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Abstract

In many countries, forest policies consist of a system of various reg-

ulations, taxes and subsidies. In this article, we focus on those policies

that regulate selective harvesting and study the example of Central

Africa. We use a deterministic singular optimal control model of re-

newable resources to assess these policies with respect to a first best

situation which integrates a social surplus or externality function. In

particular, in contrast to earlier articles, we analyze a stock dependent

tax, for which the objective function is piecewise differentiable. We

use a theorem proposed by Hartl and Feichtinger to solve the mathe-

matical problem. We show that this tax is the most flexible instrument

with respect to fund collection.

Key Words: Singular optimal control, environmental taxation, renew-

able resource economics, stock dependency.
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1 Introduction

In this paper, we use a standard optimal control model to analyse existing

forest policies’ capacity to bring about optimal forest resource stocks and op-

timal harvesting strategies. Renewable resources and their regulation have

been studied extensively in optimal control models (Refs. 1- 3), but most find-

ings have been applied to the fields of marine resource and fishery economics.

In fishery economics, an important feature is the absence of property rights,

which is why policy recommendations focus on catch quotas, the attribution

of property rights through individual transferable quotas, or the restriction

of harvesting efforts (Ref. 4). Yet forests also can and have been represented

in a Clark-Munro optimal control model (Ref. 5), when the resource is man-

aged by selective harvesting (Ref. 6) rather than clear-cutting. Representing

forests in such a framework allows the assessment of stock-dependent policies

(Refs. 7- 8), which can be included directly in the resource user’s objective

function. This point seems crucial in the case of tropical forests which pro-

vide global ecosystem services but most often are managed in concessions by

private companies that do not take these externalities into account.

In this analysis, we use the example of actual policies in Central Africa

(Refs. 9- 10), where harvesting strategies are selective and environmental

policies do refer to the resource stock. In order to assess these forest poli-

cies, we use a socially optimal case as a benchmark and then derive optimal

taxation rates for the existing tax structures, as is the usual procedure in

forest economics literature (for example, Refs. 11- 12). We do not consider

interactions among agents (as analysed in Refs. 13- 14) or a general equilib-

rium framework (Refs. 15- 16). Nor do we discuss the role of environmental

and output taxes as redistribution instruments (Ref. 17). Instead, we assess

the influence of a tax on the extraction behavior of a representative resource
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user, and define those second best environmental policies which allow socially

optimal resource stocks to be maintained.

The widespread use of taxes in the forest sector is reflected by the fact that

forest taxation issues have been studied extensively in forest economics lit-

erature. Whereas early studies mainly dealt with the capacity of taxes to

collect funds (Refs. 18- 19), later studies focused on the problem of tax dis-

tortions (Ref. 12), and more recent articles tackle the combined issues of op-

timal environmental taxation (Ref. 11), and government budget constraints

(Refs. 23- 24). Among the main findings of this literature, we may note that

fund collection is best implemented by neutral taxes and that non-neutral

taxes should serve to correct for externalities, where neutrality applies to the

fact that taxes have no impact on the optimal rotation time. However, most

of these studies have been implemented in the context of forest rotation mod-

els and the results only apply to clear-cut forests. The study of the impact

of selective harvesting policies and other policies related to forest stocks has

received increasing attention. Yet, not all of the taxation issues which have

been studied in rotation models have also been addressed in stock dependent

models. This is why we have chosen to analyse forest policies in a natural

resources framework.

In this paper, we look at two different types of policies, output taxation and

environmental taxation, and we study three different instruments: a yield

tax, an environmental subsidy, and an environmental tax. Berck (Ref. 5)

and Montgomery and Adams (Ref. 6) have analysed the impact of yield

taxes4 in an optimal control model representing selectively harvested forests.

Although yield taxes do not aim at environmental protection in the field, we

review the results obtained by Berck (Ref. 5) because such taxes do have an

4 Its name is based on the fact that the production process is harvesting.
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impact on the optimal forest stock when harvest costs are stock dependent.

We then turn to the analysis of proper stock dependent policies, starting

with the instrument of an environmental subsidy. In the field, such subsidies

are granted for the setting up of forest management plans and they depend

directly on forest inventories. This is why we model it as being directly de-

pendent on the forest stock. In contrast to standard subsidies, this subsidy

plays a special role in the country’s policy mix as it is financed by interna-

tional donors.

Finally, we examine what we call an environmental tax. More precisely an

asymmetric fee, this is a combined standard-tax regulation which is applied

when the concessionaire cuts a greater amount of forest stock than the one

he annually is allowed. This tax does not correspond exactly to what is com-

monly called an environmental tax in the literature because it is not based

on marginal damage and marginal abatement costs. Instead, it is based di-

rectly on the forest stock to which externalities are attached. It also does

not correspond to site or land-value taxes as they are discussed in forest eco-

nomics literature because it is not based on the size of the land plot nor on

the sale value of the forest. As we define it, the tax has some characteristics

of an individual transferable quota system as it depends on a quantity-based

standard, but it is not transferable. Keeping these facts in mind, we will

use the most general term, environmental tax, in the discussion which fol-

lows. In our model, we assume that the level of the fee is proportional to the

distance between the real stock and the standard, even though real policies

are less precise. Our environmental tax renders the underlying mathematical

problem piecewise differentiable so that standard theorems of deterministic

singular optimal control problems no longer apply. We therefore use an ex-

tension to the Hartl and Feichtinger theorem (Ref. 20) to solve the problem
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(see appendix containing the proofs).

By comparing the different instruments, we confirm the well known static

result that environmental subsidies and environmental taxes are equivalent

with respect to their capacity to correct for environmental externalities in a

dynamic context (Ref. 21). We thus identify the tax policy that is equivalent

to the environmental subsidy, and give the exact conditions for this equiva-

lence. In the field, optimal subsidy rates may be constrained by the amount

of international funds raised for environmental subsidies. This is why we then

discuss the capacity of environmental and output taxes to raise funds. We

show that the environmental tax analysed is more flexible than the yield tax

in this regard, contrary to the common consensus in forest economics and

taxation literature that environmental taxes are not the best fund raising

instruments because they are not neutral.

The paper is organised as follows: in section 2, we review the underlying

Clark-Munro model and the optimal outcome when an externality function

is taken into account. In section 3, we examine the impact of the yield tax, the

environmental tax, and the environmental subsidy within this framework and

compare their performance with respect to the social optimum. We discuss

the management of the policy mix and the fund raising capacity of the two

taxes in section 4. The last section is devoted to the conclusion.

2 Underlying Model

A standard Clark-Munro natural resource model (Refs. 1- 2) can be used to

compare different policies. Indeed, the model can be applied to the forestry

sector (Ref. 5) as follows: each concessionaire chooses the harvest level, h(t),

which maximises total discounted revenues from harvesting, where the price,
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p, and the discount rate, r, are fixed in international markets. Unit costs,

c(x(t)), depend on the size of the stock, x(t). Each concessionaire takes into

account the regeneration dynamics of the resource, G(x(t)), given that re-

planting costs are zero because forest regeneration is natural. As proposed by

Vousden (Ref. 22) and Clark (Ref. 2), we introduce an externalities function,

or social surplus function, which is tied to the resource stock: V (x(t)) > 0

and for which V ′(x(t)) > 0. Private concessionaires do not take these exter-

nalities into account V (x(t)) = 0, but the government does. The problem

can thus be written as follows:

max
h(·)

∫ ∞

0

e−rt [(p− c(x(t))) h(t) + V (x(t))] dt, (1)

s.t. ẋ(t) = G(x(t))− h(t), (2)

x(0) = x0, (3)

0 ≤ h(t) ≤ hmax. (4)

For clarity, the time indicator is omitted in the following discussion wherever

possible. Initial resource stocks are known and harvest capacity is bounded

by hmax. In this article, hmax stands for the best available harvesting tech-

nology. It is a purely technical constraint which depends on the technological

state of the harvesting equipment and which can not be influenced by the

government nor by the forester. Following Clark, the natural growth is

supposed to be logistic, where g0 stands for the intrinsic growth rate and

K for the carrying capacity. We also use the stock dependent cost function

proposed by Clark. In the case of forest resources, this type of decreasing

function relies on the assumption that the most accessible trees are cut first.

The further the forester moves into the forest, the higher the associated costs:

G(x) = g0x(1− x

K
), (5)
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c(x) =
a

qx
=

C

x
, (6)

where C represents unit depletion costs; in the forestry case they may depend

on the harvest technology, a, and a proxy for resource richness, q. The profit

maximising stock level without policy intervention and when externalities

are not taken into acount, V (x) = 0, leads to a steady state which we denote

x∗p. Remember that this stock is such that the marginal-productivity rule

including the stock effect holds (Refs. 1- 2):

G′(x∗p)−
c′(x∗p)G(x∗p)

p− c(x∗p)
= r. (7)

Using the growth and cost functions, and denoting B = g0
C
K

+ (g0 − r)p the

steady state can be expressed as:

x∗p =
B +

√
B2 + 8Cgo

K
rp

4g0
p
K

. (8)

As we are dealing with a singular optimal control problem, the most rapid

approach path (MRAP)5 is optimal (Refs. 2 and 20). The optimal harvesting

scheme is given by:

hp(t) =


hmax if x(t) > x∗p

0 if x(t) < x∗p

G(x∗p) if x(t) = x∗p.

However, market mechanisms are supposed to be incapable of taking the

transnational and global functions of the forest into account, for example

biodiversity and carbon sequestration. When these externalities are consid-

ered by the decision maker, that is V (x) > 0, the steady state is socially

optimal and we denote it x∗o. The socially optimal growth rate is given by:

G′(x∗o)− c′(x∗o)G(x∗o)

p− c(x∗o)
= r − V ′(x∗o)

p− c(x∗o)
. (9)

5 See the appendix for the formal definition of MRAP.
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Likewise, we can define an implicit function of the socially optimal steady

state which is greater than the privately optimal stock, x∗p, due to our as-

sumption that V ′(x) > 0 (Refs. 22 , 5 and 2):

x∗o =
B + V ′(x∗o) +

√
(B + V ′(x∗o))2 + 8Cgo

K
rp

4g0
p
K

. (10)

In contrast to fishery economics, where resources are overexploited mainly

because property rights are ill-defined, the problem in forest economics is dif-

ferent: forest stocks are attributed as concessions to private companies and

property rights are secure, at least for the time of the concession. Nonethe-

less, regulation is necessary for essentially two reasons: first, private conces-

sionaires do not take into account all of the externalities linked to the forest

resource, second, governments face budget constraints and often turn to for-

est exploitation to capture the rents generated or to collect funds. These

issues have been addressed by the forest roation literature but less exten-

sively in a natural resources framework. In the following, we extend Berck’s

analysis (Ref. 5) by looking at stock dependent policies and their fund rais-

ing capacity and then comparing the findings to those of more recent forest

rotation literature.

3 Modeling Forest Policies

Having reviewed the underlying model, we shall now incorporate different

forest taxes into this framework. In the following, we use the example of

forest taxes as they are implemented in different Central African countries.6

6 Throughout the text, we always suppose that taxation is fixed in such a way that the

concessionaire’s net benefits remain positive.
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3.1 Forest Sector Taxation Based on Harvest Yields

In the field, the most important forest sector taxes in terms of fund collection

are export taxes, harvest taxes, and site-value taxes. The site-value tax is

based on the surface area of a concession. Being a fixed cost, it does not

have any impact on harvest decisions and therefore has not been included in

the following discussion. Export taxes are based on the free on-board values

of a unit of timber, which are determined by the timber market price. For

this reason, they may be modeled in the following way:

max
h(·)

∫ ∞

0

e−rt [(p− c(x)− ε(p)) h(t)] dt, (11)

subject to (2)-(4). Harvest taxes are levied on cubic meters of cuttings and

can be modeled in the same way except that their rate does not depend on

the price. Harvest taxes are therefore a special case of export taxes. All these

taxes are yield taxes and do not aim at environmental regulation. However,

as Berck (Ref. 5) has shown, they increase the optimal forest stock and this is

what leads us to consider them. We now have to compare the optimal stock

including the tax to the socially optimal steady state. Yield taxes change the

price by −ε(p) and the marginal productivity rule associated to the steady

state, x∗ε now becomes:

G′(x∗ε)−
c′(x∗ε)G(x∗ε)

p− ε(p)− c(x∗ε)
= r. (12)

Considering (5) and (6), x∗ε can be expressed as:

x∗ε =
B − ε(p)(g0 − r) +

√
(B − ε(p)(g0 − r))2 + 8Cgo

K
r(p− ε(p))

4g0

K
(p− ε(p))

. (13)

The socially optimal tax rate can be computed by combining (12) and (9):

ε(p) = − V ′(x∗o)

G′(x∗o)− r
= − V ′(x∗o)(p− c(x∗o))

c′(x∗o)G(x∗o)− V ′(x∗o)
. (14)
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Given the above assumptions on the functional forms, we can see that

the optimal regulation is always a tax, not a subsidy. However, different

assumptions on harvesting costs or growth behavior may lead to different

optimal uses of this instrument. By confirming that the yield tax is not

neutral with respect to its impact on optimal forest stocks, we are in line with

recent forest rotation literature which found that yield taxes also impact on

the optimal choice of rotation times.

3.2 Environmental Policies Based on Forest Stock

Environmental policies represent a small but growing part of forest policies

in many countries, including Central Africa. Here, we can observe two main

instruments in environmental policy: stock dependent subsidies, σ, which

serve to establish forest management plans, and direct taxes on deforestation,

τ . The direct tax considered is a combined standard payment regulation:

any stock level below the standard, x̄, is taxed, but above the standard any

harvesting is allowed. In the field, the standard corresponds to the forest

stock opened annually for cutting which depends on the surface area, the

forest richness, and the number of commerciable trees, and it is exogeneously

given. We now are going to analyse these two instruments in more detail:

what is the forest concessionaire’s optimal behavior in the presence of the

instrument? And what is the optimal level of the tax or subsidy from the

point of view of the regulator?

Subsidy If the subsidy alone was in place, the forest concessionaire has to

solve the following problem:

max
h(·)

∫ ∞

0

e−rt [(p− c(x)) h(t) + σx(t)] dt, (15)
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subject to (2), (3), (4), (5) and (6). Let us denote the steady state x∗σ. The

associated marginal productivity rule reads as:

G′(x∗σ)− c′(x∗σ)G(x∗σ)

p− c(x∗σ)
= r − σ

p− c(x∗σ)
, (16)

and x∗σ, is given by:

x∗σ =
(B + σ) +

√
(B + σ)2 + 8Cgo

K
pr

4g0
p
K

. (17)

The solution of (15) is the MRAP approach to x∗σ. From the regulator’s point

of view, the optimal subsidy now has to be fixed. Comparing (9) and (16),

we see that the (unit) subsidy may be optimal if and only if it is equal to the

marginal value of externality generation in the steady state:

σ = V
′
(x∗o). (18)

As the approach path to the steady state is the most rapid, the whole tra-

jectory will be optimal. However, given the lack of governmental funds in a

developing country context (see also Ref. 5), it is very unlikely that the unit

subsidy will be sufficiently large to correct for all existing externalities. The

corresponding tax might play the same role with respect to environmental

protection without being the responsibility of the government.

Tax Now consider the tax. The problem for the forest concessionaire be-

comes:

max
h(·)

∫ ∞

0

e−rt
[
(p− c(x)) h(t)− τ

[
(x̄− x)+]]

dt, (19)

subject to (2), (3), (4), (5) and (6). Where the symbol “+” denotes the

nonnegative part of a quantity that is: z+ = z if z ≥ 0 and z+ = 0 if

z < 0. This tax is assymetric as it is payable only if the real stock, x(t), is

smaller than the standard, x̄, or the total allowed to be cut in terms of forest
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stocks. Whenever the concessionaire detains too much forest compared to

the standard, he does not have to pay anything. Conversely, if he detains too

low a level of forest, he has to pay a fee proportional to the difference between

the real stock and the standard. More precisely, if x(t) > x̄, the tax does

not apply and the associated steady state stock would be x∗p, outcome of the

marginal productivity rule (7). If x(t) < x̄, the tax applies and the associated

steady state stock is x∗τ , outcome of the following marginal productivity rule:

G′(x∗τ )−
c′(x∗τ )G(x∗τ )

p− c(x∗τ )
= r − τ

p− c(x∗τ )
. (20)

Note that x∗τ > x∗p. The optimal solution of problem (19) is analysed in the

appendix and is given by:

(i) MRAP approach to x∗τ if x∗τ < x̄,

(ii) MRAP approach to x̄ if x∗τ ≥ x̄ ≥ x∗p.

The intuitive explanation of this solution is the following: for the forest

concessionaire, it is critical to know whether the tax has to be paid or not.

Let us suppose x0 > x̄ > x∗τ . Starting from x0, no penalty has to be paid

and there is an additional gain from cutting wood. The concessionnaire

will tend to approach the optimal stock without tax, x∗p, which is smaller

than x∗τ . But as soon as he transgresses the standard, he will have to pay

a penalty and the optimal stock switches up to x∗τ , stock which takes into

account the additional costs of the tax payment. The concessionnaire will

continue to harvest until x∗τ , and then stay there. It is not optimal to stay

in x̄, as this is not a steady state. Indeed, for all stock levels between x̄

and x∗τ , the additional gain from cutting is greater than the additional loss

from paying the tax, and this holds until x∗τ . For stocks which are smaller

than x∗τ , the inverse holds: the additional gain from cutting is smaller than
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the additional loss from paying the tax and it is optimal to rapidly approach

x∗τ and then stay there. At equivalent stock level, this taxation is thus a

cost-minimising way of approaching the environmental target x̄, as proposed

by Baumol and Oates 25, but the standard will never be met exactly. Note

that when x0 > x∗τ > x̄, we can show by similar reasonning that the optimal

behavior for the concessionaire is to make the stock converge to x̄ and then

to stay there.

Given the reaction by the concessionaire, the regulator has to fix the optimal

policy. Now he has to determine both the tax rate and the standard. We

therefore distinguish two cases: x∗τ may be smaller than the standard or it

may exceed the standard.

Remark 3.1

(i) In the case x∗τ < x̄, from equations (16) and (20) we can see that, if the

tax has to be paid, τ plays the same role as σ. This assymmetric tax

is thus equivalent to the symetric subsidy. Moreover, when σ = τ then

the steady states are equivalent: x∗τ = x∗σ.

(ii) Also in the case x∗τ < x̄, from (9) and (20) we obtain that the tax is

optimal if the following condition holds:

τ = V ′(x∗o). (21)

Let us suppose in the following that the initial stock level is high: x0/x0 > x̄.

The resource is still abundant when the policy is set up. If the regulator

knows the externality function V (x), he also knows the socially optimal stock

x∗o, and he can either set the standard at the socially optimal stock level and

use a very high tax rate or he can set the corresponding optimal tax rate
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in combination with a very binding standard: in both cases he will reach

the optimal steady state. Because the approach path is the most rapid, the

whole trajectory will be optimal. In fact:

In the first case, the regulator sets x̄ = x∗o and τ large enough, such that

x∗τ ≥ x̄. The concessionnaire does not have to pay anything, but the regu-

lator will not collect any funds in turn. This is the solution prefered by the

concessionaires and the goal of their lobbying. Indeed, they prefer that the

regulator set high penalties as they only would have to pay them in excep-

tional cases. In the second case, the regulator sets τ = V ′(x∗o) and x̄ such

that x∗τ < x̄. Now the concessionnaire has to pay a tax for any stock level be-

tween x̄ and x∗τ . This is the solution preferred by governments facing budget

constraints. Indeed, not only will the government be able to collect funds,

he also can set an environmental standard which may allow him to meet

international environmental standards. The greater the budget constraints

for the government, or the higher the international pressure for environmen-

tal protection, the higher the government will tend to set x̄. Although the

concessionaire may not accept easily a very stringent standard, he may still

prefer it to other regulatory policies as it does not rule out the limited use of

the forest. In order to clarify the two alternatives, we also could consider the

combined case, where the regulator sets x̄ = x∗o and τ/x̄ = x∗τ . Then there is

a single steady state. The standard is never transgressed and the regulator

does not collect any funds.

Not surprisingly, we have seen that any one of the instruments may be opti-

mal on its own, assuming the government has all the information it needs and

can set the optimal taxation rate. However, with respect to fund raising, the

environmental tax, τ , is the most flexible instrument: while maintaining an

optimal forest stock, the government can adjust the level of the standard and
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organise transfers within society. The more funding the government needs,

the higher it will set the standard. On the other hand, the higher the tax

payments, the lower will be the acceptability of this regulation among con-

cessionnaires. In the next section, we will discuss the joint implementation

of these different policies and the fund collection that is associated with this

policy mix.

4 Management of the Policy Mix

In current forest policies, several of the above taxes and subsidies are imple-

mented together. National taxes serve to correct externalities and to collect

funds. Foreign aid also plays an important role. In Central Africa, for ex-

ample, it is directly linked to environmental protection and serves as an

environmental subsidy. From a theoretical point of view, it can be argued

that foreign aid corrects those externalities that the international commu-

nity benefits from. But there are still some externalities that only concern

the country owning the forest and which are not taken into account by the

concessionaires. In the following, we intend to analyse two ways in which

national externalities can be corrected by taxation policies. First, we note

that the complete policy mix can be formally written as:

max
h(·)

∫ ∞

0

e−rt
[
(p− ε(p)− c(x)) h(t) + σx(t)− τ

[
(x̄− x)+]]

dt, (22)

s.t. (2)-(6). From the appendix, we know how the concessionaire will respond

to this policy mix. He will chose:

(i) MRAP approach to x∗εστ if x∗εστ < x̄,

(ii) MRAP approach to x̄ if x∗εστ ≥ x̄ ≥ x∗εσ0,
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where x∗εστ is the solution of

G′(x)− c′(x)G(x)

p− ε(p)− c(x)
= r − σ + τ

p− ε(p)− c(x)
. (23)

The corresponding solution is valid for any combination of taxes and sub-

sidies.7 For the regulator, it is important to set the policy mix so that a

certain amount of revenue may be collected. When x∗εστ < x̄, we know from

(9) and(23) that the socially optimal policy mix should be such that the

following equation holds :

(σ + τ)(p− c(x∗o))− ε(p)c′(x∗o)G(x∗o)

p− ε(p)− c(x∗o)
= V ′(x∗o). (24)

If the concessionnaire had to chose among the panel of possible optimal

policies, he would chose the subsidy first. In contrast to earlier arguments

(Berck 5), let us say that the government maintains this subsidy because it

is financed in part by international donors, σe. But then suppose the funds

received are not sufficient to set the subsidy at the optimal rate, σo = V ′(x∗o)

and that the government has to obtain additional funds from tax income.

How should the optimal tax then be chosen?

• Subsidy and Environmental Tax. First consider the environmental

tax τ (x̄− x)+8. When x∗0σeτ < x̄, the socially optimal tax-subsidy

combination should be such that

τ + σe = V ′(x∗o), (25)

where the tax rate is equal to the difference between the optimal and

the real unit subsidy τ = σo− σe. Denote t̃ the instant from which the

7 Note that x∗000 = xp, x∗ε00 = x∗ε, x∗0σ0 = x∗σ and x∗00τ = x∗τ .

8 Call x∗0σeτ the steady state outcome associated to the tax-subsidy combination when the

subsidy is financed by external funds, σe.
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concessionnaire’s forest stock is smaller than the standard and where

the concessionaire has to pay the tax. More precisely, define t̃ such

that x(t̃)o = x̄, where x(t)o stands for the optimal approach path from

x0 to the steady state. The corresponding tax revenue, Rσeτ , can be

expressed as:

Rσeτ =

∫ ∞

t̃

e−rt [(σo − σe)(x̄− x(t)o)] dt. (26)

Let S =
∫∞

0
e−rt(σo − σe)x(t)o dt be the missing part of subsidies

which has to be financed by the government. We can compute the

optimal standard, x̄o which allows the collection of the desired amount

of money. Putting S = Rσeτ , we get:

x̄o =
r

e−rt̃(σo − σe)

[
S +

∫ ∞

t̃

e−rt(σo − σe)x(t)o

]
dt,

and therefore the following implicit equation for x̄o:

x̄o =
r

e−rt̃

[∫ ∞

0

e−rtx(t)o dt +

∫ ∞

t̃

e−rtx(t)o dt

]
. (27)

We can see that this policy only can be implemented when the optimal

standard is greater than the steady state, that is when:

x̄o > x∗0σeτ .

On the other hand, if the optimal standard as an outcome of the equa-

tion (27) turns out to be smaller then the steady state x∗0σeτ , the reg-

ulator needs to implement another tax in order to collect the missing

funds.

• Subsidy and Yield Tax. Now consider the yield tax as the fund

raising instrument to collect the same amount of money. Call t̂ the

instant where the socially optimal stock trajectory becomes equal to the
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socially optimal steady state: that is t̂ such that x∗(t̂)o = x∗εσe0 = x∗o.

The optimal yield tax associated to this path can be deduced from (9)

and(23) when τ = 0. It reads:

ε(p)o = −V ′(x∗o)− σe

G′(x∗o)− r
= −(V ′(x∗o)− σe)(p− c(x∗o))

c′(x∗o)G(x∗o)− V ′(x∗o)
. (28)

With this optimal yield tax the regulator can collect the following funds:

Rεoσe =

∫ ∞

0

e−rt(ε(p)oho(t)) dt

=

∫ t̂

0

e−rt(ε(p)ohmax) +

∫ ∞

t̂

e−rt(ε(p)oG(x∗o) dt,

where ho(t) is the socially optimal harvesting scheme. To fulfill the

additional condition Rεoσe = S, that is:

ε(p)o

[
hmax

1− e−rt̂

r
+ G(x∗o)

e−rt̂

r

]
= S, (29)

the regulator would need an additional variable he can influence. Let

us suppose for an instant that the regulator can fix the maximal har-

vest capacity of the concessionaires, for example, by limiting it or by

improving accessibility to foreign harvest technologies. We could infer

from (29) how the regulator should chose this technology, hmax.

We have analysed the capacity of two taxes to collect funds: the environmen-

tal tax and the yield tax. In section 3, we have seen that the environmental

tax can be used in an optimal manner when the tax rate is set at the optimal

level and the standard is stringent, in this case the regulator raises funds

from the concessionaires. To use this tax as an instrument to collect a fixed

amount of money, we need the additional condition that the standard be

set at a precise level, as shown in (27). Concerning the yield tax, we have

18



seen in section 3 that its optimal rate has to be fixed in a given matter. It

is obvious that the corresponding revenue will not necessarily correspond to

the missing amount of funds. The regulator has only one variable at hand

to control for two constraints. Hence, the environmental tax seems more

flexible in implementing optimal environmental policies and collecting funds

as it has two variables which the government can determine: the tax rate

and the standard. The only problem remains the acceptability of this tax-

standard combination to the concessionaires. However, if the constraint was

given in terms of environmental protection only, the use of an environmental

tax allows the collection of any amount of money the regulator wishes and

takes into account acceptability among the concessionaires. This is not the

case for the yield tax.

5 Conclusions

To conclude, we have chosen the special case of forests which are harvested

in a selective manner. On the one hand, this allows us to use the general

renewable resources framework (Refs. 5- 6), and, on the other, to study poli-

cies which depend on the resource stock. We have analysed three important

forest policies: the yield tax, which is defined for the harvest volume; an en-

vironmental subsidy, which depends on the stock; and an environmental tax,

which is more precisely a tax-standard regulation and which also is defined

by the stock. Taking as our example forest policies in Central Africa, we

can define the optimal taxation rates which would bring about the socially

optimal extraction behavior. We have shown under which conditions the asy-

metric environmental tax is equivalent to the symetric subsidy, namely when

the standard is sufficiently stringent. In that case, the environmental tax can
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also serve as a fund collection instrument, which is the main advantage of

the tax over the subsidy. If a particular budget constraint has to be met, we

need an additional condition on the exact amount of the standard. We have

supposed that a subsidy-tax combination would be the policy mix favoured

by the government. This leads us to compare the two tax instruments with

respect to their capacity to collect funds while regulating the environment.

We have seen that the environmental tax is better adapted to this task. In

contrast to earlier findings, we therefore conclude that the environmental tax

can be an interesting instrument for fund collection and should not be re-

placed by a yield tax which is not neutral in this case. In the field, however,

yield taxes are much more popular than environmental taxes. One reason

may be that information in the real world is not complete. Indeed, prices,

which are the basis of yield taxes, are more readily observable than forest

stocks, which are the basis for environmental taxation. But stock dependent

regulations and subsidies do exist and could be effective tools to improve the

amount of available information for the implementation of environmental

taxes.
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6 Appendix: Mathematical Considerations

We first rewrite the principal theorem obtained in 20 about one-dimensional

singular optimal control problems with infinite horizon and the Most Rapid

Approach Path solution (MRAP), introducing the notation used in that pa-

per. Then we present an extension of this theorem. Finally we apply these

results to our problem.

The problem studied in (Ref. 20) is the following :

P : max
u(.)

∫ ∞

0

e−rtF (x, u, t)dt

s.t. ẋ = f(x, u, t), x(0) = x0,

u ∈ [u(x, t), u(x, t)], x ∈ [x−(t), x+(t)],

where

F (x, u, t) = F1(x, t) + F2(x, t)φ(x, u, t),

f(x, u, t) = f1(x, t) + f2(x, t)φ(x, u, t).

Problem P is equivalent to the following variational problem:

VP : max
x(.)

∫ ∞

0

e−rt[M(x, t) + N(x, t)ẋ]dt

s.t. ẋ ∈ Ω(x, t) ⊂ <, x ∈ [x−(t), x+(t)], x(0) = x0,

where

M(x, t) = F1(x, t)− f1(x, t)F2(x, t)

f2(x, t)
,

N(x, t) =
F2(x, t)

f2(x, t)
,

φ(x, u, t) =
ẋ− f1(x, t)

f2(x, t)
,

Ω(x, t) = {f1(x, t) + f2(x, t)φ(x, u, t)/u ∈ [u(x, t), u(x, t)]} .
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Definition 6.1

(i) A feasible path is a trajectory x(t) such that ẋ(t) ∈ Ω(x(t), t) and

x(t) ∈ [x−(t), x+(t)].

(ii) The most rapid approach path (MRAP) x̂(t) from x0 to a given trajec-

tory x∗(t) is a feasible path verifing for all t and every feasible trajectory

x(t):

|x̂(t)− x∗(t)| ≤ |x(t)− x∗(t)|.

Denoting

I(x, t) = −rN(x, t) + Nt(x, t)−Mx(x, t),

we have the following theorem:

Theorem 6.1 Hartl and Feichtinger (Ref. 20). Assume that

(i) all functions are continuously differentiable and f2(x, t) 6= 0 for all

x ∈ [x−(t), x+(t)],

(ii) I(x, t) = 0 has a unique feasible solution x∗(t),

(iii) for all t ≥ 0

I(x, t) < 0 if x−(t) ≤ x < x∗(t), (30)

I(x, t) > 0 if x∗(t) < x ≤ x+(t), (31)

(iv) finally assume that

lim
t→∞

e−rt

∫ x∗(t)

x(t)

N(y, t)dy ≥ 0. (32)

If there exists a MRAP x̂(t) from x0 to x∗(t), then this trajectory is optimal.

Indeed, using the ideas from the proof of this theorem, it is possible to

establish another result which is useful when (ii) is not verified.
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Theorem 6.2

First consider the case where the maximization of problem VP is done in the

set x(.) ∈ β2 where

β2 = {x(t) : [0,∞) → X : x̄(t) ≤ x ≤ x+(t) : ∀t, x(.) : an admissible path} and

x̄(t) is a given feasible path. Suppose that

i) x̄(0) ≤ x0 ≤ x+(0), ii) all the functions are continuously differentiable and

f2(x, t) 6= 0 for all t, x ∈ [x̄(t), x+(t)], iii) (31) holds for t, x ∈ [x̄(t), x+(t)]

and iv) Therorem 6.1(iv) holds; then the MRAP x̂(t) from x0 to x̄(t) is the

optimal solution of VP in the set β2.

Second, consider the case where the maximization of problem VP is done in

the set x(.) ∈ β1 where

β1 = {x(t) : [0,∞) → X : x−(t) ≤ x ≤ x̄(t) : ∀t, x(.) : an admissible path} and

x̄(t) is a given feasible path. Suppose that

i) x−(0) ≤ x0 ≤ x̄(0), ii) all the functions are continuously differentiable and

f2(x, t) 6= 0 for all t,x ∈ [x−(t), x̄(t)], iii) (30) holds for all t, x ∈ [x−(t), x̄(t)]

and iv) Therorem 6.1((iv)) holds; then the MRAP x̂(t) from x0 to x̄(t) is

optimal solution of VP in the set β1.

Now we apply these results to our problem

max
h

∫ ∞

0

e−rtF (x, h, t)dt, (33)

s.t. ẋ = f(x, h, t), x(0) = x0, h ∈ [0, hmax], x ∈ [δ,K],

where

F (x, h, t) = (p− ε(p)− c(x))h + σx− τ(x̄− x)+,

f(x, h, t) = G(x)− h.

with 0 < x̄ < K, p > 0, τ ≥ 0, σ ≥ 0, δ > 0 given constants.

Note that in this example

φ(x, h, t) = h, f1(x, t) = G(x), f2(x, t) = −1,
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F1(x, t) = σ − τ(x̄− x)+, F2(x, t) = p− ε(p)− c(x).

Consider our problem when function F (x, h, t) is not continuously differen-

tiable with respect to x in x = x̄, (τ > 0). 9 In this case we can not apply

directly Theorem 6.1.

Denote x∗εσ0 the solution of I(x, t) = 0 when x(t) ≤ x̄ for all t (F1(x, t) = σx)

and x∗εστ the solution of I(x, t) = 0 when x(t) ≥ x̄ for all t (F1(x, t) =

σx− τ(x̄− x)). x∗εσ0 is the solution of:

Iεσ0(x, t) = r − σ

p− ε(p)− c(x)
−G′(x) +

c′(x)G(x)

p− ε(p)− c(x)
= 0,

and x∗εστ is the solution of:

Iεστ (x, t) = r − σ + τ

p− ε(p)− c(x)
−G′(x) +

c′(x)G(x)

p− ε(p)− c(x)
= 0.

Considering

c(x) =
C

x
, G(x) = g0x(1− x

K
),

we have that x∗εσ0 is the positive solution of

Iεσ0(x, t) := lx2 − (m + σ)x− n = 0,

and x∗εστ is the positive solution of

Iεστ (x, t) := lx2 − (m + (τ + σ))x− n = 0,

where l =
2(p− ε(p))g0

K
> 0, m = (p− ε)(g0 − r)q +

Cg0

K
, n = Cr > 0. We

have that

x∗εσ0 < x∗εστ .

Suppose that g0x
∗
i (1 −

x∗
i

K
) ≤ hmax for i = εσ0, εστ (this condition insures

that the MRAP approach to x∗i is a feasible path). For our problem we have

the following result:

9 For the case τ = 0 we can directly use Theorem 6.1.
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Theorem 6.3

(i) If x∗εστ < x̄ then the optimal solution of problem (33) is the MRAP

approach to x∗εστ .

(ii) If x∗εσ0 < x̄ < x∗εστ then the optimal solution of problem (33) is the

MRAP approach to x̄ 10.

Proof. (i)

a) Consider β1 = {x(t) : [0,∞) → X : δ ≤ x(t) ≤ x̄ : ∀t, x(.)an admissible path} .

When x ∈ [δ, x̄], (x̄ − x)+ = x̄ − x and we can find the optimal solution of

problem VP applying Theorem 6.1 in this set. The MRAP approach from

x0 to x∗εστ (that we denote x̂εστ (t)) belongs to β1 if δ ≤ x0 ≤ x̄ and it is the

optimal solution in β1.

In fact we can easily verify that:

Iεστ (x, t) < 0 if δ ≤ x < x∗εστ (t), Iεστ (x, t) > 0 if x∗εστ (t) < x ≤ x̄ , and

that

lim
t→∞

e−rt

∫ x∗
εστ

x(t)

(c(x)− p)dy = 0.

b) Consider β2 = {x(t) : [0,∞) → X : K ≥ x(t) ≥ x̄ : ∀t, x(.)an admissible path} .

Note that in [x̄, K], (x̄ − x)+ = 0 and denote x̂(t) the MRAP from x0

(K ≥ x0 ≥ x̄) to x̄. x̂(t) ∈ β2 and it is the optimal solution in β2. In

fact we have Iεσ0(x, t) > 0 if x̄ < x ≤ K and we apply Theorem 6.2.

By (a) and (b) using the dynamic programming principle we can deduce that

the MRAP approach form x0 (δ ≤ x0 ≤ K) to x∗εστ is the optimal solution

of Problem (33).

10 The case x̄ < x∗εσ0 is not taken into account in this practical problem because x̄ is not

an incentive policy.
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(ii) In the set β2 we follow the same reasoning that in (i) (b) to conclude that

MRAP from x0 (x̄ ≤ x0 ≤ K) to x̄ is the optimal solution in β2.

Consider now β1 and δ ≤ x0 ≤ x̄, MRAP from x0 to x̄ (that we denote again

x̂(t)) belongs to β1. We have that Iεστ (x, t) < 0 (car x∗εσ0 < x∗εστ ), so again

by Theorem 6.2, x̂(t) is the optimal solution in β1.

Using the dynamic programming principle we can deduce that the MRAP

approach form x0 (δ ≤ x0 ≤ K) to x̄ is the optimal solution of Problem (33).
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