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Abstract

Time Resolved Spectroscopy is able to separate the light scattering
effect from the chemical absorption effect. This method is based on
the time dispersion of light pulses into the scattering medium. The
reduced scattering coefficient and the absorption coefficient are usu-
ally obtained using numerical optimization technique or Monte Carlo
simulation. In this study, we propose to create a prediction model
obtained using a semi-parametric modelisation method : the Least-
Squares Support Vector Machine. The main advantage of this model
is that it uses theorical curve of time dispersion during the calibration
step. The prediction can then be performed on different kind of sam-
ples such as apples or biological tissue.

1 Introduction

Striking advances have been made in Time Resolved Spectroscopy (TRS).1

While near infrared spectroscopy measurement are influenced by the light
scattered by the sample, TRS separates chemical interactions from scatter-
ing interactions. TRS was firstly developed for medical applications2,3 . It
is now extended to other fields such as pharmaceutical4 products or agricul-
tural products5,6 . TRS uses a laser pulse of a few pico-second to irradiate
a sample. The light signal reflected by the sample at a given distance from
the irradiation point is then temporally recorded in reflection or in transmis-
sion7 . In order to measure simultaneously the temporal signal at different
wavelengths, new techniques involving non-linear effects have been proposed.
The first one used water self modulation for generating a white pulse.8 The
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latest technology is based on light continuum generation using a polycristal
fiber.9

Once the 2-dimension signal is recorded, the reduced scattering coefficient µ′

s

and the absorption coefficient µa are obtained by linking the experimental
data with the theoretical diffusion equation. Probably because this step is
the most crucial, many methods have been proposed to estimate this rela-
tionship. Three approaches are usually found : Monte Carlo simulation7,10 ,
numerical optimization11,12 , analytical decriptor of temporal dispersion13 .
Since the signal can not be described by a linear equation (this is why curves
descriptors are often used), a non linear multivariate model is required.Semi-
parametric methods, such as kernel ones provide more understandable mod-
elisation than artificial neural network. Recently Least-Square Support-
Vector Machines (LS-SVM)14 methods have been developed and applied to
near infrared spectrometry issues such as a non-linear discrimination15,16 and
quantitative predictions.17

This paper aims at studying LS-SVM theorical models calibrated only using
the diffusion equation in reflectance mode. This model is then applied to the
prediction of the reduced scattering coefficient and the absorption coefficient
on experimental data.

2 Theory

2.1 Diffusion Equation

The photon response is described by the radiative transfer equation which
is18 :

1

c

∂L(r, s, t)

∂t
+s.∇L(r, s, t)+(µs+µa)L(r, s, t) = µs

∫

4π

L(r, s, t)p(s, s′)dω′+Q(r, s, t)

(1)
Where L is the radiance at a given distance r from the irridiating source at
time t and in direction s. p(s, s′) is the Henyey Greenstein phase function,
dω′ is the angle between initial photon direction s and the new one s′. c is the
speed of ligth in vaccum. In order to solve this equation the sample geometry
must be taken into account for generating hypothesis on boundaries. In
the case of a semi-infinite homogeneous medium measured in reflection, the
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solution is7 :

R(ρ, t) = (4πDv)−3/2z0t
−5/2 exp(−µavt) exp

(

−
ρ2 + z0

2

4Dvt

)

(2)

Where R is the signal measured at a given distance ρ at time t. D is the
diffusion coefficient with D(λ) = [3(µa(λ) + µ′

s(λ))]−1 and z0(λ) = 1
µ′

s
(λ)

is
the mean path. v is speed of light in the medium, steady across wavelengths.
Considering a constant distance, ρ, the equation dimension can be reduced :

R(t) = (4πDv)−3/2z0t
−5/2 exp(−µavt) exp

(

−
ρ2 + z0

2

4Dvt

)

(3)

A theoretical database containing time-resolved curves may be easily ob-
tained usig Eq. (3). A model can be derived based on this database to
predict µa and µ′

s.

2.2 LS-SVM theory

LS-SVM models are an alternate formulation of SVM regression19 proposed
by Suykens.14 Whereas classical mulivariate regression are built on variables
(e.g. time data for TRS or wavelengths for spectroscopic data) LS-SVM
methods are based on a kernel matrix K. The matrix Xn,p containing n
samples with p variables (e.g. n time-resolved curves) is then replaced by
the Kn,n kernel defined as :

K =







k1,1 ... k1,n
...

. . .
...

kn,1 ... kn,n






(4)

Where ki,j is given by the RBF function :

ki,j = e
−‖xT

i
−xT

j ‖
2

σ
2 (5)

Where xT
i is the time response for a TRS measurement. The variable space is

hence replaced by a sample space of a very high dimension where a sample is
defined by its distance to the other samples contained in the database. The
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proper subspace for modelisation is tuned with σ2 parameter. The higher
the σ2 is, the wider is the gaussian kernel. Put simply, ki,j represents the
similarities between xT

i and xT
j time responses. The model equation is then

:
ŷ = Kβ + β0 (6)

Where ŷ is the predicted value, K is the kernel as defined by Eq.4, β is
the regression vector and β0 is the offset term. Furthermore, the LS-SVM
objective function takes into account the norm of the regression vector in
order to increase the model robustness. The classical squared loss function
is thus replaced by the following objective function :

min(e) = min

[∑n
i=1(yi − ŷi)

2

2
+

1

γ

(βT β)

2

]

(7)

γ is a regularization parameter analogous to the regularization parameter
of regularized artificial neural networks, is used to weigh β norm. Once σ2

and γ are chosen, the model is trained after constructing the Lagrangian by
solving the linear Karush-Kuhn-Tucker (KKT) system :

[

0 lTn
ln K + I

γ

] [

b̂0

b̂

]

=

[

0
y

]

(8)

Where I refers to an [n × n] identity matrix, lnis a [n × 1] unity vector.
The solution of Eq. (8) can be found using most standard methods of solving
sets of linear equations, such as conjugate gradient descent.

3 Material and methods

3.1 Instrumentation

Fig. (1) depicts the experimental setup. More details concerning the de-
sign made by the Lund Laser Center can be found in Abrahamsson and
al.9 . Ti:Sapphire Laser, mode-locked using an Ar-ion Laser, was used to
generated 100fs pulses centered around 800nm with 80Mhz repetition rate.
After optical treatments (isolator, prism compressor...), laser pulses were
focused into a 100cm long index guiding crystal fiber (ICF)(Crystal fiber
A/S, Copenhagen, Denmark). The light continuum generated by the non-
linear effect ranged from 750nm till 1100nm. It was then collimated through
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an optical fiber aiming at irradiating the sample. Another fiber, situated
at 6mm from the irradiating one, was used to pick up the light retrodif-
fused by the sample. The fibers were in contact with the sample. A Streak
Camera (Hamamatsu, ModelC5680) coupled with an imaging spectrometer
(Chromex, Model 250IS) captured the spectro-temporal signal R(t, λ). The
spectral resolution was 0.93nm for 512 pixels and temporal resolution was
2.93ps for the 640 pixels. A recorded signal was then composed of 640 time
curves containing each 512 variables (640 × 512). The integration time was
5min (300s).

3.2 Measued samples

15 Golden Delicious Apples were measured using the TRS setup. A small
part of the apple was carefully removed in order to create a flat surface for
applying the fibers. The measurements were immediately performed in order
to avoid flesh drying effect. Prior to each sample measurement, an instru-
mental response function was recorded by connecting two fiber to each end
of a thin metal tube. This instrumental response function was then used to
determine the time of the laser pulse in the streak camera and to measure
the dispersion of the measured pulse due to the system characteristics. The
sample measurement was corrected using this reference.

3.3 LS-SVM model

The LS-SVM model was derived using a theoretical calibration set obtained
using the diffusion equation, applied for ρ = 6mm and a time resolution of
2.93ps. Each signal was divided by its maximum in order to get rid of irradi-
ating signal intensity level. For improving the model efficiency, the temporal
window t = 43ps to 900ps was selected where curves were significantlly dif-
ferent. The curve start untill t = 43ps was discard because there were no
significant differences between curves. The temporal window ranging from
t = 43ps till 900ps was chosen for our modelisation. To span the absorp-
tion and scattering variations of apple20 , a mixture design was set up as
described by Fig. (2). In order to tune γ and σ2 the training set was split
in two subsets, one for calibration (subset A) and one for validation (subset
B). Once the 2 parameters were chosen, the model was calibrated using the
whole theoritical training set. The model was then tested on experimental
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measurements.
In order to evaluate the accuracy of this new method, the predicted values
of µa and µ′

s were compared to the ones calculated by Levenberg Marquart
(LMA) optimization procedure, already used on apple TRS measurements.20

The LS-SVM toolbox (LS-SVM v1.4 1, Suykens, Leuven, Belgium) was used
with MATLAB 6.0 (The MathWorks, Inc., Natick, USA) to derive all of the
LS-SVM models.

4 Results and discussion

4.1 TRS measurements

Fig. (3-a) shows the instrumental function response. The continuum light
pulse obtained using non-linear effect in the polycrystal fiber is of 300nm

width (800nm − 1000nm). Temporal width is about 23ps. The spectral
profile was found very sensitive to changes of laser modelocking due to optics
heating. A spectro-temporal recorded apple signal is described Fig. (3-b).
Temporal dispersion is very high due to scattering phenomena inside the
medium and reaches 1025ps. Since the continuum light ranges from 800
to 1050nm, the same spectral window was selected for studying the optical
properties of the sample.

4.2 Model tuning

The optimization responses surface for µa prediction is illustrated in Fig.
(4). This surface represents the standard error of prediction (SEP) on the
validation set B. The best prediction of µa where found for γ = 50 and
σ2 = 500. µ′

s response surface (not presented here) gives the optimal solution
for the same values. Since σ2 values are the same for both µa and µ′

s, the
kernel matrix is the same ; this means that both models are built on the same
subspace, allowing for the same degree on non-linearities; only the regression
vectors are different for predicting µa and µ′

s. Low values of robustness
criteria, γ, imply the regression vectors have a small norm which is necessary
for a robust model.

1www.esat.kuleuven.ac.be/sista/lssvmlab/
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4.3 Evaluation of scattering and absorption coefficients

on experimental data

Fig.5 compares µa and µ′

s values predicted by LMA and LS-SVM for a given
apple. The absorption coefficient curves are very similar, which proves LS-
SVM prediction capabilities. In spite of the noise, the water peak is clearly
visible at 970nm as normally seen in classical NIR spectra of fruits. Regard-
ing the scattering coefficient the prediction values present an offset compared
to LMA results. This can be explained by the temporal dispersion Fig. (6)
: LS-SVM model considers the irradiating peak as perfectly resolved in time
(time width infinitely small), whereas LMA uses the instrumental response to
convoluate the diffusion equation. As shown in Fig.6 , LMA curves better fit
the experimental signal at the beginning of the curve (t = 0 to t = 100ps).
Contrarly, the LS-SVM solution better fits the experimental curves from
t = 100ps until the end of the signal. While improving the prediction perfor-
mance of µ′

s, the convolution process enhances the sensitivity of the method
to the light source variations. Since it is well known that the end of the signal
is strongly correlated to µa, absorption coefficient predicted by LS-SVM are
very similar to LMA, despite the offset between µ′

s predictions.

4.4 Prediction performances

Fig. (7) shows the LS-SVM predicted values versus LMA values of µa for the
15 apples (271 dispersion curves per sample). The determination coefficient
of 0.96 is satisfactory, with a standard error of prediction of 0.02cm−1. It
should be noted that there are no real reference values, but only reference
values estimated by LMA which might be somewhat unaccurate. Fig. (8)
shows a bias between LMA values and LS-SVM predicted values for µ′

s de-
termination. As explained before, this difference comes from the convolution
process which is not used in LS-SVM. Since the determination coefficient is
satisfactory (0.85), the model may be easly bias corrected by adding a con-
stant (−3.06cm−1). However, this approach would consider LMA values as
real reference values, although LMA has also its drawbacks and unaccuracy.
For this reason, it would be more interesting to follow a more sophisticated
approach, integrating a convolution process in the database building. In
this case, the model would be calibrated on theoretical curves obtained by
convoluating the diffusion equation with the continuum pulse (instrumental
function). Of course, this method is more timeconsumming since the model
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must be designed for each sample. When this approach is followed the pre-
diction plot gives the results shown on Fig.9. As assumed, the bias is reduced
but is not small enough to be neglected. Futhermore, the correlation coef-
ficient between LMA and LS-SVM values decreases to 0.75. However, the
predicted LS-SVM time resolved signals (Fig.10) are closer to the raw signal
than LMA solution. Actually, the noise of the measured data acts differently
on the two methods since they are base on different working. Since visual
curves analysis couldn’t be accurate enough to judge differences between
method performance, the determination coefficient between the raw signal
and the two estimated signal was calculated for each wavelength Fig.11. The
temporal curves calculated using LS-SVM predicted coefficient have clearly
the highest performance (r2 near 1). This tends to prove the accuracy of
the proposed approach. This doesn’t means LS-SVM outperform LMA since
LMA may also be improved using different preprocessing and tuning.

5 Conclusion

Thanks to its performances, LS-SVM model can be applied to experimental
data for absorption and scattering prediction. The model proposed in this
paper has two main advantages. The first one is that it can be used on any
diffusing sample with µa < 0.08cm−1 and 1.5cm−1 < µ′

s < 3cm−1 (but a
larger model may be calibrated) such as for human tissues. The second one
is that since the model uses only 41 time resolved curve for the model, it
can be easily integrated on an embedded sensor for industrial uses. Even
if the model performances are already interesting, the method may be im-
proved by integrating a convolution process in the database building. As
mentionned previously, without outperforming LMA, the performances are
higly improved. In the perspective of optimisation, a data smoothing may
be applied on the raw data.
As TRS transmission measurements produce the same type of curves as the
reflection geometry, LS-SVM model may also be derived and applied effi-
ciently on transmission data (slab geometry). We also think LS-SVM mod-
eling would be of deep interest for spatially resolved spectroscopy and phase
modulation spectroscopy.
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Figure 1: Setup for TRS spectrum acquisition
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