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ABSTRACT

The purpose of this paper is to introduce a new vector quantizer (VQ) which takes place in a temporal-
adaptative coding scheme for the compression of digital image sequences.
Our approach, which has to perform a fast codebook construction, unify both efficient coding methods :
a fast lattice encoding and an unbalanced tree-structured codebook design according to a distortion vs.
rate tradeoff. Moreover, this tree-structured lattice vector quantizer (TSLVQ) has a convenient property :
because of its lattice structure, no reproduction vectors have to be transmitted.
Briefly this TSLVQ technique is based on the hierarchical packing of embedded truncated lattices. We
investigate here its design : by, first, explaining how to determine the support lattice and secondly how
to obtain the hierarchical set of truncated lattice structures which can be optimaly embedded with respect
to the hierarchical packing. We then use a simple quantization procedure and describe the corresponding
tree-structured codebook. Finally we present two unbalanced tree-structured codebook design algorithms
based on the BFOS distorsion vs. rate criterion.
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1 CONTEXT OF THE STUDY

This paper deals with the design of a new VQ which takes place in a coding scheme for the compression of
digital image sequences.

This paper mainly describes the quantization of an hybrid vector source (i.e an image source of vectors
between vectors of motion-compensated prediction errors and vectors of transformed coefficients). Usual
approaches consider that such a source has an iid multivariate generalized gaussian distribution. However
in practice this input i1s always a nonstationary signal.

Since the design of a global and optimal codebook (in the sense of yielding the smallest possible distortion
for a given rate and for any source) is unfeasible, a codebook design algorithm using a training procedure is
well fitted to the image source vector quantization. In this way, a temporal updating of the VQ codebook®?
can be performed from representative training sequences modelling the source spatiotemporal statistic of



an image sequence.

The figure 1 illustrates the temporal adaptative VQ coding concept, the paper only describes the VQ
design of this coder. Therefore our method has to perform a fast codebook design due to a fast encoding
algorithm.
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Figure 1: Temporal adaptative coding scheme. The codebook validity test consists in a mean distorsion-based
criterion.

2 INTRODUCTION

Consider that we code a stationary memoryless vectorial source. According to the asymptotic equipartition
property, as the space dimension increases, the vector probability function becomes essentially localized to
a compact region of the vector space where the density is almost uniform.!! The optimal condition for
vector quantization occurs when all the codevectors are confined to a compact support region. So for a
given bit rate (and consequently the codebook size), the average reconstruction error for the input vectors
is decreasing. Because of the uniform density, a codebook designed by truncating the highly regular
structure of a lattice is well fitted to vector quantization schemes without learning stage.®

However, in practice, the design of lattice VQ coder® produces codevectors with small representativeness
(the best quantizing lattices are known in dimensions lower than 25 and the codebook is a subset resulting
from truncating the lattice according to a restricted source distribution modeling) and needs efficient
entropy-based indexing module.

The generalized Lloyd algorithm” provides the locally optimal codebook for a given training set and a
given bit rate, but the computation complexity of usual classification methods (with or without
structurally constraints) presents a limitation on their applicability for adaptive schemes.

To overcome these drawbacks, we propose a new lattice VQ scheme based on the hierarchical packing of
embedded lattices.



The aim of the approach is to unify both efficient coding methods :

e a fast lattice encoding-decoding ;

e a (unbalanced) tree-structured codebook design which permits, in addition to its rapid search
property, a space partition adapted to the vector source distribution and to a distorsion vs. rate
tradeoff.

The paper, which presents the TLSV(Q design, is organized as follows :

o first, for a given vector space dimension, we present the TSLVQ support lattice ;

e secondly a lattice truncating method is applied in order to obtain the TSLVQ basic structure : a
confined space region which can be, by contracting it, included in a support lattice voronoi cell ;

e then a hierarchical set of truncated lattices is organized (by suitably shifting the basic structure
scale) involving the hierarchical packing ;

e we then present the quantization procedure and the corresponding tree-structured codebook design ;

e this tree structure can be pruned according to a distorsion vs. rate criterion, consequently we
investigate two unbalanced tree-structured codebook design schemes ;

e finally the last section presents simulation results.

3 TSLVQ DESIGN

3.1 Embedded truncated lattices

Some best quantizing lattices are known for space vector dimensions lower than 25 (these lattices are
characterized by having the smallest geometric second moments which correspond to quantizing average
squared errors per dimension G,, developed by Zador). Precisely we select for our application the support
lattices for which Conway and Sloane have determined fast quantizing and decoding algorithms,? that is,
unlike LBG-type algorithms, it is practically unnecessary to compute a norm to find the best reproduction
vector. These selected lattices are Z" /n > 1, D, /n > 3, Es, Ays.

Briefly speaking, a lattice is a regular arrangement of points in a n-dimensional space centered in zero. We
can describe it like a packing of identical spheres in IR" where the lattice points are the spheres centers, the
spheres radius p is called the packing radius. Moreover the covering radius R corresponds to the radius of
the equal overlapping spheres (also centered at the lattice points) which cover optimally the space.

Then, considering the L? euclidean metric, the regular structure is specifically truncated for the TSLVQ
packing. Effectively we want that the confined space, after contraction, recovers maximaly a voronoi cell of
the support lattice. So the ideal basic structure is a dilated voronoi cell with a packing radius equal to :

r=(2xk+1)xpwith k € IN*

The lattice truncation energy is then given by®: Ep = r?



Namely, the voronoi cells totally or partially within the multidimensional sphere of radius r constitute the
basic confined space.

In high dimension and for large k, an upper bound for the number of lattice points that lie within this
subset is calculated using the theta series of the lattice (which tells how many points that there are at each
distance from the origin) and considering the points into the sphere of radius 6, with :

0=02xk+1)xp+R

The figure 2 illustrates the method using the simple Z? lattice, without any loss of generality our approach
can be generalized to higher dimensions by using high dimension lattices.

Figure 2: Truncated Z* lattice considering k =1 (a), and k = 2 (b). The squares symbolise the voronoi cells
and the dots symbolize the reconstruction vectors.

3.2 Hierarchical set of truncated lattices

So, from the previous basic truncated space, by shifting its scale, we obtain a hierarchical set of
multidimensional regular structures : it i1s possible, by a simple translation, to include a lower scale
truncated lattice in any voronoi cell of the next higher scale structure.

Finer resolution

Figure 3: Hierarchical set corresponding to the previous truncated Z* lattice with k = 1.



3.3 Quantization procedure

First of all, the source vectors are projected into the basic (coarser resolution) truncated lattice. Hence a
successive quantization procedure follows : consider the input vectors localized within a voronoi cell of a
given lattice structure, the vectors are (re)projected into the truncated lattice at the next finer resolution.

Figure 4: Quantization scheme.

The figure 4 illustrates the quantization procedure using successive scaling and translating operators. We
have :

e X : source vectors ;

Y; : truncated lattice reproduction vectors (they are also the translating vectors) ;

e Fmax : maximum energy for the source to be encoded ;

o I = Bz _ . gcaling factor used in order to project X into the basic confined space ;
Emax
o = Vf : scaling factor used in order to (re)project the vectors into the next finer resolution lattice
space ;

Only the parameters Emax and k have to be fixed. At each stage, instead of scaling the lattice we scale the
input vectors in order to use a fast encoding algorithm, and the quantization is performed with the same
truncated lattice structure.

We remark an other aspect in figure 4 : contrary to usual multistage VQ, the quantization stages number
can be variable for different input vectors (we are going to exploit this property) and only the index
corresponding to the final stage reproduction vectors has to be transmitted.

3.4 A tree-structured codebook

So the codebook has a m-ary tree structure, with m corresponding to the basic confined space points
number. A node is labeled by a lattice point, its children are labeled by the points of the lattice structure
embedded into the node voronoi cell. A tree stage specifies the scale amplitude : the deeper is the tree, the
finner is the resolution ; the reconstruction errors of the input vectors decrease while the terminal nodes
number increases. The final codebook is the set of the terminal nodes or leaves.

Figures 5 and 6 show tree-structured codebooks examples. The special interest of the hierarchical packing
of embedded lattices can be seen in these figures where the space partition is well fitted to the input
statistics.



Figure 5: (a, b, ¢) Tree-structured codebooks example corresponding to the previous truncated 7?2 withk = 1.
We consider 1 quantization stage (a), 2 quantization stages (b) and 3 quantization stages (c). The white dots

symbolize the input vectors with 1id multivariate gaussian statistic. The black dots symbolise the reproduction
vectors.

Figure 6: (a, b, ¢) Tree-structured codebooks example corresponding to the previous truncated 72 with k = 1.
We consider 1 quantization stage (a), 2 quantization stages (b) and 3 quantization stages (c). The white dots

symbolize the input vectors with iid multivariate laplacian statistic. The black dots symbolise the reproduction
vectors.



A training procedure is performed to design the tree-structured codebook T. Let Y;, the reproduction
vector and Cy, the voronoi cell associated with a node ¢;, L is the training sequence size (i.e the number of
vectors X). Then, each tree node ¢; is characterized by :

o P(t;) = % : the probability of reaching ¢; when encoding the given source (card(Cy,) is the

number of input vectors which lie within Cy,) ;

e d(t;) = m. ZXGC“ ||X — V3,])? : the average distorsion resulting from encoding the input

vectors that lie within Cy, with Y3, (it is an average squared error) ;

e [(t;) = —log, P(t;) : the entropy code length associated with V3.

Since an entropy encoding is used for indexing the tree leaves. An efficient encoding and indexing is
achieved if the basic confined points number is highly restricted? ; so k is fixed to 1 for the lattice
truncation energy calculation Erp.

3.5 Unbalanced tree-structured codebook design

Two classical strategies have been explored in order to obtain an unbalanced tree according to a distortion
vs. rate tradeoff (exactly it is a distortion vs. entropy tradeoff) : a tree pruning and a greedy tree growing
approach.

3.5.1 Tree pruning algorithm

We use the BFOS algorithm.!

First a (balanced) complete tree is designed (because of the storage complexity, this approach is practically
suitable only for a lower space dimension when the confined space points number is lowest). After that,
this tree is pruned according to a distortion vs. rate criterion.

Namely, if Sy, is a branch of T (i.e a subtree that is rooted at some node ¢; € T, and such as S;l, the
branch leaves, are also leaves of T), we have :

® 0(51,) = X4 es, P(t;).d(t;) : the branch average distortion ;
o [(S:) = theSl P(t;).1(t;) : the branch average entropy code length ;
o A§(Sy,) = P(t;).d(t;) — 6(St,) : the increase in distortion if Sy, is removed ;

o Al(Sy,) =1(S:,) — P(t:).l(t;) : the decrease in rate if Sy, is removed ;

A5(Sy;)

= A5 : the BFOS criterion.

A(t;) can be interpreted as a possible piece-wise of the slope of the experimental distorsion vs. rate curve.
Thus we successively prune the branches for which A(¢;) is minimal such as the total average distortion is
increased as little as possible for a decrease in total average length. Then the resulting sequence of



distortion vs. rate pairs corresponding to the pruned subtrees S (i.e S is a subtree with the same root node
as the full tree T) lie on the convex hull of the operational distorsion vs. rate function.

The BFOS algorithm could be considered as using a lagrangian optimization technique. It minimizes the
functional J(S) = 6(S) + A.l(S), where A is interpreted as a lagrangian multiplier (the slope of the
distortion vs. rate curve) : varying A, all of the distorsion vs. rate pairs on the convex hull of the
operational distorsion vs. rate function can be found.

The average distortion or the average entropy code length associated to the pruned subtree enables to
interrupt this codebook design procedure.

3.5.2 Greedy tree algorithm

In this part we don’t use a complete tree as the starting point for the pruning process : any tree structure
can be used, an individual leaf splitting (i.e we include a basic lattice structure into its associated voronoi
cell) is applied to grow the tree which can then be pruned afterwards.

Namely, we split the leaf that provides the best tradeoff between total average distortion over all terminal
nodes and total average entropy. Considering the previous notations, Aé specifies the decrease in average
distortion and é[ specifies the increase in average length resulting from a specific node split. A splitting
procedure on the leaves provides the largest possible slope |A§/Al|, namely we split one leaf so that the
average distortion is decreased as much as possible for an increase in average length and hence the
magnitude slope is maximized.

This algorithm'? is greedy in that it only considers the short term effect of extending the tree ; it considers
what happens with the addition of a single add of leaves grow from the current leaf.

The average distortion or the average entropy code length associated to the greedy growing tree enables to
interrupt this codebook design procedure.

Finally the overall information that we have to transmit to characterized the TSLVQ codebook 1s
constituted by :

o Frp,
e the unbalanced tree,

e the entropy index corresponding to the tree leaves.

Because of the lattice predefined structure no reproduction vectors have to be transmitted.

4 EXPERIMENTAL RESULTS

Comparative experiments applied to iid multivariate generalized gaussian synthetic sources have been
performed. The training ratio (i.e the ratio of L on the leaves number) is upper than 150 in order to limit
the reproduction vectors number.

The figures 7 and 8 illustrate the tree pruning approach with Z? lattice. The tree growing approach is
illustrated by the figure 9 with Dy, lattice.



Figure 7: (a, b, ¢) Tree pruning approach illustration considering respectively a gaussian distribution (a), a
laplacian distribution (b) and generalized gaussian distribution (c).
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The figure 7 shows how an unbalanced tree-structured codebook design using our method is adapted to the
differential or hybrid image source coding : for a given rate, the high-density space region (where are
located the lowest error magnitudes) is coarsely quantized in order to permit a finer coding of the
low-density space region (where lie relevant vectors).

The figures 8 and 9 show examples of experimental distortion vs. rate curves, the figures include for
comparison Shannon’s distortion vs. rate function for the considered source. The interest of using higher
dimensions is demonstrated since TSLVQ with D, lattice performs better than TSLVQ with Z? lattice (a
lower distortion is achieved for a lower rate). Very low bit rate will be achievable only with higher space
dimensions ; this point will be tested in our further investigations and applied to real spatiotemporal
sources.
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