the idea of space-time
rescaling. The present paper focuses on three instances of such quasi-orders
and uses them as classification tools over the set of one-dimensional cellular
automata.

To classify has no sense without additional assumptions (some criteria of
classification). If in Wolframs papers [40] these criteria were implicit, several
classifications with explicit criteria have been proposed since [10, 4, 19]. Usually,
the criteria are those of dynamical systems and consist in a finite list of quali-
tative behaviors. Our approach here is different: the criterion is the quasi-order
and various aspects of the order structure are considered which provide several
classification tools. The bulking quasi-orders we are going to define are based
on two basic notions of comparison of two systems:

• the injection of a small system (B) into a larger one (A),

• the projection of a large system (A) onto a smaller one (B).

In the context of comparison of local rules of cellular automata, the first notion
translates into the subautomaton relation (B obtained from A by forgetting some
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states) and the second one into the quotient relation (B obtained from A by
identifying some sates). The subautomaton relation was already introduced in
[8] and its importance in cellular automata is illustrated by theorems 4 and 5 of
that paper. The quotient relation can be seen as a particular case of the notion
of factor in dynamical systems theory and symbolic dynamics (homomorphism
between shift-commuting continuous global maps, see [21]). More generally, the
quotient relation is a means to extract coarse-grained information (B) from a
complex system (A) (see [17]). For instance, the use of the metaphor of parti-
cles moving in a stable background in the literature [3] follow this idea: some
information is hidden by identification of states. In the context of algorithmic
constructions in cellular automata, the notion of signal [25] is fundamental and
it also implicitly uses state identification: the pertinent information carried by
the signal is not at the level of individual states, but group of states.

Following the bulking formalism of [8], three quasi-orders can be derived
from these relations as follows: 4i is the subautomaton relation up to rescal-
ings, 4s is the quotient relation up to rescalings and 4m is the relation ”quotient
of a subautomaton” up to rescalings. We study the structure of these orders.
At finite level (classes with a finite non zero number of classes below them),
there is infinitely many classes. Orders are not upper or lower semi-lattices. For
example, infinite increasing sequences may be due to the following fact: some
integer may be coded by states or (at the limit) by extracting this integer from
the data of the initial configuration. Orders 4i and 4m have a maximal class.
Classes having Turing-universality are obtained by simulating (in a way closed
to Smith III [34]) an universal Turing machine. Such a class is not necessarily
at the top (intrinsically universal). Moreover there exists a cellular automaton
which, in some sense, handles potential infinite. Precisely, for 4m-simulation,
there exists an infinite increasing sequence of cellular automata (simulating n
copies of a Turing machine but not n + 1 copies) and the limit cellular au-
tomata 4m-simulates any finite number of copies but not an infinite number.
Every class contains a cellular automaton with radius 1 but, more surprising,
there exist classes which do not contain cellular automata with two states of
any neighborhood. This fact implies that some global properties needs more
than two states to appear whatever is the neighborhood. Finally, many global
properties of cellular automata as dynamical systems (reversibility, sensitivity,
expansivity, etc) or cellular automata as computational devices (ability to sim-
ulate a turing head, or to propagate some signal) form an ideal or a filter in our
orders.

Section 1.1 introduces 3 different comparison relations which are 3 different
instances of the bulking theory developed in the companion paper [8]. Section 2
sets the definitions of these 3 notions of simulations and establish some of their
basic properties. Section 3 studies the ’bottom’ of each of the 3 quasi-orders
induced on CA, i.e. CA or classes of CA of least complexity. Section 4 focuses
on the order structure with respect to various classical properties of CA, and
from a computability point of view. Then section 5 explores the set of CA at the
’top’ of these quasi-orders: universal CA. Once again, the point of view is both
structural and computational. Finally, section 6 is devoted to the construction
of noticeable induced orders (like infinite chains), and the study of how simple
families of CA spread over those quasi-orders.

Figures 1, 3 and 2 give an overview of our results on the 3 quasi-orders
studied in the paper.
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Figure 1: Injective bulking (quasi-order 4i)
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Figure 2: Mixed bulking (quasi-order 4m)
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1.1. Definitions

In this paper, we adopt the setting of one-dimensional cellular automata
with a canonical neighborhood (connected and centered). A cellular automaton
(CA) is a triple A = (S, r, f) where:

• S is a (finite) state set,

• r is the neighborhood radius,

• f : S2r+1 → S is the local transition function.

A coloring of the lattice Z with states from S (i.e. an element of SZ) is
called a configuration. To A we associate a global function G acting on configu-
rations by synchronous and uniform application of the local transition function.
Formally, G : SZ → SZ is defined by:

G(x)z = f(xz−r, . . . , xz+r)

for all z ∈ Z. Several CA can share the same global function although there
are syntactically different (different radii and local functions). However we are
mainly interested in global functions and will sometimes define CA through their
global function without specifying a particular syntactical representation. In
addition, the Curtis-Heldund-Lyndon theorem [13] allows us to freely compose
global CA functions to construct new CA without manipulating explicitly the
underlying syntactical representation.

When dealing with several CA simultaneously, we use index notation to
denote their respective state sets, radii and local functions. For instance, to A
we associate SA, rA and fA.

This paper will make an intensive use of P̃CS transforms defined in section
4.2 of [8], but restricted to dimension 1. With this restriction, a P̃CS transform
α has the form α = 〈m, τ, T, s〉 where m and T are positive integers, s is a
(possibly negative) integer and τ is either 1 or −1.

For any CA A, we denote by A〈α〉 or more explicitly A〈m,τ,T,s〉 the applica-
tion of α to A, which is, according to notations of [8], a CA of state set Sm

A and
global rule:

〈⊞m, Vτ ⊙�m〉 ◦ σs ◦G
T
A ◦ 〈⊞m, Vτ ⊙�m〉

−1 .

To simplify notation we will use a shortcut for purely temporal transforms: for
any CA A we denote by At the CA A〈1,1,t,0〉. Finally, as another special case,
we denote by A[n] the grouped instance of A of parameter n: it corresponds to
the transform 〈n, 1, n, 0〉 (see [8] for a detailed exposition of grouping).

2. Canonical orders

In this section we introduce the 3 bulking quasi-orders that are studied
all along the paper. They are obtained by applying the bulking axiomatics
developed in the companion paper [8] to 3 ’canonical’ relations between local
rules of CA.

Those 3 ’canonical’ relations are in turn based on 2 classical notions of
morphism between local transition rules of CA: sub-automaton and quotient-
automaton. As it is shown below, the 3 relations we consider are exactly the
reflexive and transitive relations that can be defined by composition of one or
more such morphisms.
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2.1. From 3 Local Relations to 3 Bulking Quasi-Orders

A sub-automaton is a restriction of a CA to a stable sub-alphabet. A quotient
is a projection of a CA onto a smaller alphabet and compatible with the local
transition rule1. Both define a kind of morphism between cellular automata:

• A is a sub-automaton of B, denoted A ⊑ B, if there is an injective map
ι : SA → SB such that ι ◦GA = GB ◦ ι, where ι : SZ

A → SZ

B denotes the
uniform extension of ι. We often write A ⊑ι B to make the map ι explicit.

• A is a quotient of B, denoted A E B, if there is a surjective (onto) map s
from SB to SA such that s ◦GB = GA ◦ s, where s : S

Z

B → SZ

A denotes the
uniform extension of s. We also write A Es B to make the map s explicit.

Relations⊑ andE are quasi-orders (reflexive and transitive) and it is straight-
forward to check that their induced equivalence relation is the relation of iso-
morphism between cellular automata (equality up to state renaming) denoted
by ≡.

It is also straightforward to check that ⊑ and E are incomparable (none of
them is implied by the other). It is thus interesting to consider compositions
of them. The composition of two relations R1 and R2 is the relation R1 · R2

defined by

R1 · R2 = {(x, y) : ∃z, (x, z) ∈ R1 and (z, y) ∈ R2}.

We denote by R the set of relations obtained by (finite) composition of E and
⊑. Any relation of R is a priori interesting, but the following theorem justifies
that we restrict to E, ⊑ and the composition E · ⊑ only. In the sequel E · ⊑ is
denoted by E⊑ and, as for ⊑ and E, we use the infix notation (A E⊑ B).

Theorem 2.1.

1. any relation R ∈ R is included in E⊑ (i.e., (A,B) ∈ R implies A E⊑ B) ;

2. the transitive relations of R are exactly: E, ⊑ and E⊑.

Proof. We first prove that if A ⊑ · E B then A E⊑ B, which is sufficient to
prove (1) by transitivity of ⊑ and of E. So consider A, B and C such that
A ⊑ι C and C Es B. Then consider Q = s−1 ◦ ι(SA). We have GB(Q

Z) ⊆ QZ

because

s ◦GB(Q
Z) = GC ◦ s(Q

Z) = GC ◦ ι(S
Z

A) = ι ◦GA(S
Z

A) ⊆ ι(S
Z

A).

The CA X = (Q, rB, fB) is thus well-defined and by definition we have X ⊑ B.
Moreover, we have A Eι−1◦s X because ι−1 ◦ s : Q→ A is well-defined and sur-
jective and because

ι−1 ◦ s ◦GX = GA ◦ ι−1 ◦ s

since s ◦GB = GC ◦ s and ι−1 ◦GC = GA ◦ ι−1 over
(
ι(A)

)Z
= s

(
QZ

)
. Hence

A E⊑ B and (1) is proven.

1A quotient is a particular kind of factor, a classical notion in dynamical systems theory
and symbolic dynamics [20]

7



Given (1) we have R = {E,⊑,⊑ · E,E⊑}. To prove (2), it is thus sufficient
to prove that ⊑ · E is not transitive. To do this, consider SA = {0, . . . , p− 1}
with p prime, p ≥ 5, and let α, a0, a1, b0, b1 be 5 distinct elements of SA. Then
consider A, the CA of states set SA, radius 1 and local rule fA defined by:

fA(∗, x, y) =







a1−i if x 6= α and y = ai,

b1−i if x 6= α and y = bi,

y + 1 mod p else.

fA depends only on two variables. Suppose now that there is some AC B with at
least 2 states such that B Eπ A. We will show that π must be one-to-one. Sup-
pose indeed by contradiction that there are distinct elements e and f in SA such
that π(e) = π(f). Then π(e + 1 mod p) = π(f + 1 mod p) and more generally
π(e + i mod p) = π(f + i mod p) for all i ∈ N because fA(α, e) = e+ 1 mod p
and fA(α, f) = f + 1 mod p. So, supposing without loss of generality f > e, let
k = f − e. We deduce from above that π(f) = π(f + jk mod p) for all k ∈ N

and, by elementary group theory, that π is constant equal to π(f) (because p
is prime and k 6= 0). This is in contradiction with the fact that π is surjective
onto SB which has at least 2 elements. So π is one-to-one and B is isomorphic
to A. Now consider C, the identity CA over state set SC = {0, 1}. Since C
possesses 2 quiescent states and A has no quiescent state (straightforward from
the definition of fA above), we have C�⊑A. With the discussion above, we can
conclude that C���⊑ · EA.

However, we have B E⊑ A because the states {a0, a1, b0, b1} induce a sub-
automaton C of A which verifies B Es C where s : {a0, a1, b0, b1} → {0, 1} is
defined by s(ai) = 0 et s(bi) = 1. (2) follows since the relation E⊑ is included
in the composition of the relation ⊑ · E with itself. �

Like ⊑ (already considered in [8]), E and E⊑ are quasi-orders on CA and
therefore constitute natural candidates for the divide relation of bulking ax-
iomatics (definition 8 of [8]).

Inspired by definition 14 of [8], we now define 3 bulking quasi-orders using
P̃CS transforms.

Definition 2.1. B simulates A injectively, denoted A 4i B, if there exists two
P̃CS transforms α and β such that A〈α〉 ⊑ B〈β〉.

We will occasionally use the notion of simulation by grouping introduced in
[24] and discussed in [8]: we denote by A 6� B the fact that there is n and m
such that A[n] ⊑ B[m]. This is a special case of the injective simulation above.

Definition 2.2. B simulates A surjectively, denoted A 4s B, if there exists two
P̃CS transforms α and β such that A〈α〉 E B〈β〉.

Definition 2.3. B simulates A in a mixed way, denoted A 4m B, if there exists
two P̃CS transforms α and β such that A〈α〉 E⊑ B〈β〉

For each notion of simulation above, we say that the simulation is strong if
the transformation α applied to the simulated CA is trivial: α = 〈1, 1, 1, 0〉 so
that A〈α〉 = A.

Theorem 2.2.
(
CA,4i

)
,
(
CA,4s

)
and

(
CA,4m

)
are quasi-orders.

8



Proof. We show that 4i and 4m correspond exactly to models of bulking
developped in [8]: the proof of theorem 15 of [8] contains the case of injective
simulation. The case of 4m follows immediately (axiom (B4) is straightforward
and axiom (B5) is true because E⊑ contains ⊑). For 4s, the proof of each axiom
is similar except for axiom (B5).

With or without axiom (B5), theorem 10 of [8] can be applied in each case
and show the theorem. �

Lemma 2.1. Let ⊳ be any relation among ⊑, E and E⊑. Then the following
propositions are equivalent:

• there exists two P̃CS transforms α and β such that A〈α〉 ⊳ B〈β〉,

• there exist a P̃CS transform α and and integer t such that A〈α〉 ⊳ B[t],

• there exist a P̃CS transform β and and integer t such that A[t] ⊳ B〈β〉,

Proof. We use the property of compatibility of relation ⊳ with respect to
geometrical transforms (axiom B4 of [8]). The lemma follows from the following
property: for any transform α, there exist a transform β and an integer t such
that

∀F :
(
F 〈α〉

)〈β〉
= F [t].

If α = 〈m, t, z, 0〉, β can be chosen as the composition of 〈1,m, 0, 0〉, 〈1, 1,−z, 0〉
and 〈t, 1, 0, 0〉. �

In the sequel, if 4 denotes a simulation quasi-order we denote by ∼ the
induced equivalence relation and by [A] the equivalence class of A with respect
to ∼. For instance, to 4i we associate the notations ∼i and [A]i. We use similar
notations for 4s and 4m.

Before entering into details concerning various aspects of the 3 simulation
relations defined above, we can already make a clear (yet informal) distinction
between 4i and 4m on one hand, and 4s on the other hand. For the two
former, the simulation take place on a subset of configurations and nothing
can be said a priori about the behavior of the simulator outside this subset of
configurations. For 4s, however, the simulation occur on any configuration and
the simulator’s behavior on any configuration is in some way affected by the
simulation. Section 4.2 give several illustrations of this difference.

2.2. First Properties

We now establish a set of basic general facts about 4i, 4s and 4m while
next sections of the paper focus on particular aspects.

Theorem 2.3. Let A be any CA and 4 be any relation among 4i, 4s and 4m.
Then we have:

1. there is some B ∈ [A] having a quiescent state,

2. there is some B ∈ [A] with radius 1,

3. ⊥ 4 A where ⊥ is the CA with a single state,

4. A 4 A× B and A 4 B ×A for any B.

Proof.
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1. there exists some uniform configuration x and some t ≥ 1 such thatGt
A(x) =

x. So At has a quiescent state and it clearly belongs to [A].

2. A〈rA,1,1,0〉 admits a syntactical representation with radius 1 and clearly
belongs to [A].

3. First, one always has ⊥ Eπ A where π is the trivial surjection sending each
state of A to the single state of ⊥. So assertion 3 is proven for 4s and
4m. Second, one has ⊥ ⊑i B if B has a quiescent state where i is the
trivial injection sending the single state of ⊥ to the quiescent state of B.
Assertion 3 follows for 4i by assertion 1.

4. We show only the first relation, the second being rigorously symmetric.
First, one has always A Eπ1

A× B where π1 : SA × SB → SA is the pro-
jection over the first component. Second, if B has a quiescent state q,
one has A ⊑ι A× B where ι is the injection defined by ι(x) = (x, q) for all
x ∈ SA (the equality ι ◦GA = (GA ×GB) ◦ ι is indeed true over SZ

A). If B
has no quiescent state, just consider Bt and apply the previous reasoning
to obtain:

At ⊑ At × Bt =
(
A× B

)t

and thus A 4i A× B.
�

The 3 simulation quasi-orders are derived through bulking axiomatics from
3 different relations on local rules (see 2.1). There is a priori no reason why
the differences between local relations should extend to differences between the
3 simulation quasi-orders. The following theorem shows that 4i, 4s and 4m

are nevertheless different.

Theorem 2.4. The relations 4i and 4s are incomparable (no inclusion in ei-
ther direction) and both strictly included in 4m.

Proof. We first show that there are CA A and B such that A ⊑ B but A��4sB.
Let A = σ × σ−1 defined over states set SA = {0, 1} × {0, 1} and let B be the
CA of radius 1 defined over SB = SA ∪ {#} by:

fB(x, y, z) =

{

fA(x, y, z) if x, y, z ∈ SA,

y else.

One clearly has A ⊑Id B. Now suppose A 4s B. Without loss of generality
we can assume that there are geometrical transforms α =< m, τ, T, s > and
β =< m′, 1, T ′, 0 > such that A〈α〉 Eπ B

〈β〉. But, by definition of B, there exist
some state q0 of B〈β〉 (one can choose #m′

) which is left invariant by iteration
of B〈β〉 whatever the context. Then π(q0) must be a state of A〈α〉 with the
same property. This is impossible since either s 6= T or s 6= −T and thus some
component of the future state of a cell of A〈α〉 is dependent of the state of a
neighboring cell.

Now we show that there are A and B such that A E B but A��4iB and the
theorem follows. Intuitively, A is a CA with two states, 0 and 1, whose behavior
is to reduce ranges of 1’s progressively until they reach size 1: at each time step
the cells at each ends of a range of size 3 or more are turned into state 0 (only the
right cell of range of size 2 is turned into 0). B has 3 states (0, 1 and 2) and has
the following behavior: ranges of size 3 or more of non-zero states are reduced in
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a similar way by the two ends (states inside ranges are left unchanged), ranges
of size 2 become an isolated 2 (left cell becomes 2 and right cell 0), and ranges
of size 1 become an isolated 1. In a word, B reduce size of non-zero until size 1
but keeps the parity information at the end: an even range becomes eventually
an isolated 2 and an odd range becomes an isolated 1 (see figure 4).

Formally, let π : {0, 1, 2} → {0, 1} be the surjective function defined by π(0) = 0
and π(x) = 1 if x 6= 0. Now letA be the CA of radius 2 and states set SA = {0, 1, 2}
with local rule:

fA(x, y, z, t, u) =







1 if π(xyztu) = 01110,

2 if π(yztu) = 0110,

z if π(yzt) = 111 and if π(xyztu) 6= 01110,

z if π(yzt) = 010,

0 in any other case.

Finally, let B be the CA with states set B = {0, 1}, radius 2 and local transition
function

fB(x, y, z, t, u) =

{

1 if yzt = 111 or yzt = 010 or yztu = 0110,

0 else.

By construction, we have A Eπ B. Now suppose by contradiction that A 4i B

Figure 4: Behavior of A (left) and B (right). Time goes from bottom to top.

and more precisely:

A〈m
′,τ ′,t′,s′〉 ⊑φ B

〈m,1,t,0〉,

where α =< m′, τ ′, t′, s′ > and β =< m, 1, t, 0 > are suitable geometrical trans-
forms. Let u = 1m

′

and v = 0m
′

(u and v are particular states of A〈α〉) and
consider U = φ(u) and V = φ(v) (U and V belongs to Sm′

B ). Since configura-
tions u and v are fixed points of A〈α〉, so are U and V for B〈β〉. Moreover, one
can check from the definition above that the state 0 is a ’blocking state’ for B:
the half-configuration on the left of an occurrence of 0 evolve independently of
the half-configuration on its right. So, if U contains one or more zero’s, then
any configuration of B〈β〉 containing U3 will contain at least one occurrence of U
for ever (because it is the case for the configuration U): this is in contradiction
with the fact that the orbit of a configuration of the form ωvuvω do not contain
any occurrence of u after one iteration of A〈α〉. Hence we have π(U) = 1m.

From this we deduce that V = 0m because configurations of the form ωV UnV ω

are transformed into configurations where a single cell is not in state V (just
consider the orbit of ωvuvω under A〈α〉) and large range of non-zero states are
always turned into large range of zero’s under B.

Finally, we have π
(
φ(0m

′−11)
)
= 0m−11 by considering the orbit of a config-

uration of the form ωvu2vω under A〈α〉 and its counterpart of the form ωV U2V ω
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under B〈β〉 (by the way, we also show that the shift parameter of transform α is
0). Now, letting u′ = 0m

′−11, we have on one hand the orbits of 2 configurations
of the form ωvu′u2nvω and ωvu2nvω both leading to the same configuration of
the form ωvu′vω underA〈α〉, and on the other hand, the orbits of ωV φ(u′)U2nV ω

and ωV U2nV ω leading to different fixed points under B〈β〉 due to different parity
of non-zero ranges: this is a contradiction since φ ◦ A〈α〉 = B〈β〉 ◦ φ. �

3. Bottoms of the Orders

We have already seen (theorem 2.3) that ⊥ is a global minimum for the
3 quasi-orders considered here. In this section, we study CA that are at the
bottom of the quasi-orders. Formally, the only CA at level 0 is ⊥ and a CA A
is at level n+ 1 for a quasi-order 4 if:

1. A is not at level n and,

2. ∀B : B 4 A ⇒ B ∈ [A] or B is at level i with i ≤ n.

A cellular automaton is nilpotent if all initial configurations lead to the same
configuration after a finite time. The property of nilpotency corresponds to a
class at level 1 as shown by the following theorem.

Theorem 3.1. Let 4 be a simulation relation among 4i, 4s and 4m. Then
the following CA are at level 1:

1. the set of nilpotent CA with 2 or more states, which is an equivalence class
for ∼,

2. the set of CA which are periodic up to translation (At ◦ σz = Id) which is
exactly the equivalence class for ∼ of the identity CA.

Proof.

1. Nilpotency is equivalent to the existence of a uniform configuration reached
in a fixed finite time from any configuration. This property of phase space
is clearly invariant by geometrical transforms and preserved by taking sub-
automata or quotient automata. So any nilpotent CA is at level at most 1.
Moreover, for any nilpotent A, there is t such that At is a constant function
equal to some qa. If we consider any nilpotent B with at least 2 states, there
is m such that |Sm

B | ≥ |SA| and t
′ such that Bt′ is a constant function equal

to some qb. If we consider the geometrical transforms α =< 1, 1, t, 0 > and
β =< m, 1, t′, 0 >, then we have both A〈α〉 ⊑i B

〈β〉 and A〈α〉 Eπ B
〈β〉 if i is

such that i(qa) = qb and π is such that π(x) = qa ⇐⇒ x = qb.

2. Any CA which is periodic up to a translation is by definition equivalent
to some identity CA and two identity CA with different state set are also
clearly equivalent. The proof follow since the identity CA is at level 1. �

The bottom of the quasi-order 6� was studied in [24]. The main result is
the existence of an infinite familly of mutually incomparable CA at level 1: the
familly of CA Zp with p a prime number and where Zp is a CA of radius 1 and
state set {0, . . . , p− 1} defined by the following local rule:

δZp
(x, y, z) = x+ y + z mod p.

There are strong connections between 6� and 4i and in fact the set of CA
at level 1 are the same for these two quasi-orders.

12



Lemma 3.1. If A is at level 1 for 6� then A is at level 1 for 4i.

Proof. If B 4i A then by lemma 2.1 there is some integer t and some transform
β such that B〈β〉 ⊑ A[t]. By theorem 2.3 we can suppose that A has radius 1
so B〈β〉 has radius 1. Since A is at level 1 for 6�, then either B〈β〉 ∈ [A]

�
or

B〈β〉 ∈ [⊥]
�
. We deduce that either B ∈ [A]i or B ∈ [⊥]i. Hence A is at level at

most 1 for 4i and it cannot be at level O since it is not in [⊥]i = [⊥]
�
. �

The previous lemma is not enough to show that the CA
(
Zp

)

p
with p prime

are mutually 4i-incomparable because several equivalence classes for 6� can
be included in a single class for 4i. However we are going to show that this
familly is a set of mutually incomparable CA for all quasi-orders considered in
this paper2. Moreover, for 6� and 4i, they are all at level 1. The proof relies
on the following result already used for the case of 6�.

A CA (S, r, f) is LR-permutative if the two following functions are bijections
for all a1, . . . , a2r:

• x 7→ f(a1, . . . , a2r, x) and

• x 7→ f(x, a1, . . . , a2r).

Theorem 3.2 ([22]). Let p be a prime number and t ≥ 1. Then we have:

1. Zp
[t] is LR-permutative;

2. if A ⊑ Zp
[t] then p divides |SA|.

To take into account use of E in simulation we will use the following lemma.

Lemma 3.2. If B is LR-permutative and A E B then |SA| divides |SB|.

Proof. To simplify notations, we suppose that B is of radius 1 (the proof
works the same way for higher radii). Suppose A Eπ B. By surjectivity of π, it
is sufficient to show that π is balanced, i.e. such that for all x, y ∈ SA:

|{e : π(e) = x}| = |{e : π(e) = y}| .

Consider any x, y ∈ SA. Let a, b ∈ SB be such that π(a) = x and π(b) = y
and consider any c ∈ SB. By R-permutativity there is d ∈ SB such that
fB(a, c, d) = b. Now for any a′ ∈ SB such that π(a′) = π(a), we must have
π
(
fB(a

′, c, d)
)
= π(b) because A Eπ B. Moreover, by L-permutativity, all the

images fB(a
′, c, d) are different which proves:

|{a : π(a) = x}| ≤ |{b : π(b) = y}| .

The balance of π follows by symmetry. �

The results above are the key ingredient of the following theorem.

Theorem 3.3. Let 4 be any relation among 4i, 4s and 4m. Let p and q be
two distinct prime numbers. Then we have:

2The proof we give here was suggested by E. Jeandel.
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1. Zp 64 Zq

2. Zp is at level 1 for 4i;

Proof. 2 follows immedialty from lemma 3.1 and the fact that Zp is at level 1
for 6� (corollary 2 of [22]). To prove 1 it is enough to prove Zp��4mZq. Suppose
by contradiction that Zp 4m Zq, or equivalently by lemma 2.1, that there are

a CA A, a transform α and an integer t such that Zp
〈α〉

E A ⊑ Zq
[t]. Then,

combining lemma 3.2 and theorem 3.2, we deduce that the number of states of
Zp

〈α〉 is a power of q which contradicts the fact that p and q are two distinct
primes. �

We will now study a familly of CA which shows that there are infinitely many
incomparable CA at any finite level greater than 3 for any of the 3 simulation
quasi-orders of the paper.

We denote by σn,z the translation CA with n states {1, . . . , n} and transla-
tion vector z defined by:

σn,z(c)z′ = cz′−z.

We then consider cartesian products of such CA. Since σn,z × σp,z ≡ σnp,z, we
can focus on consider cartesian products where all vectors are distinct.

The next lemma shows that the structure of product of translation is pre-
served when taking sub-automata and quotient-automata.

Lemma 3.3. Let B =
∏p

i=1 σni,zi (with zi all distinct) and suppose A is such

that A E⊑ B then A is isomorphic to
∏k

j=1 σn′
ij
,zij

where 1 ≤ ij ≤ n and

2 ≤ n′
ij
≤ nij .

Proof. The lemma is straightforward if we replace E⊑ by ⊑. So it is enough to
show that it is also true when replacingE⊑ byE. Suppose thatA Eh B. Let i be
fixed between 1 and p. Consider any x, x′ ∈ {1, . . . , ni} and any q, q′ ∈ SB such
that πi(q) = πi(q

′) = x (where πi denotes the projection on the ith coordinate).
Denote by q+ and q′+ the states obtained from q and q′ by changing the ith
coordinate to x′. Then we have:

h(q) = h(q′)⇒ h(q+) = h(q′+)

because one can build two configurations c and c′ of B such that c′ = B(c)
and c(0) = q and c′(−zi) = q′, and obtain c′+ and c′ by changing q to q+ at
c(0) and q′ to q′+ at c′(−zi). Hence, if there exist two states q and q′ with
the same image by f and which agree on all components except component i
where q equals x and q′ equals x′, then x and x′ in ith component can always
be exchanged without afecting the image by h whatever the content of other
components. Therefore, taking the apropriate quotient automaton C, we have
A E C E B where C equals B but with 1 state less in ith component. Applying
this reasoning inductively, we finally have A Eg C0 E B where C0 is of the form
∏k

j=1 σn′
ij
,zij

where 1 ≤ ij ≤ n and 2 ≤ n′
ij
≤ nij (component reduced to 1 state

during the induction can be eliminated) and g is such that changing the value of
any component will change the image by g. Now suppose by contradiction that
g is not injective. Then there are states q and q′ of C0 such that g(q) = g(q′).
Let c = q and c′ be equal to c except on position 0 where it is in state q′. By
hypothesis, at any position z, GC0

(c) and GC0
(c′) must be in states having the
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same image by g. But since C0 is a product of translations with distinct vectors,
there must be some position z where GC0

(c) and GC0
(c′) are in states which

differ on one component only: this is in contradiction with the hypothesis on g.
Hence g is injective and therefore A ≡ C0. �

If A is a proudct of translations with vectors z1 < . . . < za, we denote by
χ (A) the following characteristic sequence (provided a ≥ 3):

χ (A) =

(
z3 − z1
z2 − z1

, . . . ,
za − z1
z2 − z1

)

.

The usefulness of this notion of characterisitic sequence is revealed by the
following theorem.

Theorem 3.4. Let 4 be a relation among 4i, 4s and 4m. Let A be a prod-
uct of a ≥ 3 translations with distinct vectors and with characterisitic sequence
χ (A) = (α1, . . . , αa−2). If B 4 A then B is equivalent to some C which is a
product of a subset of b translations of A. Moreover, we have the following
properties:

1. if b = a then C has the same characteristic sequence than A;
2. if b = a− 1 and b ≥ 3 then the characteristic sequence of C has one of the

following form:

• (α1, . . . , αi−1, αi+1, . . . , αa−2)

•
(

α2

α1
, . . . , αa−2

α1

)

•
(

α2−1
α1−1 , . . . ,

αa−2−1
α1−1

)

3. if C has not χ (A) for characteristic sequence then A�4C.

Proof. Let z1 < z2 < . . . < za be the ordered list of translation vectors of A.
Since B 4 A, there is some C equivalent to B and some integer t ≥ 1 such that
C E⊑ A[t] (by lemma 2.1). We deuduce from lemma 3.3 that C is isomorphic
to a product of translations whose vectors are a subset of the familly (zi) since
A and A[t] have identical translation vectors, C must have the same character-
istic sequence than A if it has the same number of translation vectors. When
b = a− 1 and b ≥ 3, it is straightforward to check that the 3 possible forms
of the characteristic sequence of C correspond to the case where the missing
vector is zi, z2 and z1 respectively. To prove the last assertion of the theorem,
it is sufficient to check that for any transform α of the form < m, 1,mt,mz >
(we can restrict to such transforms by lemma 2.1, C and C〈α〉 are products of
translations with the same characteristic sequence because each vector zi of C
becomes tzi + z in C〈α〉. �

Notice that the previous theorem implies that there are CA A, B and C
which are all equivalent but such that A×A is not equivalent to B × C.

The next lemma give canonical members of their equivalence classes.

Lemma 3.4. Let ∼ be the equivalence relation induced by any of the quasi-order
4i, 4s and 4m. Consider any t 6= 0, any z and any product of translations of
the form A =

∏p

i=1 σni,tzi+z, . Then we have:

A ∼
∏

1≤i≤p

σ2,zi
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Proof. Let B =
∏p

i=1 σ2,zi and let m = maxni. It is straightforward to check
that one has A E B〈m,1,mt,mz〉 and A ⊑ B〈m,1,mt,mz〉 on one hand, and, on the
other hand, B〈1,1,t,z〉 E A and B〈1,1,t,z〉 ⊑ A. �

Theorem 3.4 and lemma 3.4 give a complete characterisation of the position
of products of shift in the quasi-orders considered in this paper. We will use it
later in section 4.1 but we now state the main result of this section concerning
levels at the bottom of the quasi-orders.

Corollary 3.1. Let 4 be a relation among 4i, 4s and 4m. For any n ≥ 3,
there are infinitely many incomparable CA at level n for 4.

Proof. We have shown in theorem 3.1 that translation CA are at level 1.
Lemma 3.3 together with lemma 3.4 show that a product of two translations
(with distinct vectors) is at level 2. By theorem 3.4 we conclude that any
product of n translations with distinct vectors is at level n and two such CA are
incomparable if they have different characteristic sequences provided n ≥ 3. �

4. Structural properties

In this section we study in various ways the order structure induced by the
simulation relations defined above.

4.1. Cartesian Products and Lack of (Semi-)Lattice Structure

The next theorem shows how some simulations by Cartesian products of CA
can be transposed to components of the product.

Theorem 4.1. Let A be a CA with 2 states and let 4 be a simulation relation
among 4i, 4s and 4m. For any B and C, if B × C strongly 4-simulates A then
either A 4 B or A 4 C.

Proof. Let SA = {a1, a2}. First, we show that A ⊑ι B × C implies either
A ⊑ B or A ⊑ C which is sufficient to prove the theorem for 4i and 4m. Since
ι(a1) 6= ι(a2) we have either π1(i(a1)) 6= π1(i(a2)) or π2(i(a1)) 6= π2(i(a2)) where
π1 and π2 are projection over first and second component respectively. We sup-
pose the first case (the second is symmetric) and so π1 ◦ i : SA → SB is injective.
Moreover, since

π1 ◦ ι ◦GA = π1 ◦GB×C ◦ ι = GB ◦ π1 ◦ ι,

we conclude that A ⊑π1◦ι B.
Second, we show that A Es B × C implies either A 4s B or A 4s C which is

sufficient to prove the theorem for 4s. Let IA be the set of states that can be
reached after one step of A (formally, IA = fA(SA, . . . , SA)) and IB and IC be
similar sets for B and C.

• We first suppose that B and C are such that each uniform configuration
is either a fixed-point or without any uniform antecedent. If a1 6∈ IA then
for any b and c such that s(b, c) = a1 we have either b 6∈ IB or c 6∈ IC . We
suppose the first case (the second is analogous) and then we have A Eζ B
where ζ : SB → SA is defined by ζ(b) = a1 and ζ(x) = a2 for x 6= b.
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If a2 6∈ IA we apply the same reasoning and so we are left with the case
IA = SA. Since pairs of SB × SC are 2-colored via s, there must be
two pairs of different colors which agree on a component. Suppose it
is the first component (the other case is symmetric), we have b1, b2 ∈ SB

and c ∈ SC such that s(b1, c) = a1 and s(b2, c) = a2. Consider the set
X = {(b1, c), (b2, c)}. Since s ◦ (GB ×GC) = GA ◦ s and s

(
XZ

)
= SZ

A and

IA = SA we necessarily have s(SB, d) = SA where d defined by d = GC(c).
d is quiescent by hypothesis on C. So we have A Eζ B with ζ : SB → SA

defined by ζ(x) = s(x, d) (ζ is onto by choice of d).

• Now suppose that the hypothesis on B and C are not fulfilled. Then, if
t = |SB|!× |SC |!, both B

t and Ct are guarantied to fulfill the required hy-
pothesis (because any uniform configuration is either in a cycle of uniform
configurations, or without uniform antecedent arbitrarily far in the past).

Since At E
(
B × C

)t
= Bt × Ct, it suffices to apply the previous reasoning

on At, Bt and Ct to conclude either At E Bt or At E Ct. In either case
the theorem follows. �

Despite the properties of Cartesian product with respect to simulation quasi-
orders (theorem 4.1 and assertion 4 of theorem 2.3), this natural operation is not
a supremum in any of the quasi-order. In fact these quasi-orders don’t admit
any supremum operation as shown by the theorem below. The proof relies on
the study of products of translation CA.

Theorem 4.2. Let 4 be a relation among 4i, 4s and 4m. Then the ordered
structure

(
AC/ ∼,4

)
is neither an upper semi-lattice, nor a lower semi-lattice.

Proof. Let A2, A3, A2,3 and A2,4 be products of translations with characteris-
tic sequences (2), (3), (2, 3) and (2, 4) respectively. Theorem 3.4 and lemma 3.4
show that they induce the following structure in 4:

A2 A3

A2,3 A2,4

where an arrows from A to B means B 4 A and if B 4 C 4 A then either B ∼ C
or C ∼ A. This shows that the pair A2, A3 has no supremum and that the pair
A2,3, A2,4 has no infinimum. �

4.2. Ideals and Filters

Although the structures
(
AC,4

)
studied in this paper are not semi-lattices

(see above), many classical properties of cellular automata are nicely captured
through ideals and filters. Well-known in lattice theory and algebra, the notions
of ideal and filter can also by defined for an arbitrary (quasi-)ordered structure
[7]. For the structure

(
AC,4

)
, an ideal I is a set of CA such that:

• if A ∈ I and B 4 A then B ∈ I;
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• for any A,B ∈ I there is some C ∈ I such that A 4 C and B 4 C.

Moreover, I is said principal if there is some AI such that A ∈ I ⇐⇒ A 4 AI .
The notion of filter and principal filter are dual (replacing allX 4 Y by Y 4 X).

Given a set I of CA, the 3 following conditions are sufficient for I to be an
ideal for the simulation 4i (resp. 4s, or 4m):

1. A ∈ I ⇐⇒ A〈α〉 ∈ I for any transform α,
2. if B ∈ I and A ⊑ B (resp. A E B, or A E⊑ B) then A ∈ I,
3. if A ∈ I and B ∈ I then A× B ∈ I.

Most of the proofs below follow this scheme. The following theorem shows
that several dynamical properties of global rules of CA correspond to ideals in
the quasi-orders. A CA is nilpotent over periodic configurations if there exists a
spatially periodic configuration c0 such that all spatially periodic configurations
lead in finite time to c0.

Theorem 4.3. Let 4 be a simulation relation among 4i, 4s and 4m. For each
property P in the following list, the set of CA having property P is an ideal of
(
AC,4

)
:

• surjectivity,

• reversibility,

• nilpotency over periodic configurations.

Proof. First, from the point of view of global maps, a geometric transform
consists in iterating or composing with bijective maps. So the properties of being
surjective or reversible are left unchanged by geometrical transforms. Besides,
geometrical transforms send periodic configurations to periodic configurations,
temporal cycles of configuration to temporal cycles (eventually reduced to a
single configuration), and attraction basin of such cycles to attraction basin of
cycles. Hence, nilpotency over periodic configuration, which is equivalent to the
existence of a temporal cycle having all periodic configurations in its attraction
basin, is preserved by geometrical transforms. By similar reasoning on the
phase space, it is straightforward to check that A is nilpotent over periodic
configurations if B is and A ⊑ B or A E B. And A× B is nilpotent over periodic
configurations if both A and B are. So nilpotency over periodic configurations
induces an ideal for 4.

It is also clear that surjectivity and reversibility are preserved by carte-
sian product. Now suppose A Eπ B. If B is surjective then so is A since
GA ◦ π = π ◦GB and π is by definition surjective. If B is reversible, consider any
map φ such that π ◦ φ = Id and let A−1 be the CA over state set SA and defined
by the global map G = π ◦G−1

B ◦ φ (it is a shift-commuting continuous map).
Since GA ◦ π = π ◦GB, one can check that GA ◦G = Id so A is reversible.

Finally, suppose A ⊑ι B. If B is reversible then A is also reversible since
ι ◦GA = GB ◦ ι and ι is by definition injective. If B is surjective, then so is A
because B being injective over finite configurations (Moore-Myhill theorem3) A

3In [13], one can find the following theorem: a CA is surjective if and only if there is no
pair of finite configurations (i.e. uniform except on a finite region) having the same image.
The original formulation of the Moore-Myhill theorem [26, 27] supposes the existence of a
quiescent state.
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is also injective over finite configurations (ι maps finite configurations to finite
configurations). �

Theorem 4.4. Let A and B be two reversible CA and 4 be a simulation relation
among 4i, 4s and 4m. If A 4 B then A−1 4 B−1.

Proof. First, it is straightforward to check that the inverse of geometrically
transformed instances of A are transformed instances of the inverse of A. Using
what was shown above concerning reversibility, it is thus sufficient to prove the
2 following properties:

• A ⊑ι B implies A−1 ⊑ι A
−1,

• A Eg B implies A−1 Eg A
−1.

In the first case we have:

GB ◦ ι = ι ◦GA ⇒ ι = G−1
B ◦ ι ◦GA ⇒ ι ◦G−1

A = G−1
B ◦ ι

each equality being true on SZ

A. In the second case we have:

GA ◦ g = g ◦GB ⇒ GA ◦ g ◦G
−1
B = g ⇒ g ◦G−1

B = G−1
A ◦ g

each equality being true on SZ

B. �

Open Problem 1. Consider any simulation relation and ∼ the associated equiv-
alence relation. What are the reversible CA F such that F ∼ F−1?

Theorem 4.5. Let 4 be 4i or 4m. Then the ideal of reversible CA is principal:
there is a reversible CA A such that

B reversible ⇐⇒ B 4 A.

Proof. In [9], a reversible CA B able to simulate any reversible CA is con-
structed. The notion of simulation used is included in 4i and therefore in 4m.
The implication ⇒ is thus proven and the converse implication is proven by
theorem 4.3. �

For the ideal of surjective CA, the principality is still an open problem in
dimension 1.

Open Problem 2. Is the ideal of surjective CA principal, and for which sim-
ulation quasi-order?

Limit sets of CA has received a lot of attention in the literature [6, 15, 11].
The limit set of A is the set ΩA of configurations having predecessors arbitrarily
far in the past, formally:

ΩA =
⋂

t

Gt
A

(
SZ

A

)
.

The next theorem shows that the class of CA with a sofic limit set is nicely
captured by 4s.

Theorem 4.6. The set of CA with a sofic limit set is an ideal for 4s.
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Proof. For CA of dimension 1, having a sofic limit set is equivalent to having a
regular limit language [39]. It is clear that this latter property is left unchanged
by geometrical transforms (the limit language is not affect by iterations and
shifts, the regularity of the language is not affected by packing). Hence, it is
sufficient to show that if B has a regular limit language and A Eg B then A also
has a regular limit language. Since regular languages are closed by substitution
(a classical result which can be found in [14]), it is sufficient to prove that
ΩA = g

(
ΩB

)
. This last assertion is a direct consequence of A Eg B, since the

following equality holds by recurrence on t:

g
(
Gt

B(S
Z

B)
)
= Gt

A(S
Z

A).

�

Open Problem 3. Let 4 be 4i or 4m. Is there a 4-universal CA with a sofic
limit set?

The properties considered above are purely dynamic: they can be expressed
as structural properties of the phase space with the reachability relation only.
We now consider properties from topological dynamics: they are expressed with
both the reachability relation and the toppology (Cantor distance) of the space
of configurations.

The properties we will consider rely on the equicontinuity classification of
P. Kůrka [19]. Let A be any CA of states set Q and global rule G and denote
by d the Cantor distance over QZ.

• x ∈ QZ is an equicontinuity point for A if

∀ǫ, ∃δ, ∀y ∈ QZ : d(x, y) ≤ δ ⇒ ∀t, d(Gt(x), Gt(y)) ≤ ǫ.

• A is sensitive to initial conditions if

∃ǫ, ∀δ, ∀x ∈ QZ∃y ∈ QZ∃t : d(x, y) ≤ δ and d
(
Gt(x), Gt(y)

)
≥ ǫ.

• A is (positively) expansive if

∃ǫ, ∀x, y ∈ QZ : x = y ⇐⇒ ∀t, d
(
Gt(x), Gt(y)

)
≤ ǫ.

The classification of P. Kůrka is the following:

K1 is the set of CA for which all configurations are equicontinuity points,

K2 is the set of CA having equicontinuity points,

K3 is the set of CA sensitive to initial conditions,

K4 is the set of expansive CA.

The weakness of this classification is its lack of shift-invariance: the identity
and the elementary translation belong to different classes (K1 and K3 respec-
tively). Several attempts have been made to overcome this problem by changing
the topology [5]. More recently, a new approach has been proposed [33]: the
Cantor topology is conserved (with all its good properties) but the topological
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properties are enriched with a new parameter (a velocity) which is used as the
reference direction of information propagation in space-time. The original defi-
nitions of P. Kůrka are thus obtained by choosing velocity 0, but now identity
and elementary translations are assigned to the same class (with different veloc-
ities). This directionnal dynamic approach is more suitable for our study since,
by definition, the equivalence classes of any of our quasi-order is shift-invariant.
We will define 4 classes based on the existence of some direction for which some
dynamical behaviour is observed.

We say that A is a rescaling of B if there are transforms α and β such that
A〈α〉 ≡ B〈β〉. We then consider the following 4 classes:

• the set T1 of CA which are a rescaling of some equicontinuous CA,

• the set T2 of CA which are a rescaling of some CA having equicontinuity
points,

• the set T3 of CA which are not in T2, i.e. CA which are sensitive in every
directions4,

• the set T4 of CA which are a rescaling of some (positively) expansive CA.

T2

T3
T1

T4

Id

δmax

σ1 × σ−1

Z2

Figure 5: Four kinds of topological dynamics.

Figure 5 is justified by the following theorem.

Theorem 4.7. We have the following inclusions:

1. T1 ⊆ T2,

2. T4 ⊆ T3.

Moreover, each of the set T1, T2 \ T1, T3 \ T4 and T4 is non-empty.

Proof. The first inclusion follows from definitions. The second follows from
proposition 3.2 of [33] which asserts that the set of direction with equicontinuity
points and the set of expansive directions cannot be simultaneously empty.

Non-emptyness of T1 and T4 follow from the existence of equicontinuous
(e.g. the identity) and (positively) expansice CA (e.g. Z2). Moreover, any
CA having an equicontinuity point which is not equicontinuous (e.g. the CA
of local rule δmax(a, b, c) = max(a, b, c)) cannot be in T1 (equicontinuity is pre-
served by rescaling), so it is in T2 \ T1. Finally, by proposition 3.2 of [33],

4For one-dimensional CA, the set of sensitive CA is the complement of the set of CA having
equicontinuity points (see [19]). In [33], this complementarity is shown for any direction.
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σ1 × σ−1 ∈ T3 \ T4 because any direction is either a direction of right-expansivity,
or a direction of left-expansivity, neither both. �

Theorem 4.8.

1. T1 is an ideal for any simulation 4 among 4s, 4i and 4m;

2. T2 is an ideal for 4s;

3. T4 is an ideal for 4i.

Proof. First, consider any A,B ∈ T1. Then there are CA A′ and B′ which
are both equicontinuous and 4-equivalent to A and B respectively. Then, if
C = A′ × B′ we have C ∈ T1 and by theorem 2.3 we have both A 4 C and B 4 C.
The same reasoning can be applied to T4 and T2. Thus we have shown the second
condition of the definition of ideals for the 3 properties considered here.

To conclude the theorem, and since the 3 properties considered are by defi-
nition invariant by rescaling, it is sufficient to prove:

• if A ⊑ B or A E B then B equicontinuous⇒ A equicontinuous;

• ifA E B then B has equicontinuous points⇒ A has equicontinuous points;

• if A ⊑ B then B expansive⇒ A expansive.

The first assertion follows from the characterisation of equicontinuous CA
as ultimately periodic CA [19].

For the second assertion, ifA Eπ B then for all x, y ∈ SZ

B we have the inequal-
ity d(π(x), π(y)) ≤ d(x, y). Moreover, for any y1 ∈ S

Z

A there is some y2 ∈ SZ

B

such that π(y2) = y1 and d(π(x), y1) = d(x, y2) (choose y2 so that it equals x on
the cells around position 0). Hence, if x is an equicontinuous point for B then
π(x) is an equicontinuous point for A.

Finally, for the third assertion, it is sufficient to notice that the property
of expansivity is defined by a formula using only universal quantifications on
configurations so it remains true on a subset of configurations. �

T2 is not an ideal for 4i and neither for 4m as shown by the following
example.

Example 4.1. Consider B ∈ T3 of radius 1 and let A be the CA with radius 1,
states set SA = SB ∪ {M} (with M 6∈ SB) with local rule fA defined by

fA(x, y, z) =

{

fB(x, y, z) if {x, y, z} ⊆ SB,

y else.

B ⊑ A so B 4i A. However A ∈ T2 since the configuration ωMω is an equicon-
tinuous point. �

Notice alos that T3 cannot be an ideal because σ1 × σ−1 ∈ T3 simulates
σ ∈ T1.

Open Problem 4. Are there A 6∈ T4 and B ∈ T4 such that A 4s B (i.e. the
simulator CA is expansive up to rescaling but the simulated CA is not expansive,
even up to rescaling)?
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4.3. (Un)decidability

The fact that many properties related to the simulation quasi-orders are
undecidable comes with no surprise. For instance the nilpotency property, which
is an undecidable problem [18], corresponds to an equivalence class in the 3
quasi-orders (theorem 3.1). However, there are non-trivial properties of these
quasi-orders which are decidable (see below) and the edge between decidable
and undecidable properties is hard to catch.

In this section, we consider two kind of problems in simulation quasi-orders:
lower bounds (being above some fixed CA or set of CA) and upper bounds
(being simulated by some fixed CA or some CA from a fixed set).

Theorem 4.9 ([23]). The set of CA of radius 1 with a spreading state and
nilpotent over periodic configurations is not co-recursively enumerable.

Theorem 4.10. Let A be any CA which is not nilpotent over periodic config-
urations. Let 4 be either 4i or 4m. Then the set of CA B such that A 4 B is
not co-recursively enumerable.

Proof. We describe a computable transformation which, given a CA C of radius
1 with a spreading state, produce a CA B with the following properties:

• if C is not nilpotent over periodic configurations then A 4 B;

• if C is nilpotent over periodic configurations then so is B.

The theorem follows by theorem 4.3 since we have reduced the problem ’A 4 B?’
to the problem of nilpotency over periodic configurations (reduced to CA of
radius 1 with a spreading state).

We now describe the construction of B from C. Suppose C has a spreading
state q. B is the CA of radius 1 and states set SB = (SC \ {q})× SA ∪ {q} with
local rule fB defined by:

fB(a, b, c) =







(
fC(a1, b1, c1), fA(a2, b2, c2)

)
if

{

a, b, c ∈ SB \ {q} and

fC(a1, b1, c1) 6= q,

q in any other case,

where ai, bi and ci represent component i of a, b and c. Any periodic configura-
tion c of B either leads to the uniform configuration q, or contain a periodic con-
figuration of C in its first component. Hence, if C is nilpotent over periodic con-
figurations, then so is B (because q is precisely the spreading state of C). If C is
not nilpotent over periodic configurations, then there is a word u ∈ (SC \ {q})

m

and an integer t ≥ 1 such that the periodic configuration c of period u verifies
Gt

C(c) = c. Therefore, by definition of B, we have A〈m,1,t,0〉 ⊑i C
〈m,1,t,0〉 where

i : Sm
A → SB is defined by:

i(a1, a2, . . . , am) =
(
(a1, u1), . . . , (am, um)

)
.

�

This result shows that it is generally undecidable to know whether a CA is
lower-bounded by a given (fixed) one. However, there are noticeable exception
in dimension 1 for 4s and 4m.
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Theorem 4.11. Let 4 be either 4s or 4m and let A be a nilpotent CA. Then
the problem of determining if a given B is above A for 4 is decidable.

Proof. We are going to show that A 4 B if and only if B is not surjective
and the theorem follows by decidability of surjectivity in one dimension [1].
First, by theorem 4.3, if B is surjective then A�4B. Suppose now that B is not
surjective, i.e. that B possesses some Eden word u ∈ Sm

B for some length m.
Then, denoting by C the CA over states set SC = {0, 1} which is constant equal
to 0, we have C Eπ B

〈m,1,1,0〉 if π : Sm
B → SA verifies π(w) = 0 if and only if

w = u. We deduce by theorem 3.1 that A 4 B. �

Open Problem 5. Is there a non-surjective CA A which cannot injectively
simulate any nilpotent CA? Is the problem of being above the class of nilpotent
CA for injective simulation a decidable problem?

Concerning upper-bound problems, the edge between decidability and un-
decidability is also non-trivial. For instance, theorem 4.5 shows the existence of
a CA A such that the upper-bound decision problem ’B 4 A?’ is decidable in
dimension 1.

5. Tops of the Orders

In this section we study the maximal elements of the quasi-orders. This CA
are able to simulate any other CA

Definition 5.1. Let 4 be any relation among 4i, 4s and 4m. A CA A is said
4-universal if for any B we have B 4 A. It is strongly 4-universal if it strongly
4-simulates any other CA.

The notion of strong 4i-universality above is exactly the same notion as
intrinsic universality defined in section 5 of [8] and has already been considered
several times in the literature (see [32] for a survey). In fact, strong and general
universality are the same notion for 4i and 4m.

Theorem 5.1. There exist strongly 4i-universal CA and all 4i-universal CA
are strongly 4i-universal. The same is true for 4m.

Proof. For the existence of strongly 4i-universal CA, see [32]. The theorem
follows by application of theorem 12 of [8]. �

Of course, any 4i-universal is also 4m-universal. The converse is an open
problem.

Open Problem 6. Do the notions of 4i-universality and 4m-universality co-
incide?

Concerning 4s, the situation is different: no CA is strongly 4s-universal
5.

Theorem 5.2. There is no strongly 4s-universal CA.

5The proof of this fact was suggested by G. Richard.
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Proof. Suppose by contradiction that there is some strongly 4s-universal A.
Consider a uniform configuration c of A. There is n such that the orbit of c
under A contains n different configurations (the orbit is ultimately periodic).
Now consider B with n+ 1 states such that its uniform configurations are all in
the same cycle of length n+ 1. By hypothesis, for any B there is some geometric
transform α such that B Es A

〈α〉. Let d be the corresponding configuration of
c for A〈α〉. The orbit of d contains at most n different configurations and it is
therefore the same for the orbit of s(d) under B. But s(d) is necessarily uniform
and we get a contradiction with the choice of B. �

The theorem 12 of [8] don’t apply for 4s. However, we are not able either
to construct a 4s-universal CA, or to prove that there is no.

Open Problem 7. Is there a 4s-universal CA?

For the rest of this section, we consider only 4i and 4m.

5.1. On the Ways to Reach the Top

Universal CA are not hard to construct and the property of being universal is
recursively enumerable since simulation relations considered here are recursively
enumerable. However universality is not co-recursively enumerable as shown by
the following theorem. The case of 4i-universality was proven in [31]. Using
theorem 4.10, the proof below is direct and includes the case of 4m.

Theorem 5.3. The set of 4i-universal CA is not co-recursively enumerable
and neither is the set of 4m-universal CA.

Proof. There exists a CA which is 4i-universal but not nilpotent over periodic
configuration. To see this consider any universal CA and add a new state
which is spreading: the resulting CA, say A, contains at least two disjoint
periodic orbits of periodic configurations and is thus not nilpotent over periodic
configurations. The theorem follows by application of theorem 4.10 to A since
A is by construction both 4i-universal and 4m-universal. �

This result has some consequences on the structure of simulation quasi-orders
’near’ the top. The following theorem indeed shows that a non-universal CA is
always ’infinitely far’ from the class of universal ones.

Theorem 5.4. Let 4 be 4i or 4m. And let U be the set of 4-universal CA.
Then we have:

1. A× B ∈ U ⇐⇒ A ∈ U or B ∈ U,
2. if A 6∈ U then there is B 6∈ U with A 4 B but B�4A.

Proof.

1. By theorem 2.3 we have A 4 A× B and B 4 A× B which proves one di-
rection. Moreover, there exists C ∈ U with 2 states only [2, 29]. If we
suppose A× B ∈ U then, by theorem 5.1, it strongly simulates C. Hence,
by theorem 4.1, we have either C 4 A or C 4 B and thus either A ∈ U or
B ∈ U.

2. let A 6∈ U. If A was such that C 4 A for all C 6∈ U then we would have
U = {C : C 4 A} and U would be co-recursively enumerable contradicting
theorem 5.3. So there is C 6∈ U with C�4A. To conclude the proof it is
sufficient to choose B = A× C (theorem 2.3). �
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5.2. Necessary But Not Sufficient Conditions

The purpose of this section is twofold. It compares the notions of universality
defined above to other definitions of the literature and, by doing this, presents
tools and techniques to prove non-universality of some CA (other proofs of non-
universality for other purposes are developped in section 6).

One of the techniques we use to ensure that some CA is not universal yet
achieving some behaviour B, is to add a spreading state and let the CA gen-
erate this state if it detects somewhere that the current configuration doesn’t
correspond to a ’legal’ configuration, i.e. a configuration occuring normally
when producing the behaviour B. Proofs of non-universality with this tech-
nique rely on the lemma below. Before stating and proving the lemma, we need
to give some precision on spreading states and set of configurations ’supporting’
a simulation.

First, the notion of spreading state is sensitive to the choice of the syntactical
representation of the CA because it depends on the choice of the neihbourhood.
In the sequel we say a CA A has a spreading state κ if any cell changes to state
κ when κ appears in its minimal neighbourhood (i.e. the minimal set of cells
upon which the local rule effectively depends).

Second, given a relation of the form A ⊑i B
〈m,1,t,z〉, there is an isomorphism

between (A, SZ

A) and
(
B〈m,1,t,z〉, (i(SA))

Z
)
as dynamical systems. At the level

of B, the configurations involved in this relation is the set X of configurations
made of infinite concatenation of elements of i(SA) ⊆ S

m
B (viewed as words of

length m over alphabet SB). This kind of sets are called bloc subshifts and
discussed in more details in section 3.2 of [8]. In the sequel, such a set X is
called the support of the simulation.

Lemma 5.1. Let A be a CA without spreading state and B be a CA with a
spreading state κ. If B strongly 4m-simulates A, then the support X of the
simulation cannot contain κ.

Proof. By hypothesis, there are parameters m, t, τ , z and a CA C such that

A Eπ C ⊑i B
〈m,τ,t,z〉.

By choice of B, B〈m,τ,t〉 admits κm as spreading state. Moreover, by definition
of E⊑, the minimal neighbourhood of A is included in the minimal neighbour-
hood of B〈m,τ,t〉. Thus, if κ appears in some configuration of X then the state
π(i−1(κm)) is a spreading state for A because κn also appears in X for arbi-
trarily large n. �

We first study how embeddings of Turing machines into CA can relate the
notions of universality for Turing machines to the notions of universality derived
from quasi-orders as defined above.

An embedding of a Turing machineM into a CA A is an embedding of the
instantaneous descriptions of M into configurations of A such that instanta-
neous descriptions of successive steps of M corresponds to successive steps of
A via the embedding. We don’t give any formal definition of embedding since
we will never prove negative result (i.e. assertions of the form ‘there is no em-
bbeding ofM such that...’). However, the embeddings we use in the sequel are
classical and already appeared in the literature (see [35]).
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Theorem 5.5. For any Turing machineM, there exists a CA A which embeds
M but is not 4m-universal.

Proof. LetM = (SM, QM, φM) where SM is the set of states ofM, QM is
the tape alphabet, and

φM : SM ×QM → SM ×QM × {−1, 0, 1}

is the transition function ofM. We construct a CA A over state set

SA = QM × {←,→} ∪QM × SM ∪ {κ}

where → and ← are states not already in SM. Each cell of A corresponds to
a tape position of M: it contains a letter from the tape alphabet and either
a head with its current state or no head but an indication ← or → telling in
which direction to find the head. On configurations containing a single head,
A mimics transitions ofM step by step as expected. Thus, A embbedsM. In
addition, A checks that ← a never occur to the left of a state from SM or a →
(and symmetrically for →). If the check fails, then the state κ is generated and
spreads.

This construction ensures that, for any initial configuration c, if the orbit of
c never contains an occurrence of κ then it contains at most one head. Hence,
these orbits are such that at any time step state changes occur on the neigh-
bourhood of at most one position (a head move involves a state change in two
adjacent cells).

Now suppose that A is 4m-universal and consider the CA B = σ1 × σ−1. A
strongly simulates B (theorem 5.1). Since B has no spreading state, then the
set X of configuration of A on which the simulation occurs never contains κ.
We deduce that all orbits of configuration from X have the property described
above. This implied that B is such that on all its orbits, at most 2 cells change
their state between two steps: this in contradiction with the choice of B. �

Turing-universality of cellular automata is a fairly vague notion in the liter-
ature. We don’t give a formal definition here since we won’t prove any negative
result concerning Turing-universality. We just consider that a CA able to embed
a universal Turing machine6 is Turing-universal.

We can chooseM to be universal in the previous theorem (theorem 5.5). In
this case, since the embedding used in the proof ensures thatM is simulated in
real time by A, we deduce that the following problem is P-complete:

Input: a state q ∈ SA, an integer t ≥ 1, and a word u ∈ S2rt+1
A where r is the

radius of A;

Query: do we have At(u) = q?

This problem of finite triangle computation has been considered several times in
the literature and it has been proven that it was P-complete for particular CA
[12, 28]. This notion of complexity inherited from sequential computation theory
fails to capture the notion of universality associated to simulation quasi-orders.

Corollary 5.1. There exists a CA which is Turing-universal and P-complete
but not 4m-universal.

6We don’t give any formal notion of universality for Turing machine either. In fact, we
only need to suppose the existence of at least one universal Turing machine.
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6. Induced Orders

This sections aims at studying particular CA or sets of CA for the ordered
structure they induce in the simulation quasi-orders. While studying various
properties of the quasi-orders in the previous sections, we have already estab-
lished the existence or several induced infinite structures.

For instance, theorem 5.4 allows to construct an infinite strictly increasing
chain of non-universal CA starting from any non-universal CA for the quasi-
orders associated to 4i and 4m. Besides, theorem 3.4 implies the existence of
inifinite chains in the 3 quasi-orders studied in this paper.

Section 6.1 below gives a way to construct chains of length ω + ω and an
hint about the existence of chains of length ω × ω. However, we leave open the
question of the longest chain induced in any of the quasi-orders. We don’t even
know if one of them admits a dense chain.

Open Problem 8. Does one of the quasi-orders admit a dense induced order?

6.1. Limit Cartesian Product

We have seen in theorem 5.4 that if A is not universal, then A ×A cannot
be universal. Therefore, no finite Cartesian product of A with itself can be
universal. Therefore, we have a chain of non-universal CA:

A 4 A×A 4 A×A×A 4 · · ·

For some A, the chain collapses in a single equivalence class, e.g. if A is a
translation (see lemma 3.4). However, the following theorem shows that for
some A, the chain is strictly increasing. Moreover, A can be chosen so that it
embeds any Turing machine.

Theorem 6.1. For any Turing machineM, there is a CA A which embedsM
and such that for any 1 ≤ n < m, one has:

A× · · · × A
︸ ︷︷ ︸

m

��4m A× · · · × A
︸ ︷︷ ︸

n

.

Proof. Le A be the CA constructed in the proof of theorem 5.5. We can
suppose that M is such that it can produce infinite sequences of left move of
its head starting from a blank tape and leaving the tape blank, and the same
for right moves (ifM has not this property, just add some states to achieve this
behaviour).

Denote by Bm the product of m copies of A and by Bn the product of n
copies. We can construct for any set of positions z1, . . . , zm a configuration c
of Bm such that for all i the ith component contains a correct instantaneous
descritpion ofM where the head is at position zi in a state suitable to generate
an infinite sequence of left or right moves. Now let c′ be a onfiguration of Bn
corresponding to c via simulation. First, if some component i of c′ contains a
spreading state, it will spread and, after some time t, will be present at some
position where the configurationGt

Bm
(c) contains no head, but only a blank tape

symbol on each component. This means that blocs of blank tape symbols in Bm
can be simulated by blocs of Bn where the ith component is a bloc of spreading
states. Considering again the orbit of c, we deduce that it can be simulated
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by a configuration c′′ where the ith component is everywhere a spreading state
except at a finite number of positions. Thus after some time, the ith component
will become uniform and constant. It is then straightforward to show that it is
useless for the simulation and that in fact Bm on c can be simulated by only
n− 1 copies of A.

Applying the reasoning inductively, we can therefore suppose that no spread-
ing state appears on any component in the orbit of the configuration c′ defined
above. Since, the orbit of c is such that there are m distant position where some
state change at each step, it must be the case in the orbit of c′. Since, n < m,
there must be some component with two heads and therefore a spreading state
must appear after the first step: this is in contradiction with what we have just
supposed. �

For the CA A of the previous theorem, we can ask if the infinite chain of
Cartesian product is upper-bounded by some non-universal CA, or if any CA
able to simulate each product of the chain is necessarily universal. One can
imagine that for a sufficiently simple A, there is some room above the chain of
products of A and below the class of universal CA.

The rest of this section is devoted to the proof of a stronger result: for any
A, there is a CA B which is able to simulate any finite product of A and such
that B is universal if and only if A is universal. Moreover, B can be obtained
from A constructively. Because it extends property of Cartesian product given
by theorem 5.4, this construction will be called limit product in the sequel. If
A is a CA, its limit product is denoted by A∞.

Note: In the rest of this section we only consider the simulation 4m.
Without loss of generality, we can suppose that A has radius 1 (theorem 2.3).

To be able to simulate the product B of n copies of A, A∞ is made of 3 layers
(its state set is a Cartesian product union a single state, which is a spreading
state as explain hereafter):

1. the state layer,

2. the transport layer, and

3. the synchronisation layer.

and proceeds as follows.

State layer. Each components of a cell of B is simulated by a bloc of 3 adjacent
cells in the state layer of A∞. More precisely, component i (0 ≤ i ≤ n− 1)
of cell z of B is simulated by the bloc of 3 cells of A∞ beginning at position
3(nz + i). This bloc is referred to as Bz,i in the sequel. In Bz,i, the center
cell stores the ith component of the cell z of B and the two other are used
to store temporarilly ith components of cell z − 1 and z + 1.

Transport layer. The role of the transport layer is precisely to bring states of
ith components corresponding to cell z−1 and z+1 of A to the dedicated
cells of A∞ in Bz,i. Then, the transition fA(xz−1, xz , xz+1) of the ith
component of B can be simulated locally by A∞ in Bz,i. Transport is done
in parallel for any i and any z. To do this, the transport layer is made of
a succession of particles (one every 3 cells), each one being able to carry a
state of A. Initially aligned with the center of blocs, the particules move
in parallel according to a cycle of 5 steps:
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1. move right by 3n cells and read the state seen on the state layer;
2. move left by 3n− 1 cells and write the memorized state on the state

layer;
3. move left by 3n+ 1 cells and read the state seen on the state layer;
4. move left by 3n− 1 cells and write the memorized state on the state

layer;
5. move 1 cell right and apply local rule fA on state layer at the current

position;

Synchronisation layer. The role of the synchronisation layer is to orchestrate
the cycle of particle moves and it must be able to do it for arbitrary
large values of n (simulating arbitrarily large Cartesian products of A is
sufficient to simulate all products of A). It contains a flag that can take
one of the 4 indications ’left’, ’right’, ’read’, ’write’ and ’transition’. The
flag is changed everywhere synchronously according to a cycle suitable to
ensure that particles of the transport layer produce the cycle described
above when they follow the instruction given by the flag.

We now describe in detail the synchronisation layer. Denote by un the flag
sequence mentionned above in the simulation of a product of n copies of A, and
let E be the set of flag states.

Theorem 6.2. There is a CA C with a spreading state κ and a map π : SC → E
such that C is not 4m-universal, and, for any configuration c ∈ SZ

C , one of the
following property is true:

Cycle: at each time in the orbit of c, all cells have the same image by π and
the sequence with time of this common image is periodic of period un for
some n;

Frozen: at each time in the orbit of c, all cells have the same image by π, but
this common image remains constant after a certain time;

Error: the spreading states appears at some time in the orbit of c.

Moreover C is such that there are configurations having the ’cycle’ property above
producing period un for arbitrarily large n.

Proof. First, notice that flag changes in the sequence un are separated by a
number of steps which is either constant (independant of n), or of the form
3n+ c with c a constant (we can suppose c ≥ 0 without loss of generality). To
simplify notations, we will suppose in this proof that un alternates between two
values 0 and 1 every 3n steps. Adapting the proof for the real un is just a matter
of adding a finite set of special states to deal with constants.

The proof is based on a reversible solution B to the firing squad synchro-
nization problem proposed by K. Imai and K. Morita: in [16], they construct a
reversible CA B with a subset of states F (the firing states) such that for any
n, there is a periodic configuration cn verifying7:

7In [16], the main concern is synchronisation of finite segments of cells surrounded by a
quiescent state. To extend the property to infinite configurations, it is crucial that “garbage”
(which must be conserved to ensure reversibility) do no spread outside the initial segment. The
solution of K. Imai and K. Morita has precisely this property as it is explicitely mentionned
in [16].
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• G3n
B (cn) ∈ F

Z

• Gt
B(cn) ∈ (SB \ F )

Z for all t, 0 ≤ t < 3n.

Without loss of generality, we can suppose that B and its inverse are syn-
tactically represented with the same radius. We now define a CA C0 of radius
r, with states set SC0

= SB × SB × {0, 1}, and with transition function:

fC0

(
(a−r,a

′
−r, b−r), . . . , (ar, a

′
r, br)

)
=

{(
fB(a−r, . . . , ar), fB−1(a′−r′ , . . . , a

′
r′), χ(a0, b0)

)
if b0 = 1,

(
fB−1(a−r, . . . , ar), fB(a

′
−r, . . . , a

′
r), χ(a

′
0, b0)

)
if b0 = 0,

where χ(a, b) equals 1− b if a ∈ F and b else. Intuitively, on configurations
where the third component is uniform equal to b, C0 mimic B on the first com-
ponent and B−1 on the second one if b = 1 or the converse if b = 0. Moreover,
the value of b is switched each time the component playing B encounters a
firing state. Hence, if we choose for π the projection on third component, C0
started from configurations cn has the property ’cycle’ and produce the periodic
sequence un.

We now enrich C0 with a spreading state which is produced each time one
of the following local checking fails:

• the third component {0, 1} must be uniform;

• for the two first components, a state from F (firing state) must always be
surrounded by states from F only;

• states from F are forbidden on the second component if b = 1 and states
from F in the first component are forbidden if b = 0.

The third condition ensures that in the case of a ’cycle’ regime (firing states
appearing infinitely often), the period is equally divided between steps where
b = 0 and steps where b = 1. To ensure that such ’cycle’ regime always produce
an alternance of exactly 3n zeros and 3n ones, we add a component implementing
a couter modulo 3: the value of this component is incremented modulo 3 at each
step (whatever the context) and a spreading state is generated if a cell contains
a firing state and the counter is not 0 modulo 3. Denote by C the CA obtained
and consider any configuration c. If no spreading state appears in the orbit of c,
then the third component is uniform. If it changes of state only a finite number
of times, then we are in the ’frozen’ regime. If there are infinitely many changes,
it follows from the discussion above that the conditions of the ’cyclic’ regime
are fulfilled.

To conclude the theorem, it remains to prove that C is not 4m-universal.
Suppose by contradiction that it is and let U be any universal CA without
spreading state and consider the setX of configurations of C which is the support
of the strong simulation of U (C strongly simulmates U by theorem 5.1). X
cannot contain any occurrence of the spreading state (by lemma 5.1), it implies
that all configurations of X have a uniform third component. But, on such
configuration, the dynamics of C is reversible. Hence U is reversible: this is a
contradiction with its universality by theorem 4.3. �
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The synchronization layer of limit products are exactly the automaton C
of the previous theorem, except that the spreading state of C now becomes a
global spreading state. Before establishing the main result of this section, we
give more details concerning the state layer and the transport layer of A∞.

The state layer is made from state set SA × {L,C,R} where L, C and R
are states to identify explicitely the role of each cell in each bloc Bz,i: C for the
cell storing the ith component of cell z of A and L and R to temporarilly store
states of ith component of cells z − 1 and z + 1 respectively.

The transport layer is made from state set SA ∪ {⊥} where ⊥ is the state
used to separate particle carrying a state from SA.

So the states set of A∞ is:

SA × {L,C,R}
︸ ︷︷ ︸

state

× SA ∪ {⊥}
︸ ︷︷ ︸

transport

× SC \ {κ}
︸ ︷︷ ︸

synchronization

∪ {κ}.

In addition to the behaviour described above, A∞ do the following local
checkings and generates the spreading state κ if one of them fails:

• the second component of transport layer must be periodic of period LCR;

• the transport layer must contain an alternance of 1 state from SA and 2
states ⊥;

• when doing read and write operations, the particles of the transport layer
must be aligned with the right type of state in the state layer:

– type C when reading,

– type R when writing at step 2,

– type L when writing at step 4;

• when the synchronisation layer says ’transition’, check that the particules
are aligned with cell of type C in the state layer.

All those checking ensure the following property: if no spreading state is
generated and if the component layer produce a correct cycle of instructions,
then the behaviour of the state layer is equivalent to the behaviour of some
Cartesian product of A (up-to some rescaling).

Before stating the main theorem, we establish a simple yet useful lemma
saying that if A simulates B with support X , then everything A can simulate
using a support included in X can also be simulated by B.

Lemma 6.1. Let 4 be either 4i or 4m. Let A and B be such that the simula-
tion A 4 B occur on a support X of configurations of B. If B 4-simulate C on
a support included in X, then A 4-simulates C.

Proof. We consider the case where4 is4i. By hypothesis, we haveA
〈α〉 ⊑i B

〈β1〉

on support X and C〈γ〉 ⊑j B
〈β2〉 on support Y ⊆ X. Now, letmα, mβ1

, mβ2
and

mγ be the packing parameters of transforms α, β1, β2 and γ respectively. The
injective maps i and j induce two injective maps iβ2

and jβ1
with the following

domains and ranges:

iβ2
: S

mαmβ2

A → S
mβ1

mβ2

B

jβ1
: S

mγmβ1

C → S
mβ1

mβ2

B
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Therefore φ = i−1
β2
◦ jβ1

is a well-defined injective map from S
mγmβ1

C into S
mαmβ2

A .
Now define the transforms ηa and ηc to be the composition of α and β2, and of
γ and β1 respectively. Then we have C〈ηc〉 ⊑φ A

〈ηa〉.
The extension of the previous reasoning to 4m is straightforward. �

This lemma together with lemma 5.1 is the key to a kind of ’self-checking’
simulation used in the construction of the limit product (and re-used in sec-
tion 6.2). A ’self-checking’ simulation of B by A is standard simulation of B by
A on some support X with the additional property that A ’checks’ locally on
any configuration that it belongs toX , and triggers some pathological behaviour
(typically a spreading state) in case of check failure. Hence any possible strong
simulation of some C by A is such that:

• either it has a support included in X in which case B can also simulate C
by lemma 6.1,

• or it must contain some c 6∈ X in its support in which case a spreading
state is genereated and lemma 5.1 give some limitation on C.

To show that a spreading state is generated in the second case above, a
crucial property is that the support of any simulation is by definition always
irreducible: if u1 and u2 are words occuring in two configurations of the support,
there exist a third configuration of the support where u1 and u2 both appear
(see section 3.2 of [8] for a more detailed discussion on supports of simulations).

We now state the main theorem of this section.

Theorem 6.3. For any A, its limit product A∞ is such that:

• A× · · · × A
︸ ︷︷ ︸

n

4m A∞ for all n ≥ 1,

• A∞ is 4m-universal if and only if A is 4m-universal.

Proof. The first assertion follows from the construction ofA∞ and the detailed
discussion above. Now suppose that A∞ is 4m-universal and let U be any
universal CA without spreading state. By theorem 5.1, A∞ strongly simulates
U : U E⊑ A∞

〈α〉 for some geometrical transform α. Let X denote the support
of the simulation. By choice of U , the spreading state κ cannot appear in any
orbit of any configuration of X (by lemma 5.1). We deduce from theorem 6.2
that the synchronization component is in the same regime (either ’cycle’ for a
fixed value n or ’frozen’) for all the configurations of X because otherwise, we
could construct a configuration in X producing a spreading (by irreducibility of
X).

In the case where all configurations are in the frozen regime, the flag of
the synchronization layer becomes constant after some time t0, so the transport
layer has the behaviour of a translation (or identity) and the state layer remains
constant. t0 is identical for all configurations of X (because otherwise, we
could once more combine two configurations to produce a spreading state, by
irreducibility of X). Then, consider a CA U+ with state set SU × {0, . . . , t0}
which has the following behaviour:

• the second component is decreased by one until it reaches 0;
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• on the first component, the local rule of U is applied, but only if the second
component is 0.

Since U is 4m-universal, it can strongly simulate U+ (by theorem 5.1): precisely,
U+ E⊑ U 〈m,1,t,z〉. Consider the set Y of configurations of U corresponding via
simulation to the set of configurations of U+ uniformly equal to t0 on the sec-
ond component. Denote by XY ⊆ X the corresponding set of configurations of
A∞. By choice of U+, we know that U simulates itself on the set of configura-
tions Gtt0

U (Y ). This implies that for some t′ ≥ t0, A∞ can simulate U using as

support the set of configuration Gt′

A∞
(XY ). By hypothesis, starting from such

configurations, A∞ has a behaviour of translation or identity on the state and
transport layers. Since the synchronizing component evolves independantly of
the others, we deduce by lemma 6.1 that there is some CA B which is a product
of translation (corresponding to state and transport layers) such that B × C sim-
ulates U : this is a contradiction by theorem 5.4 since neither B (theorem 3.4),
nor C (theorem 6.2) is universal.

Hence, we are necessarily in the case where the synchronization layers pro-
duce a valid cycle. Since no spreading state can be generated in the orbit of
any configuration of X , the state layer always behave like a Cartesian product
of n copies of A. The value of n is in fact common to all configurations of X (as
shown above), so we deduce by lemma 6.1 that A× · · · × A

︸ ︷︷ ︸

n

simulates U and A

is therefore universal by theorem 5.4. �

Of course, we can consider A∞ itself as a new candidate for taking its finite
Cartesian products and applying the limit product construction. In fact, the
process can be repeated forever with the guarantee that no CA ever produced
in this chain will be universal, provided the initial CA is not. However, there
is no reason why this infinite chain should be strictly increasing. In particular,
even if

A 4 A×A 4 A×A×A 4 · · ·

is a strictly increasing chain, it might be the case that A∞ is equivalent to
A∞ ×A∞. Therefore we have only proven that one of the following properties
is true:

• there is a strictly increasing chain of length ω × ω in the quasi-order
(AC,4m),

• for any non-universal CA A, there is a non-universal CA B such that
A 4m B and B × B is equivalent to B.

6.2. Sub-Families of Cellular Automata

Theorem 2.3 shows that any equivalence class in any quasi-order contains
some CA with radius 1. This fact is a direct consequence of a well-known trans-
formation of CA with large radius into CA of smaller radius with more states
(this transformation is called ’higher block presentation’ in symbolic dynamics,
see [21]).

It is also sometimes invoked in the literature that considering CA with 2
states only is not restrictive since there is a converse transformation that trans-
forms a CA with many states into a CA with only 2 states but a larger radius.
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However, the situation is different since there are equivalence classes without
CA having 2 states: e.g. Zp for any prime p 6= 2 as shown by theorem 3.2 and
lemma 3.2. Note that the same is true for any fixed state set of cardinal n: the
equivalence class of Zp contains no such CA provided p is prime and do not
divide n.

Hence, this transformation introduces a bias: the transformed CA may be
inequivalent to the original one. Meanwhile, we know that CA with 2 states
can be as powerful as CA in general since there are universal CA with 2 states
only [2, 29] (for simulation realtions 4i and 4m). More precisely, as we will see
below, the transformation applied to a universal CA always yields a universal
CA because the transformed CA simulates the original one. Since the original
and the transformed CA are not always in the same equivalence class, one
question that naturally arises is: what CA can be simulated by the transformed
CA but not by the original one? Although it provides only partial answers, this
section is devoted to that kind of questions, for CA with 2 states and for other
families.

Formally, given a familly F of CA, we say a map φ : AC → F is a 4-encoding
of CA into familly F if

∀A,A 4 φ(A).

We will only consider simulation relations 4i and 4m in the sequel, thus an
encoding into F implies that there are universal CA in F. A trivial example of
such an encoding is given by F = {U} where U is a universal CA and φ is the
map sending any CA to U . We are interested in using this notion of encoding
with families which are more ’representative’ of the diversity of behaviours in the
whole set of CA. To express this we introduce the following notion of faithfulness.

Given a 4-encoding φ : AC → F and a set E of CA, we say that φ is faithful
for E if:

∀B ∈ E : B 4 A ⇐⇒ B 4 φ(A).

An encoding is faithful for E if the original CA and its image by the encoding
simulate exactly the same CA in E. So, to give some evidence that a family F

is ’representative’ of CA in general, we can exhibit an encoding of CA into F

which is faithful for a set E of CA as large as possible. When E is the whole set
of CA, the faithfulness implies that there is a CA of family F in any equivalence
class: this is the case for CA with radius 1.

The next theorem gives 4 encodings which are faithful for U , the set of
4m-universal CA. The families corresponding to these encodings were already
defined in this paper except one: captive CA.

Captive CA where introduced in [36] and are defined by a simple restriction
on the transition rule. A CA A, of states set SA, radius r and local rule fA is
captive if:

∀a−r, . . . , ar ∈ SA : fA(a−r, . . . , ar) ∈ {a−r, . . . , ar}.

In the following theorem, encodings are different but their faithfulness rely on
the same idea of ’self-checking’ simulation explained above which uses lemma 5.1
and lemma 6.1.

Theorem 6.4. Let 4 be 4i or 4m. For any family of CA below, there is a
4-encoding from CA into F wich is faithful for the set U of 4m-universal CA:
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• CA with 2 states,

• CA in T2,

• CA in T3,

• captive CA.

Proof. To describe the encoding for each family, we suppose A is a CA with
states set SA = {a1, . . . , an}, with radius r and location rule fA.

2 states CA. Let m be an integer large enough and ψ be an injective map
from SA to {0, 1}m such that no word ψ(a) contains an occurrence of 11.
Now define the injective map i : SA → {0, 1}

m+4 by i(a) = 0110ψ(a). Let
r′ = (r + 1)(m+ 4). φ(A) is a CA of radius r′ and states set {0, 1} defined
as follows:

• on the setX of configurations made of infinite concatenation of words
from i(SA), φ(A) is isomorphic to A so that A ⊑i φ(A);

• everywhere else, φ(A) generates a 1.

The map φ is thus an encoding of CA into 2-states CA. Now suppose
that φ(A) is universal and let U be a universal CA with 2 states and
no spreading state which is strongly simulated by φ(A) on support Y
(theorem 5.1). If there is some y ∈ Y with y 6∈ X then

• either there are two occurrences of 0110 in y which are not correctly
spaced,

• or there is a word 0110u0110 occurring in y with u 6∈ ψ(SA).

In any case, the image of y will contain an occurrence of 111 (because
the above error must be seen by at least 3 consecutive cells) and 1’s will
propagate like a spreading state which is impossible by lemma 5.1 because

otherwise φ(A)
〈3,1,1,0〉

could simulate U on a support where it possesses
the spreading state 111. So Y ⊆ X and lemma 6.1 shows that A simulates
U . Hence A is universal if and only if φ(A) is.

Captive CA. The encoding technique for captive CA is very similar and al-
ready appeared in a non-faithful form in [36]. Let u be the word a1 · · · an,
let # be a state not in SA and denote Q = SA ∪ {#}. We define the
injective map i : SA → Qn+3 by i(a) = #u#a. We then define φ(A) in a
way similar to the case above. Its radius is r′ = (r + 1)(n+ 3), its states
set is Q and its local rule is such that:

• on the setX of configurations made of infinite concatenation of words
from i(SA), φ(A) is isomorphic to A so that A ⊑i φ(A);

• everywhere else, φ(A) take as new state the maximum of its neigh-
bours for some fixed ordering of Q such that # is the maximum.

First, φ(A) is captive and φ defines an encoding of CA into captive CA.
Second, notice that for any support of simulation Y of φ(A), if there is
some y ∈ Y with y 6∈ X then, by irreducibility of Y , either there is y′ ∈ Y
with y′ 6∈ X and y′ contains a #, or # never appears in Y . In the second
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case, φ(A) always applies a max as local rule and therefore possesses
a spreading state when restricted to Y . In the first case, consider the
configuration y′ and z ∈ Z such that positions z and z + 1 both see a # in
their neighbourhood and a local pattern not in X (such a z must exist by
choice of y′ and definition of X). Then φ(A)(y′) contains the pattern ##
which is spreading by definition of φ(A). In any case we can apply the
usual reasoning with lemma 5.1 and lemma 6.1: any CA without spreading
state strongly simulated by φ(A) is also simulated by A. So the encoding
φ is faithful for universal CA.

T2 and T3. For T2, the encoding is simple: φ(A) is just A with an additional
state κ which is spreading. The resulting CA φ(A) is always in T2 since
κ2r is a blocking word (see [19]). Lemma 5.1 is then sufficient to prove
that it is an encoding from AC to T3 which is faithful for universal CA.

For T3, the proof is even simpler: φ(A) = A× σ1 × σ−1 is always in T3
since σ1 × σ−1 ∈ T3 and an equicontinuous point in a Cartesian product
induce equicontinuous points for each component. Theorem 5.4 concludes
for the faithfulness.

�

These encodings allow to transport some properties of general CA concerning
the top of quasi-orders into order structures induced by each family8.

Corollary 6.1. Let 4 be 4i or 4m and let F be a family of CA among: CA
with 2 states, T2, T3, captive CA. Then we have the following properties:

• the set of 4-universal CA in F is not co-r.e.

• for any non-universal A ∈ F, there is a non universal B ∈ F with A 4 B
but B�4A.

Proof. The first property is a direct corollary of theorem 6.4 and 5.3 by defi-
nition of faithful encodings.

For the second property, consider the encoding φ established in theorem 6.4
and let A ∈ F be any non-universal CA. By theorem 5.4, there is some non-
universal CA B such that A 4 B but B�4A. By faithfulness of φ, φ(B) ∈ F is
not universal and by the definition of encoding it simulates A without being
simulated by A. �

The families considered above induce structures sharing some properties with
the general quasi-orders ’near the top’. However, the complete characterisation
of equivalence classes occupied by some CA of these families is more challenging.

Open Problem 9. What are the quivalence classes of the simulation quasi-
orders containing a 2-states CA? a captive CA? a CA from T2? a CA from
T3?

8A stronger result concerning captive CA appears in [38]: 4i-universality is undecidable
even if we restrict to captive CA with a fixed (but sufficiently large) radius.
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